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Abstract

Head and neck squamous cell carcinoma (HNSCC) accounts
for more than 600,000 cases and 380,000 deaths annually
worldwide. Although human papillomavirus (HPV)-associated
HNSCCs have better overall survival compared with HPV-
negative HNSCC, loco-regional recurrence remains a significant
cause of mortality and additional combinatorial strategies are
needed to improve outcomes. The primary conventional ther-
apies to treat HNSCC are surgery, radiation, and chemotherapies;
however, multiple other targeted systemic options are used and
being tested including cetuximab, bevacizumab, mTOR inhibi-
tors, and metformin. In 2016, the first checkpoint blockade
immunotherapy was approved for recurrent or metastatic

Introduction

Head and neck squamous cell carcinoma (HNSCC) accounts
for more than 600,000 cases and 380,000 deaths annually world-
wide (1). In the United States, HNSCC is the sixth most common
cancer, and 63,000 patients are diagnosed and approximately
13,000 deaths occur from the disease every year (2). In addition to
the classical risk factors of tobacco and alcohol use, oropharyngeal
squamous cell carcinoma (OPSCC) is currently the most common
head and neck cancer in the United States due to infection with
high-risk human papillomavirus (HPV) strains including HPV 16,
18, 31, 33, and 45. Different from HPV-negative HNSCC, HPV-
associated HNSCC mainly occurs in younger patients. Within the
oropharynx the status of HPV infection is usually identified by the
surrogate marker p16, which is upregulated by with HPV infec-
tion. However importantly, for sites outside of the oropharynx
p16 status does not necessarily correlate with HPV positivity. Of
note, p16, also known as p16INK4a or cyclin-dependent kinase
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HNSCC refractory to platinum-based chemotherapy. This
immunotherapy approval confirmed the critical importance of
the immune system and immunomodulation in HNSCC path-
ogenesis, response to treatment, and disease control. However,
although immuno-oncology agents are rapidly expanding, the
role that the immune system plays in the mechanism of action
and dlinical efficacy of standard conventional therapies is likely
underappreciated. In this article, we focus on how conventional
and targeted therapies may directly modulate the immune
system and the tumor microenvironment to better understand
the effects and combinatorial potential of these therapies in the
context and era of immunotherapy.

inhibitor 2A, is a cell-cycle regulator and endogenous tumor
suppressor, which is upregulated as a counter-regulatory mech-
anism to the loss of cell-cycle control and inactivation of the
retinoblastoma protein (pRb) by the HPV E7 protein. Fortunately,
pl6-positive OPSCCs are associated with longer survival and
better treatment outcomes (3). Indeed, p16-negative and p16-
positive OPSCCs are considered as two distinct types of tumors in
the eighth edition of TNM-classification and staging by American
Joint Commission on Cancer (AJCC).

The primary curative therapeutic options for previously
untreated HNSCC are surgery with or without adjuvant radiation
or chemoradiation as indicated by pathology, definitive radiation
alone, or definitive chemoradiation. Standard surveillance is to
then obtain imaging at 12 weeks posttreatment to assess for
response and then follow with routine physical exam, nasophar-
yngolaryngoscopy, and additional imaging as indicated. Howev-
er, among all comers approximately 50% of patients will even-
tually develop a local or regional recurrence and despite advances
in treatment, the 5-year survival rate remains low (4, 5). Moreover,
treatment is associated with significant long-term toxicity and
morbidity (4, 5). Traditionally, systemic chemotherapies and
cetuximab are used for relapsed refractory or metastatic disease
with limited improvement in long-term survival. Importantly, the
anti-programmed cell death-1 (PD-1) antibodies pembrolizu-
mab and nivolumab were FDA approved to treat platinum
refractory recurrent or metastatic HNSCC in 2016 (6, 7).
Responses and activity of anti-PD-1 agents is seen in patients
with HPV-positive tumors and HPV-negative tumors; however,
objective response rates to checkpoint blockade immunotherapy
(CBI) remain low on the order of 16% to 25% (6, 7). Of note, an
anti-PD-1 agent as a first-line therapy was recently demonstrated
to improve overall survival compared with cetuximab and che-
motherapy in recurrent or metastatic HNSCC whose tumors
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overexpress PD-1 (8). As immunotherapy is now FDA approved
with demonstrated activity in metastatic HNSCC, there is a large
national and international effort to understand the role of the
immune system and immuno-modulation in head and neck
cancer. The demonstrated activity of immunotherapy in HNSCC
has prompted a re-evaluation of the mechanisms of action of
conventional therapies and highlights the important role that the
immune system may play in the clinical efficacy of conventional
therapies. Here, we overview conventional and targeted therapies,
including chemotherapies, radiotherapy, cetuximab, and others
as they relate to immune modulation of HNSCC and the tumor
microenvironment to better understand the immune-context of
these therapies and develop strategies to improve outcomes for
patients with HNSCC (Fig. 1).

