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Abstract

The presence of tumor-infiltrating lymphocytes (TIL) is a
favorable prognostic factor in breast cancer, but what drives
immune infiltration remains unknown. Here we examine if
clonal heterogeneity, total mutation load, neoantigen load,
copy number variations (CNV), gene- or pathway-level somatic
mutations, or germline polymorphisms (SNP) are associated
with immune metagene expression in breast cancer subtypes.
Thirteen published immune metagenes correlated separately
with genomic metrics in the three major breast cancer subtypes.
We analyzed RNA-Seq, DNA copy number, mutation and
germline SNP data of 627 ERþ, 207 HER2þ, and 191 triple-
negative (TNBC) cancers from The Cancer Genome Atlas.
P-values were adjusted for multiple comparisons, and permu-
tation testing was used to assess false discovery rates. Increased

immune metagene expression associated significantly with
lower clonal heterogeneity estimated by MATH score in all
subtypes and with a trend for lower overall mutation, neoanti-
gen, and CNV loads in TNBC and HER2þ cancers. In ERþ

cancers, mutation load, neoantigen load, and CNV load weakly
but positively associated with immune infiltration, which
reached significance for overall mutation load only. No highly
recurrent single gene or pathway level mutations associated
with immune infiltration. High immune gene expression and
lower clonal heterogeneity in TNBC and HER2þ cancers suggest
an immune pruning effect and equilibrium between immune
surveillance and clonal expansion. Thus, immune checkpoint
inhibitors may tip the balance in favor of immune surveillance
in these cancers. Cancer Res; 77(12); 3317–24. �2017 AACR.

Introduction
The presence of immune infiltration in the breast cancermicro-

environment is a favorable prognostic marker particularly among
triple-negative (TNBC), HER2þ and highly proliferative estrogen
receptor (ER) positive cancers (1). High levels of immune infil-
tration, measured as either TIL count or expression of immune-
cell related genes, predicts for better survival with or without
systemic adjuvant therapy in early stage disease (2–6). Addition-
ally, breast cancers that are rich in immune cells, regardless of
subtype, have higher rates of pathologic complete response (pCR)
to neoadjuvant chemotherapy (7, 8). The extent of immune
infiltration is higher in TNBC and HER2þ cancers than in ERþ

disease (7).However, within each subtype there is great variability
in TIL counts ranging from no TILs in 10% to 20% of cancers to
lymphocyte predominant cancers (i.e., >50% of stromal cells are
lymphocytes) in 5% to 10% of cases (4, 7). The biological
mechanismsunderlying the variable TIL infiltration are unknown.

In a pooled analysis of solid tumors in The Cancer Genome
Atlas (TCGA) database, the total number of somatic mutations
and the number of new antigen epitopes (i.e., neoantigen load)
correlated with immune infiltration (9–11). In hepatocellular,
squamous cell lung cancer, and colorectal carcinomas greater
number of copy number alterations were associated with higher
immunogenicity (12–14). On the basis of these observations
one can hypothesize that the more genomic alterations a cancer
has, the greater the immune infiltration is, due to more immu-
nogenic neoantigens in these cancers. Somatic mutations in the
PI3KCA and MAPK genes were also shown to affect the immune
microenvironment (15–17). Germline polymorphisms influ-
ence predisposition to immune disorders and response to
infectious agents (18–20) and one could therefore speculate
that they may also influence antitumor immune response.

The goal of this studywas to systematically examinewhatDNA-
level genomic alterations are associated with immune cell infil-
tration, measured by immune metagene expression, and if these
associations differ by breast cancer subtype. We tested if either (i)
total mutation load, (ii) neoantigen load, (iii) copy number
variations (CNV), (iv) intratumor genomic heterogeneity, (v)
gene-level or (vi) biological pathway level somatic mutations, or
(vii) germline single-nucleotide variants (SNV) are associated
with immune gene expression. Although associations do not
imply a cause and effect relationship, they could lead to testable
hypotheses in the laboratory and in the clinic.

Materials and Methods
Data sources

We obtained gene-level RNA-Seq expression (n¼ 1,066), level-
4 copy number (n¼ 1,080), and germline SNVdata (n¼ 501) and
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corresponding clinical information from TCGA public access
portal. Supplementary Table S1 lists the TCGA samples included
in this study. Gene-level somatic mutation data (n ¼ 817 cases,
n ¼ 14,440 mutations) were obtained from Ciriello and collea-
gues (21). DNA segments were assigned to copy number catego-
ries based on GISTIC threshold scores. We filtered SNVs using the
Duplicated Genes Database (DGD), removed rare variants and
variants deviating from Hardy–Weinberg Equilibrium, and
retained only SNPs with moderate or high functional impact
(n ¼ 8,861) using Variant Effect Predictor (22) in the final
analysis.

Breast cancer subtypes were defined as (i) ERþ/HER� (here-
after referred to as ERþ), (ii) HERþwith any ER status (HER2þ),
and (iii) ER and HER2� (TNBC) based on the routine clinical
information available for the samples (n ¼ 1003 for ER and n ¼
892 for HER2). This routine clinical classification was chosen
over PAM50 subtyping because of its more direct clinical
applicability and to maintain consistency with previous
immune marker studies in breast cancer. When clinical receptor
status was unavailable or equivocal (n ¼ 63), HER2 and ER
status was assigned on the basis of mRNA expression of ERBB2
and ESR1, respectively. The final sample size for this study was
n ¼ 627 ERþ cases, n ¼ 207 HER2þ cases, and n ¼ 191 TNBC
cases.

Analysis plan
The expression levels of 13 previously reported immune meta-

genes were calculated as the mean of the log2-transformed
expression of the member genes (5–23). These metagenes corre-
spond to various immune cell types and reflect various immune
functions (Supplementary Table S2). The prognostic and chemo-
therapy response predictive value of each of thesemetagenes were
previously assessed in the TCGA and also independent data sets
(5, 23). In some analysis we selected the LCK metagene that
showed a high average coexpression with other immune signa-
tures and also correlated significantly with histologic tumor
infiltration lymphocyte count, as the single representative mea-
sure of immune infiltration for correlation with global genomic
metrics.

Neoantigen load data were taken from a previous publica-
tion (23). Overall deletion load was defined as the number of
genes with GISTIC value of "�2," and amplification load was
defined as the number of genes with GISTIC value of "þ2,"
indicating definite deletion or amplification of a given seg-
ment, respectively. Somatic mutations in TCGA whole exome
sequencing samples were detected using MuTech, as previously
described (24). Mutation load was calculated as the number of
somatic mutations in a sample, normalized by the total length
of sequences with adequate read coverage. Mutational hetero-
geneity was measured using the MATH score, which uses the
variance of the variant allele frequency distribution to approx-
imate clonal heterogeneity, however this metric is influenced by
the combined effect of clonality and copy number alterations
(25). Correlation between immune metagene expression as
continuous variable and the genomic metrics were assessed
using the Spearman rank correlation coefficient. Significance
was assessed by using the upper tail probabilities of Spearman's
rho (26).

The association between nonsynonymous somatic muta-
tions or high/intermediate functional impact germline SNVs
and immune infiltration was assessed with linear regression

after variants were collapsed at gene level. Histologic subtype
(infiltrating ductal vs. lobular carcinoma) and the mutation
load were included as additional covariates. The P-values were
adjusted by calculating empirical FDRs (�10%). Associations
between somatic mutations and immune metagene expression
were assessed in a "discovery" analysis, which included all
genes with mutation frequency >3%, and a "candidate gene"
analysis that included genes from biological pathways related
to antigen presenting, cytokines, chemokines, angiogenesis-
related signaling (27, 28), the MAPK pathway (29, 30), cell
adhesion, and epithelial-to-mesenchymal transition (31).
These pathways contained a total of 910 unique genes (Sup-
plementary Table S3).

The association between copy number alterations and
immune infiltration was assessed using linear regression of
metagene expression as a function of either amplifications or
deletions, with histologic subtype and the background rate of
copy number alterations included as covariates. Contiguous
regions with significant copy number effects (P < 0.05) were
defined as copy number peaks. To obtain a null distribution for
significance testing, the immune metagene expression value
was permuted 500 times and copy number peak significance
scores were generated for each permutation. The quantile of
each true peak within this null distribution was assigned as the
adjusted P value.