Immunomodulatory Action of
Chemotherapy in HNSCC

Immune effects of chemotherapy

Cytotoxic chemotherapies are frequently used in HNSCC in
combination with radiation therapy (RT) for locally advanced
disease and alone for recurrent or metastatic disease. Chemothera-
pies directly inhibit cell division or proliferation in a variety of
ways, including interference with DNA replication, protein func-
tion, or microtubule formation. Because of myelosuppressive
effects, chemotherapy is generally thought to be immunosup-
pressive, causing lymphopenia and neutropenia. Recent research

suggests, however, that certain cytotoxic chemotherapies may also
have important immunostimulatory effects.

Preclinical models suggest that chemotherapy is more effective
in an immunocompetent host, with decreased efficacy of cisplatin
and paclitaxel in immunodeficient mice (9). Mechanistically,
certain chemotherapies can increase antigen presentation and
can reduce expression of PD-L2, leading to increased T-cell acti-
vation (10, 11). Additionally, chemotherapies have been shown
to increase the cytotoxic effects of CTLs and induce immunogenic
cell death (ICD; refs. 12-14). Specific chemotherapies certainly
have differential effects on the immune system for example:
platinums can increase T-cell activation by dendritic cells (DC)
through downregulation by the STAT6 pathway, whereas doce-
taxel may decrease regulatory T-cell populations to enhance
antitumor immunity (15, 16). Moreover, taxanes, platinums, and
5-FU, all used frequently in HNSCC, have been shown in animal
models to decrease myeloid-derived suppressor cells (MDSC),
which can enhance antitumor immunity (17-19). Interestingly,
alterations observed in patients with HNSCC could be used as
potential biomarkers to guide the use of or avoidance of certain
chemotherapy or chemo-immunotherapy combinations (20)
such as: anthracyclines (e.g., doxorubicin) and TOP2A protein
overexpression; taxanes (e.g., paclitaxel) and TUBB3/TLE protein
overexpression; fluoropyrimidines (e.g., 5-fluorouracil) and TS
protein overexpression; platinum analogues (e.g., cisplatin) and
ERCCI1 protein overexpression; nucleoside analogues (e.g., gem-
citabine) and RRMI protein overexpression; and alkylating agents
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(e.g., temozolomide) and MGMT protein overexpression. Given
the ability of chemotherapy to decrease tumor burden while
potentially modulating immune responses, combinations of che-
motherapy and immunotherapy are under investigation in
HNSCC.

Combinations of chemotherapy and immunotherapy

To date, most of the large trials combining chemotherapy and
immunotherapy have been in non-small cell lung cancer
(NSCLQC). In a cohort of the CheckMate-012 trial, 56 patients
with previously untreated NSCLC were treated with nivolumab in
combination with one of three cytotoxic regimens (cisplatin/
pemetrexed, cisplatin/gemcitabine, or carboplatin/paclitaxel).
The combination was shown to be feasible, without unexpected
toxicities. Two-year overall survival in the patients receiving
carboplatin/paclitaxel and nivolumab 5 mg/kg was promising at
62% (21). Cohort G of the phase II KEYNOTE-021 study ran-
domized 123 patients with nonsquamous NSCLC to carboplatin
and pemetrexed with or without pembrolizumab; improved
response rates were seen with the pembrolizumab combination
(55% vs. 29%; ref. 22). This led to accelerated approval of the
combination by the FDA. The phase III KEYNOTE-189 trial
confirmed these results, showing improved overall survival
(HR 0.49; P < 0.001), progression-free survival (PFS; HR 0.52;
P <0.001), and response rates (47.6% vs. 18.9%) with carbopla-
tin/pemetrexed/pembrolizumab compared with chemotherapy
alone in patients with nonsquamous NSCLC. Benefit was seen
across all levels of PD-L1 expression (23). More recently, the
addition of pembrolizumab to carboplatin and paclitaxel or nab-
paclitaxel in squamous cell carcinoma of the lung was shown to
improve both PFS (HR 0.56; P < 0.001) and overall survival (HR
0.64; P < 0.001; ref. 24); this regimen was FDA approved in
October 2018.