For pathway level analysis, we assembled 714 biological
pathways from the NCI Pathway Interaction and BioCarta
Pathway databases that correspond to most known biological
functions (32). For each pathway, we defined an "aberration
ratio score" calculated as the number of genes affected by either
mutation or copy number change (GISTIC score of þ2 or �2),
divided by the total number of genes in the pathway. We
examined the association between immune metagene expres-
sion and pathway aberration scores using linear regression
including the histological diagnosis as covariate. To calculate
significance, we constructed random gene sets with the same
number of genes as a given pathway from our pathway gene
pool and calculated aberration scores and their correlation with
immune gene expression for these random sets in 1,000 itera-
tions. The coefficients were compiled into a null distribution
for each pathway. An observed coefficient from the unper-
turbed data was considered significant if it was >95% percentile
of the null distribution.

Results
Correlation between immune metagenes and
global genomic metrics

The expression distribution of 13 immune metagenes in the
three breast cancer subtypes is shown in Supplementary Fig. S1
and the correlations betweenmetagene expressions are presented
in Fig. 1. The lymphocyte-specific kinase (LCK)metagene showed
high average correlation with other immune metagenes across all
subtypes and this metagene has also showed a strong correlation
with histologic TIL counts in breast cancer samples in a previous
study (5), which we have also observed in our data (Supplemen-
tary Fig. S2), therefore we selected this metagene as the best single
measure of immune infiltration. When compared across breast
cancer subtypes, the LCK metagene expression, mutation count,
neoantigen load and amplification, and deletion loads were all
higher in TNBC compared to the other breast cancer subtypes
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(Supplementary Fig. S3). When all breast cancers are analyzed
together, these genomic metrics correlate closely with TIL and
immune gene expression. This is because TNBCs are higher, and
ERþ cancers are lower, in both measures. Supplementary Fig. S4
shows the correlations between the 13 immune metagenes and 5
exome-wide genomic features including all breast cancers
combined.

Next, we examined the correlation between the 13 immune
metagene expression levels and five different measures of global
genomic aberrations in the three distinct breast cancer subtypes
separately. In the subtypes, correlations were weak and in TNBC
and HER2þ cancers tended to show an overall negative associa-
tion between immune signatures and the five different types of
genomic aberrations (Fig. 1). Correlation analysis revealed sta-
tistically significant negative associations between mutational
heterogeneity, measured byMATH score, and the several immune
metagenes in each breast cancer subtype. A significant positive
association was only seen in ERþ cancers for the STAT1 metagene
expression and overall mutation load. Supplementary Fig. S5
shows the correlation between the LCK metagene expression and
the five genomic features with the corresponding R2 values for
each subtype.

A potential confounder in mutation load and copy number
analysis is the variable tumor cellularity of the TCGA samples
and that cancers rich in TILs may have a higher normal to cancer
cell ratio. To assess if tumor cellularity influenced our results,
we applied computationally estimated tumor cellularity using
the ASCAT tool (33) to adjust mutation load for each sample
and have also performed immune gene signature correlation
with the somatic copy number alteration (SCNA) score from
Davoli and colleagues (34). The SCNA score is tumor aneu-
ploidy measure that is adjusted for tumor cellularity. Adjusting
for tumor cellularity did not substantially alter the associations
we observed (Supplementary Fig. S6).

It is important to point out that the correlation coefficients
between various immune metagenes and genomic metrics are
small, which reflect that many other important variables, which
are not captured by these genomic metrics, influence the extent of
lymphocytic infiltration.

Correlation between LCK metagene expression and somatic
mutations, CNVs and germline SNVs

Afterfiltering somaticmutations to includeonlymutationswith
>3% frequency, a total of 188, 104, and 37 mutated genes were
present in theERþ,HER2þ, andTNBCcohorts, respectively. InERþ

cancers, mutations in six genes were nominally significantly asso-
ciated with LCK metagene expression, but only two remained
significant after adjusting for multiple hypothesis testing (FDR <
10%). Mutations in MAP2K4, which affected 5.3% of cases, were
associated with lower, and mutations in TP53 (17.5% of cases)
with higher LCK metagene expression (Table 1). In TNBC, muta-
tions in sevengeneshadnominally significantassociationbutonly
tworemainedsignificantatFDR<10%.Mutations inMYH9(4.1%
of cases) and HERC2 (3.4% of cases) were both associated with
lower LCK metagene expression (Table 1). There were no gene-
level mutations significantly associated with immune infiltration
in HER2þ cancers. When we restricted analysis only to genes that
are involved in regulating the immune system, no additional gene
levelmutationswere identified as significant. These results suggest
that the primary driver of immune infiltration in breast cancers is
not recurrent somatic mutations.

We performed similar analysis for germline polymorphisms.
No SNP was significantly associated with higher immune infil-
tration in any subtype. In TNBC,we could identify three SNPs that
were significantly associated with lower immune infiltration after
adjusting for multiple hypothesis testing. These included
rs425757 and rs410232, both in the coding regions of the CFHR1
gene, and rs470797 in the coding region of MLP (Table 1). These
results suggest minimal contribution from germline polymorph-
isms reported in the TCGA data, to immune infiltration in breast
cancer.

Next, we examined associations between amplifications or
deletions and LCKmetagene expression. In TNBC, two amplicons
5p12-14.3 and 17q11-241 showed significant association with
decreased LCKmetagene expression (Table 1). In HER2þ cancers,
we found four significant amplifications (1q21-23.1, 1q24-32.1,
17q21.2, 17q21.32) associated with decreased immune infiltra-
tion, and one deletion (1p13.2-36.33) associated with increased
immune infiltration (Table 1). In ERþ cancers, no copy number
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Figure 1.

Correlation between immune metagene expression and mutation, neoantigen, amplification, and deletion loads, and tumor genomic heterogeneity. ERþ (A);
triple-negative (B); HER2þ (C) cancers. Spearman correlation coefficients are shown color-coded to illustrate positive (red) or negative (blue) associations.
The top portion shows correlation between immune metagenes, and the lower part between the metagenes and genomic aberration metrics. Significant
correlations at P < 0.0001 are outlined in bold.
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alterations were significantly associated with immune infiltration
after multiple testing adjustment.

Taken together, these results indicate that there are no recurrent
mutations, germline polymorphisms or copy number alterations
that account for the majority of between-cancer variability in
immune gene expression.

Association between LCK metagene expression and biological
pathway-level alterations

In ERþ cancers, aberrations in 11 pathways showed association
with immune gene expression at FDR < 10%, 10 of which were
associated with lower immune infiltration (Table 1). Eight of the
10 pathways included members of the MAP-kinase family

Table 1. Genomic alterations significantly associated with either higher or lower LCK immune metagene expression by breast cancer subtype

Associated with lower immune gene expression Associated with higher immune gene expression
Somatic mutations

Frequency Frequency
ERþ ERþ

MAP2K4 5.3% TP53 17.5%
TNBC TNBC
MYH9 4.1% None
HERC2 3.4% HER2þ

HER2þ None
None

Germline SNPs
ERþ ERþ

None — N/A
TNBC TNBC
rs425757 41.2% None
rs410232 33.8% HER2þ

rs470797 30.9% None
HER2þ

None
Copy number amplifications

ERþ ERþ
None None N/A

TNBC TNBC
5p12-14.3 39% None
7q11-241 18.5% HER2þ

HER2þ None
1q21-23.1 69.5%
1q24-32.1 74.9%
17q21.2 28.6%
17q21.32 26.1%

Copy number deletions
ERþ N/A ERþ

None None
TNBC TNBC
None None

HER2 HER2þ

None 1p13.2-36.33 46.9%
Pathway aberrations

ERþ ERþ

Ceramide signaling 53.4% Sumoylation/CtBP 25.5%
GPCR signaling 17.3%
keratinocyte differentiation 58.4% TNBC
BIOCARTA_KERATINOCYTE PATHWAY 60.8% STAT3 signaling 4.1%
TNFR2 signaling 24.7% CBL-induced downregulation of EGFR 5.5%
TLR pathway 58.0% Chr7p11.2 4.8%
eicosanoid metabolism 16.0% BIOCARTA_CK1 4.8%
FOXA2/3 transcription factor networks 40.5% BIOCARTA_SARS 6.2%
PYK2/MAPK 56.5%
BIOCARTA_STRESS 43.2% HER2þ