No large trials combining chemotherapy with immunotherapy
have been published at this time HNSCC. Early results from the
phase Il KEYNOTE-048 trial (NCT02358031) were recently pre-
sented. In this trial, patients with recurrent/metastatic HNSCC
who had not yet received systemic therapy for recurrent/
metastatic disease were randomized between pembrolizumab,
pembrolizumab in combination with cisplatin or carboplatin and
5-FU, and standard of care cetuximab/platinum/5-FU. Single-
agent pembrolizumab was found to improve overall survival
compared with chemotherapy in patients with PD-L1 CPS > 1;
pembrolizumab combined with chemotherapy improved surviv-
al in the total population (25). Another phase I trial in a similar
setting is CheckMate 651 (NCT02741570), which is comparing
the combination of two immunotherapy agents, nivolumab and
ipilimumab, to standard therapy with cetuximab/platinum/5-FU.
These trials will help define the use of chemo-immunotherapy in
HNSCC.

Immunomodulatory Action of Radiation in
HNSCC

Immunologic effects of radiation on tumor microenvironment

RT is given to approximately 50% of patients during the course
of cancer treatment. It is known that radiation can induce DNA
damage and ER stress via production of reactive oxygen species,
leading to mitotic catastrophe and cell death. Radiation also
induces cell death via intrinsic and extrinsic apoptotic pathways
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including upregulation of FAS expression on the cell surface (26).
Furthermore, radiation is able to induce ICD of cancer cells
through damage-associated molecular patterns (DAMP)—
pattern recognition receptors. One such DAMP molecule is high
mobility group protein B1 (HMGB1), a ligand for Toll-like
receptor (TLR) 4, which is released by radiation and successively
activates the innate immune response and changes the cytokine
profile towards an immune stimulatory phenotype in the tumor
microenvironment (27). More importantly, radiation can activate
antigen-specific antitumor immune responses. One of the most
important signatures induced by radiation is upregulation of
MHC I surface expression (28), which occurs in part via activation
of the mTOR pathway (29). Radiation-induced IFNs also con-
tribute to increased MHC I expression (30). This is a crucial step
for enhancing tumor-specific immune responses as many tumors
downregulate or lose MHC I expression to evade the endogenous
immune response. Radiation also enhances activation and migra-
tion of DCs, improving antigen cross-presentation in the lymph
node or secondary lymphoid organs (31).

Moreover, radiation can increase the density and infiltration of
tumor-infiltrating lymphocytes (TIL), including CTLs involved in
lysing tumor cells, by altering the expression of cell adhesion
molecules and chemokines. For example, the expression of cell
adhesion molecules, such as intercellular adhesion molecule 1,
vascular adhesion molecule 1, and E-selection, on the cell surface
of endothelium are enhanced by radiation (32-34). These cell
adhesion molecule and chemokines induced by radiation can
help with immune cell extravasation and infiltration into the
tumor microenvironment (35, 36).

However, radiation can also increase regulatory T cell (Treg)
populations in the tumor microenvironment through increased
TGFp secretion, contributing to immunosuppression (37, 38). In
addition, radiation can induce the expression of immune check-
point ligands, including PD-L1, on tumor cells that could be a
dynamic response to inflammation and induced antitumor
immunity versus an inherent immunosuppressive effect of RT.
Thus, it is critical to harness the immunogenic properties while
blocking the immunosuppressive effects of RT.

Taken together, radiation can augment systemic antigen-spe-
cific antitumor immune responses by inducing: (i) release of
tumor antigens via inflammatory cell death, (ii) activation and
migration of DCs, (iii) enhanced cross-presentation of tumor
antigens via upregulation of MHC I, and (iv) increased density
of TILs, leading tumor-specific T-cell activation and proliferation
(Fig. 1).