Oxidative stress induced NRF2 3.4%
TNBC How does salmonella hijack a cell 6%
RNA polymerase III transcription 7.6% BIOCARTA_ETC 3.4%
Calcium signaling in the CD4 TCR pathway 6.9% BIOCARTA_NOS 4.7%
JNK signaling in the CD4 TCR pathway 4.8%
BIOCARTA_ARENRF2 3.4%

HER2þ

Regulation of spermatogenesis 8.7%
IFNa 4.7%
Activation of PKA 5.4%

NOTE: Percentages show the fraction of cases in a given subtype that harbor the alteration.
Abbreviation: N/A, not applicable, because no event was observed.
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Figure 2.

Genomic alterations associated with LCK immune metagene expression in ERþ (A), triple-negative (B), and HER2þ (C) cancers. Each column represents a
sample ordered in ascending order by LCK metagene expression. Each row indicates a type of genomic abnormality that is statistically significantly associated with
immune infiltration. Somatic mutations and germline SNPs are shown as binary (i.e., present or absent) variables. Mutation load, neoantigen load, total copy
number alteration count, and intratumorheterogeneity (MATHscore) andpathwayalterations (i.e., higher proportionofmutatedgenes in thepathway is indicated by
deeper shade) are displayed as continuous variables. Pathway alterations are displayed as combined alterations and also as amplifications or deletions only.
White, normal genotype; gray, missing data.
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(MAP3K1, MAPK8, MAP2K4, MAPK1, MAPK3, MAP2K1,
MAPK14, MAP2K3), suggesting that alterations in MAPK signal-
ing may lead to lower cancer immunogenicity. In TNBC, aberra-
tions in nine pathways showed association with immune infil-
tration at FDR <10% and in HER2þ cancers, aberrations in seven
pathways had FDR < 10% (Table 1). An overview of all significant
genomic aberrations at the level of individual cases in each breast
cancer subtype are presented in Fig. 2. The results illustrate that the
extent of immune cell infiltration is not associated with highly
recurrent genomic events but rather with unique combinations of
genomic alterations in each cancer.

Discussion
We examined associations between immune metagene expres-

sion and a broad range of DNA-level alterations in breast cancer
subtypes. In all subtypes, higher immune metagene expression
was statistically significantly associated with lower clonal hetero-
geneity. In TNBC and HER2þ cancers, higher overall mutation,
neoantigen, and CNV loads were also consistently, but not sta-
tistically significantly associated with lower expression of a broad
range of immune metagenes. These observations support an
immunepruning/immune editing effect that is particularly appar-
ent in TNBC. Although cancer neoantigenes are required for
mounting an anticancer immune response (35) and a more
disturbed cancer genome is more likely to produce more immu-
nogenic epitopes, a robust local antitumor immune response is
expected to continuously eliminate highly immunogenic clones
and slow the genomic diversification of the cancer or could even
lead to complete elimination before it becomes clinically appar-
ent. In the case of clinically apparent, immune-rich cancers,
immune surveillance does not completely control the growth
butmay impose a precarious balance (i.e., near-equilibrium) for a
variable length of time,which could be tipped in favor of immune
elimination (of microscopic residual cancer) with interventions

such as surgery, chemotherapy, or immune checkpoint therapy
(36). This model could explain the better prognosis of immune
rich cancers and also raise the possibility that immune therapy
may have a chemo-preventive effect. In this framework, TNBC
with no, or very low, immune infiltration represent cancers that
have escaped immune surveillance and are no longer subject to
clonal elimination by immune cells, which explains their greater
clonal heterogeneity higher mutation load and worse prognosis
(Fig. 3).

In contrast, in ERþ cancers, we detected a positive but weak
association of mutation, neoantigen, and CNV loads with
immune infiltration, which reached significance for the overall
mutation load (i.e., higher mutation load correlated with higher
immune infiltration). These results suggest a different dynamic
between immune surveillance and subsequent immune editing
in ERþ breast cancer. One might speculate that this difference
may reflect the different proliferation rate of these cancers. Most
ERþ cancers have a slower growth rate and may spend a longer
time in the various phases of "immune struggle," whereas TNBC
has a higher proliferation rate, which could accelerate, reach-
ing either a state of immune escape or near-equilibrium with
immune surveillance.

Our original goal was to identify DNA level alterations that are
associated with low or high immune gene expression and could
therefore suggest possible molecular causes for the variable levels
of immune infiltration.We could not identify any high frequency,
recurrent, gene-level DNA alterations that are significantly asso-
ciated with immune metagene expression in breast cancer. This is
consistent with a previous report that showed no recurrent
neoantigens in cancers but rather a broad distribution of indi-
vidually rare tumor neoantigens (37). However, in all breast
cancer subtypes we observed a few genomic alterations that were
significantly associated with immune metagene expression even
after adjusting for multiple comparisons (Table 1). Each individ-
ual alteration was rare and accounted for only a small portion of

Figure 3.

Schema of tumor evolution under
immune editing. A, Neoantigenes are
required for mounting an initial
anticancer immune response and
genomic heterogeneity can foster this.
B, A subsequent antitumor immune
response may eliminate many of the
immunogenic clones and lead to lower
clonal heterogeneity and a near-
equilibrium. C, With the emergence
of immune escape mechanisms,
the cancer becomes clonally
heterogeneous again, because it is
no longer subject to clonal elimination
by immune cells. Tumors may
progress through these phases at
different rate depending on
proliferation rate and other variables.
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variability in immune gene expression. Overall, our analysis
indicates that immune infiltration in breast cancer subtypes is
not associated with a few highly recurrent genomic events but
rather by a broad spectrum of gene and pathway level alterations
that each affect small subsets of patients within each subtype. It is
tempting to speculate that at least some of the alterations may
mechanistically contribute to determining immune infiltration.
For examples, in TNBC, two missense SNVs (rs425757 and
rs410232) in the CFHR1 (Complement Factor H related 1) gene,
an inhibitor of the complement cascade (38, 39), and the stop-
gain variant in MBP (Myelin Basic Protein) gene (rs470797) that
can regulate Th2 cells (40, 41)were associatedwith lower immune
infiltration. Amplifications at the 17q11-241 region were also
associated with lower immune infiltration in TNBC. This ampli-
con includes the Chemokine (C-CMotif) Receptor 7 (CCR7) gene
and high expression of CCR7 was previously shown to cause
decreased T-cell presence in the melanoma (42). Deletion in the
1p13-36 region was associated with increased immune infiltra-
tion in HER2þ cancers and this amplicon contains the immune
checkpoint genes tumor necrosis factor receptor superfamily
member 18 and 25 (TNFRSF18 and TNFRSF25). In ERþ cancers,
mutations inMAPK kinase 4 (MAP2K4) were associated with low
immune infiltration. Pathway-level analysis also identified several
biological pathways that had alterations significantly more fre-
quently in cancers with lower immune infiltration, and nine of
these pathways included MAPK genes. This pathway was previ-
ously linked regulation of the tumor microenvironment.
Although these associations do not prove a cause-and-effect
relationship, they raise experimentally testable hypotheses and
suggest a multiplicity of potential biological mechanisms that
influence local antitumor immunity.

In summary, our data suggest that immune surveillance has an
impact on sculpting the breast cancer genome. Cancers that have
minimal or no immune infiltration have greater clonal hetero-
geneity, likely suggesting an escape from immune surveillance.

However, cancers with high immune infiltration may be in near-
equilibrium. These observations suggest that immune checkpoint
inhibitors may be the most effective to tilt the balance in favor of
immune surveillance in the immune-rich, breast cancers. For
breast cancers with little immune infiltration, more complex
immunotherapy strategies may be needed to rekindle immune
response against a clonally diverse neoplastic population.
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