In addition to total dose or biologically equivalent radiation
dose, different fractions sizes or treatment schedules could alter
immune responses. As each fraction of radiation induces a sig-
naling cascade, the resultant effects on the immune system could
certainly depend on whether hypofractionation with one to five
fractions is delivered versus standard conventional fractionation
in 30 to 35 fractions. With regard to tumor control, evidence
suggests that alternative fractionation schedules may improve
outcomes. RTOG 9003 (NCT00771641) randomly assigned
stage III/IV HNSCC patients to: (i) standard fractionation (SFX;
70 Gy/35 daily fractions/7 weeks), (ii) hyperfractionation (HFX;
81.6 Gy/68 twice-daily fractions/7 weeks), (iii) accelerated frac-
tionation with split (AFX-S; 67.2 Gy/42 fractions/6 weeks with a
2-week rest after 38.4 Gy), (iv) continuous accelerated fraction-
ation (AFX-C; 72 gy/42 fractions/6 weeks). At 5 years, only HFX
improved local-regional control and overall survival without
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increasing long-term toxicity (39). In the MARCH meta-analysis,
randomized trials comparing conventional RT with hyperfractio-
nated or accelerated RT showed that altered fractionated RT is
associated with improved overall survival and PES in patients with
HNSCC (40). An updated meta-analysis confirmed that hyper-
fractionated RT is a standard treatment for locally advanced
HNSCC, along with concomitant chemoradiotherapy (41). Given
these findings it is certainly possible that optimal induction of
immune responses depends not only on the radiation dose but
radiation fractionation used. Thus, the role that radiation frac-
tionation may play in differential modification of immune
responses deserves further evaluation.

Combination of RT and immunotherapy

Based on the diverse immunomodulatory effects of radiation,
the combination of RT and immunotherapy is under intense
investigation (42, 43). Phase I/1I/IIl randomized trials of RT with
concurrent and adjuvant anti-PD-1/PD-L1 immunotherapy
with concurrent chemotherapy in patients with advanced/
intermediate-risk HNSCC and numerous other clinical trials of
RT combined with immunotherapy are underway (see Table 1).
These clinical trials include combination therapies in the two
different settings; definitive/locally advanced curative setting and
metastatic/refractory setting, which will lead us to understand
more effective combination strategies of radiation and immuno-
therapy for different stages of HNSCCs.

Regarding timing and sequencing, concurrent administration
of radiotherapy and immunotherapy is commonly being tested.
However, sequential therapy might be able to enhance treatment
efficacy and reduce toxicities, particularly in the setting of con-
comitant chemotherapy. Both orders, radiotherapy prior to
immunotherapy and immunotherapy prior to radiation, have
potential to enhance the activity of each other. Further investi-
gation is required to clarify the best timing and sequencing. An
ongoing phase II randomized trial (NCT02777385) is currently
evaluating the efficacy of concurrent versus sequential pembro-
lizumab, cisplatin, and intensity-modulated radiotherapy (IMRT)
in stage III to IVb HNSCC.

The use of immunotherapy agents in the maintenance setting is
nota current standard among patients treated with curative intent.
This approach could keep a basal immune response against tumor
higher, helping to eliminate residual tumor cells earlier and
minimize the risk of recurrence. Several clinical trials are ongoing
to check the efficacy of nivolumab (NCT02764593, NCT-
03349710), pembrolizumab (NCT02892201, NCT02841748,
NCT03040999), avelumab (NCT02952586, NCT02999087),
and atezolizumab (NCT03452137) in adjuvant/maintenance
setting. In one of the ongoing trials RTOG3504 (NCT02764593),
the feasibility of adjuvant nivolumab at 3 to 12 months post-RT
was evaluated. An interim report showed that patients were able
to tolerate continuing immunotherapy for up to a year, demon-
strating that maintenance immunotherapy is feasible in this
population (44).

Development of loco-regional recurrence or a second prima-
ry tumor is unfortunately a relatively frequent event in patients
with HNSCC. Treatment with a curative-intent surgical resec-
tion or re-irradiation are the primary options for these patients.
Reirradiation in some cases with the addition of concurrent
chemotherapy or cetuximab has been demonstrated to improve
loco-regional control and may improve survival, although
patients need to be selected appropriately (45). Given the

4214 Clin Cancer Res; 25(14) July 15, 2019

relatively limited toxicity of immunotherapy, reirradiation with
immunotherapy has a potential to improve the efficacy of
reirradiation and clinical trials are ongoing to evaluate this in
patients with recurrent HNSCC. To minimize toxicity from
large field reirradiation, stereotactic body RT (SBRT) may be
quite useful in this setting. Indeed, the phase II randomized
trial RTOG 3507 (NCT03546582) is evaluating whether the
addition of pembrolizumab to SBRT reirradiation improves
PFS for patients with recurrent or new second primary HNSCC.

Impact of HPV status on radiation-induced immuno-
modulation in head and neck cancer

HPV-status in HNSCC can strongly influence responses to
therapy. Interestingly, HPV-positive HNSCC has been reported
to be more radiosensitive in vivo but not in vitro when compared
with HPV-negative disease (46). Thus, the status of HPV infection
can be a biomarker for radiotherapy. Indeed, variations in HPV
function within HPV-positive patient subsets was recently corre-
lated with radiation sensitivity and associated with surviv-
al (47, 48). Gleber-Netto and colleagues recently analyzed and
evaluated the expression pattern of 582 HPV-correlated genes
from the 80 oropharyngeal squamous cell carcinomas from The
Cancer Genome Atlas (TCGA; ref. 48). The authors identified two
distinct expression profiles within HPV-positive tumors and a
significant difference in 5-year OS between these two groups of
HPV-positive tumors. Furthermore, alterations in HPV-associated
genes was found to translate to a differential sensitivity to RT when
tested using in vitro models (48). These findings demonstrate that
HPV status can impact radiation sensitivity and that even within
HPV-positive tumors that subset likely exist with differential
sensitivity to RT.

The underlying tumor microenvironment in HNSCC is depen-
dent on the pathogenesis and mechanism of malignant transfor-
mation, namely alcohol, tobacco, or viral etiology. Thus, HPV
status can also impact the development of antitumor immune
responses and presence or composition of tumor-associated
immune cells. Specifically, there has been reported to be an
increased immune infiltrate and inflammatory cytokines in the
HPV-positive tumor microenvironment, which may contribute to
the better tumor clearance after irradiation, although confirma-
tion of these findings and mechanisms for this difference require
further investigation (49, 50).

One common feature of locally advanced HNSCC is the occur-
rence of tumor hypoxia, which strongly attenuates the efficacy of
radiotherapy and is a negative prognostic factor (51). Radiation-
induced DNA damage is decreased in the absence of oxygen due to
lower production of reactive oxygen species, leading to radio-
resistance (52). It has been shown that HPV-positive and HPV-
negative tumors display a similar degree of hypoxia, and both
HPV-positive and HPV-negative HNSCC cell lines demonstrate
decreased radiosensitivity in hypoxic conditions (53). Hypoxia
modifiers, such as nimorazole, which can increase free radical
formation, have been used to overcome radioresistance. It is
effective for both HPV-positive and HPV-negative cell lines in
vitro, but clinical studies showed that it was only effective on HPV-
negative tumors in vivo (54, 55). Ultimately, differences in bio-
chemical characteristics between HPV-positive and HPV-negative
tumors suggest that distinct treatment strategies may be required
for these two different types of tumors and this is reflected in the
different AJCC staging systems used for these distinct disease
entities.
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Montréal
University of

Recruiting

Immune checkpoint inhibitor + RT 57 (estimated) PFS None

Previously

NCT03313804

Kentucky Markey
Cancer Center

treated

advanced or
metastatic
HNSCC or

NSCLC
Abbreviations: DFS, disease-free survival; DLT, dose-limiting toxicity; ORR, objective response rate; SBRT, stereotactic body RT; SCLC, small cell lung cancer; SOC, standard of care; UC, University of California; UNC,

University of North Carolina.

Immunomodulatory Action of Cetuximab in
HNSCC

The antitumor effects of cetuximab have primarily been attrib-
uted to the blockade of EGFR signaling, resulting in single-agent
activity, activity in combination with chemotherapy, and
enhancement of radiation-induced cytotoxicity (56). However,
recent studies have demonstrated that cetuximab also has robust
immunomodulatory activities. The cetuximab antigen-binding
site region (Fab) region binds EGFR on tumor cells whereas the
constant region (Fc) binds to the CD16 receptor (i.e., FcyRIII) on
myeloid cells and natural killer cells (NKC). Antibodies them-
selves are designed to stimulate innate and adaptive immune
systems, resulting in fixation and activation of the complement
system, Fc receptor engagement, and antibody-dependent cell-
mediated toxicity (ADCGC; ref. 57). Recruited myeloid cells can
directly exert lytic effects on tumor cells, as well as modify the
maturation, activation, and function of DCs, B cells, and T cells in
the tumor microenvironment via cytokines including IL10, TGFj,
TNFa, IL6, and IFNy. In oropharynx SCC, crosstalk between DC-
NKCis also modulated by stimulator of interferon genes (STING),
an endoplasmic reticulum-associated adaptor protein. EGFR
blockade with cetuximab and STING activation increased the
maturation markers CD86, CD83, and HLA-DR and PD-1 ligand
(PD-L1) on DC, when given alone and in combination (58).

Tumor antigens liberated by dying tumor cells are presented by
macrophages and DCs to naive cytotoxic T lymphocytes (CTL),
which can acquire EGFR specificity (59), or specificity to other
tumor-associated antigens resulting in an antitumor adaptive
immune response and epitope spreading. Release of perforin and
granzyme B by CTLs induces membranolysis, activation of cas-
pases, and subsequent apoptosis of tumor cells (57). In a cetux-
imab neoadjuvant therapy trial, patients exhibited upregulated
CD107a and CD137 on tumor-infiltrating NKCs and upregulated
perforin and granzyme B on peripheral blood NKCs (60). Fur-
thermore, NKC surface expression of CD137 correlated with
clinical response to neoadjuvant cetuximab (60).

Cetuximab binding to EGFR-expressing cancer cells also results
in complement-dependent cytotoxicity via C3b deposition, for-
mation of C5b-C9 complex, and resultant osmotic lysis of the
target cell (61, 62). In support of these mechanisms, patients with
HNSCC who exhibit higher baseline ADCC activity and EGFR
expression are more likely to have a complete response with
cetuximab and radiotherapy (63).

However, the recently published RTOG 1016 (NCT01302834)
provides us with considerable data regarding cetuximab com-
bined with RT, which may have important implications for
combining radiation with other monoclonal antibodies. A total
of 849 patients with HPV-positive oropharyngeal cancer were
randomly assigned to receive either cisplatin with RT or cetuximab
with RT. Unexpectedly, overall survival on the cetuximab arm was
significantly inferior to the cisplatin arm. Overall rates of serious
adverse events (grades 3-5) were similar for patients in both
groups, although toxic side effects were different (64). Impor-
tantly, we must re-evaluate the direct mechanism of "radiosensi-
tization" between these drugs. Cisplatin impairs DNA repair and
enhances DNA damage after irradiation by directly binding to
DNA resulting in classical radiosensitization. However, cetuxi-
mab functions indirectly as a "radiosensitizer," altering growth
and cell signaling pathways to cause cell-cycle dysregulation,
apoptosis, or activate immune responses as described above.
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However, cetuximab does not directly increase DNA damage from
RT and similarly CBI does not directly enhance DNA damage from
RT. Thus, these monoclonal antibodies do not function as clas-
sical radiosensitizers and instead may enhance loco-regional
control through alternative mechanisms in combination with RT.
RTOG 1016 as well as similar trial reported at ESMO (Abstract
LBA9_PR) highlight and confirm that the standard therapy for
advanced HPV-positive oropharyngeal cancer remains concurrent
cisplatin with RT. The results of these studies and associated
differential mechanisms of radiosensitization raise important
questions which need to be carefully addressed when using
immunotherapy with concurrent radiotherapy in the definitive
setting.

The immunosuppressive tumor microenvironment and
resistance to cetuximab

TILs are observed to have upregulated expression of immune
checkpoint receptors including PD-1, cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4), T-cell immunoglobulin and
mucin domain 3 (TIM-3), and lymphocyte-activation gene 3
(LAG-3), which can paradoxically indicate activation and
exhaustion, or anergy depending on the magnitude and
chronicity of expression. Nonetheless, an EGFR-mediated
immunosuppressive tumor microenvironment has been
described where co-inhibitory signals are upregulated at the
interface between tumor and T cells or antigen-presenting cells
(APC) and T cells (57). In patients treated with cetuximab,
CD8™" TILs expressed increased levels of PD-1 and TIM-3 over
the course of cetuximab therapy (65). PD-1 ligation by PD-L1
on tumor cells results in T-cell receptor signaling inhibition,
and TIM-3 stimulation results in T-cell exhaustion (65). Cetux-
imab-treated patients also exhibit an increase in circulating and
intratumoral CD47CD25%Foxp3"8" Tregs expressing CTLA-4.
CTLA-4, when expressed by T cells, binds B7 expressed on APCs
and induces a coinhibitory "signal 2," which destines the T cell
to an anergic fate (66). Increased circulating and intratumoral
CTLA-4" Tregs correlate with worse oncologic outcome in
patients with HNSCC treated with cetuximab (66). Of note,
overexpression of PD-L1 is observed in a majority of patients
with recurrent HNSCC. Seiwart and colleagues screened 104
patients with recurrent or metastatic HNSCC and identified PD-
L1 positivity in 78% (7). Ferris and colleagues found PD-L1
expression in 57% of patients with recurrent HNSCC (6). Taken
together, these data indicate that HNSCC recurrence involves
hijacking of immunosuppressive pathways in order to evade
immune-mediated cell death (67).

Clinical trials of combined immunomodulation and cetuximab
therapy

In light of the immunomodulatory capabilities of cetuximab,
there are multiple studies are actively investigating the safety
and efficacy of cetuximab immunotherapy combinations
(see Table 2). Targeting of immune checkpoint pathways
(anti-CTLA-4, anti-PD-1, anti-PD-L1) as well as leveraging TLR8
and TLR9, NKG2A/CD159 on NKCs, and IL12 are all under
investigation. Table 2 shows active, completed, and pending
clinical trials of combined therapy of cetuximab plus a dedi-
cated immunomodulating agent. Published results, if available,
are included as well (67-69).

A phase I study of motolimod, a TLR8 agonist, by Dietsch and
colleagues (NCT01334177) found that NKCs become more
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responsive to stimulation by NKG2D or FcyRIII following moto-
limod treatment. Ferris and colleagues (NCT01935921)
reported on motolimod or placebo in combination with
EXTREME (platinum, fluorouracil, cetuximab). In 195 patients,
median PFS and OS was not significantly improved with
motolimod combination [HR 0.99; one-sided confidence inter-
val (CI), 0.00-1.22; P = 0.47 for PFS and HR 0.95; one-sided
CI, 0.00-1.22; P = 0.40 for OS]. However, the authors noted
significantly better PFS (7.8 months vs. 5.9 months; HR 0.58;
one-sided 90% CI, 0.00-0.90; P = 0.046) and OS (15.2 months
vs. 12.6 months; HR 0.41; one-sided 90% CI, 0.00-0.77; P =
0.03) in HPV-positive participants, and that patients with
injection site reactions had longer PFS and OS (median PES,
7.1 months vs. 5.9 months; HR 0.69; one-sided 90% CI, 0.00—
0.93; P = 0.06; and median OS, 18.7 vs. 12.6; HR 0.56; one-
sided 90% CI, 0.00-0.81; P = 0.02), suggesting an immuno-
logic basis for these results.

A multi-institutional phase IT study of pembrolizumab com-
bined with cetuximab for treatment of recurrent/metastatic
HNSCC is underway (NCT03082534). Eighty-three patients
are to be enrolled into one of four treatment arms: (i) PD-1/
PD-L1 inhibitor-naive and cetuximab-naive patients treated
with pembrolizumab + cetuximab; (ii) PD-1/PD-L1 inhibi-
tor-refractory and cetuximab-naive patients treated with pem-
brolizumab + cetuximab; (iii) PD-1/PD-L1 inhibitor-refractory
and cetuximab-refractory patients treated with pembrolizumab
+ cetuximab; (iv) cutaneous HNSCC treated with pembroli-
zumab + cetuximab. Pembrolizumab (200 mg) is to be given
every 3 weeks. Cetuximab (400 mg/m?) is to be given weekly.
The main outcome measure will be overall response rate in 6
months from time of study enrollment.

Multiple other additional studies are active including: a multi-
institutional phase I study of untreated, loco-regionally advanced
HNSCC patients (NCT02764593) that will examine the safety of
adding nivolumab to cisplatin, cetuximab, or radiation alone; a
phase Il randomized study which will examine biweekly avelu-
mab alone versus alternating biweekly avelumab plus biweekly
cetuximab combination therapy (NCT03494322); and a study of
nivolumab plus cetuximab combination therapy which will occur
in two phases and seeks to enroll 52 patients with recurrent and/or
metastatic HNSCC (NCT03370276).

Currently, over 20 clinical trials are underway or planned
that will investigate cetuximab plus immunotherapies. Cetux-
imab already has established activity in HNSCC in combina-
tion with chemotherapy and RT. Given that it is a monoclonal
antibody with intrinsic ability to recruit innate and adaptive
immunity, cetuximab represents one of the best currently
available targeted drugs to combine with immunotherapies
and conventional therapies to modulate the tumor microen-
vironment in HNSCC.

Immunomodulation in HNSCC by mTOR
and Metformin

Recent deep sequencing approaches, including a landmark
study from TCGA Network (70), have recently revolutionized
our understating of the HNSCC mutational landscape. We
learned that HNSCC lesions harbor hundreds of genomic altera-
tions, but surprisingly, the majority of them fall within a limited
number molecular pathways whose dysregulation contribute to
HNSCC initiation and progression (70, 71). These include
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mutations resulting in persistent mitogenic signaling resulting in
aberrant activation of the PI3K, MAPK, and JAK/STAT path-
ways (72). Among them, the PI3K-mTOR pathway is mutated
in the highest percentage of the cases, with multiple alterations
converging in the activation of PI3K/AKT/mTOR pathway in most
HNSCC lesions (71). This, and extensive experimental studies in
mouse models, provided a rationale for multiple efforts aimed at
blocking mTOR for HNSCC treatment in the clinic (reviewed in
ref. 73). mTOR is the target of immunosuppressive therapies,
such as rapamycin (sirolimus), which has been used to prevent
rejections in renal transplant patients for decades, most often
together with cyclosporine and corticosteroids (74). Surprisingly,
however, multiple trials using single-agent rapamycin and
its analogs, referred to as rapalogs, have shown no evidence
of increased immunosuppression in cancer patients (75-77).
Paradoxically, mTOR inhibition with rapamycin has been
recently shown to increase the immune responses in the clinic,
and to potentiate the activity of immuno-oncology (IO) agents
in cancer models (78-86). Thus, it is possible that mTOR
blockade may increase rather than negate the antitumor activity
of 10 agents.

Multiple mechanisms can contribute to a potential beneficial
effect of combining mTOR blockers with immune checkpoint
inhibitors. mTOR inhibition in HNSCC can promote apoptotic
tumor cell killing (87), which can expose multiple antigens
thereby increasing cancer immunity. mTOR inhibition can also
affect T-cell differentiation programs, increasing the develop-
ment of long-lived tumor-specific memory T cells (88). Exper-
imental studies in HNSCC suggest that simultaneous mTOR
and PD-L1 inhibition reduces the tumor burden by increasing
IENYy production in tumor-infiltrating CD8™ T cells (86). How-
ever, the expression of immune suppressive cytokines secreted
by Tregs and MDSCs, such as IL10 and TGFp, can be decreased
by mTOR blockade (89-92), which can help to overcome
cancer immune evasion. Thus, although counterintuitive, the
use of mTOR inhibitors to suppress a key HNSCC driver
pathway could be optimized to concomitantly enhance the
antitumor immune response when combined with IO agents as
a novel precision immune therapeutic strategy for patients with
HNSCC.

Because of the critical role of the PI3K-mTOR pathway in
HNSCC initiation and progression, our team explored the pos-
sibility of targeting this signaling circuit for HNSCC prevention in
patients with oral premalignant lesions (OPL). These efforts led to
the discovery that metformin, the most widely used anti-diabetic
agent, can potently block mTOR in OPL and halt their progression
to HNSCC in experimental systems (93, 94). Remarkably, two
recent large retrospective population case-control cohort studies
involving together more than 300,000 diabetic patients demon-
strated a decreased HNSCC risk in patients on metformin (95,
96). Based on these preclinical and epidemiological evidence,
metformin is now under investigation for HNSCC prevention
(NCT02581137). Of interest, recent findings also support that
metformin can regulate proinflammatory cancer-promoting
pathways in the tumor microenvironment. In pancreatic ductal
adenocarcinoma (PDAC), metformin was shown to reduce the
levels of tumor extracellular matrix (ECM) in overweight diabetic
PDAC patients, which was recapitulated the exposure of pancre-
atic stellate cells (PSC) to metformin in vitro (97). Furthermore,
metformin exerts an anti-inflammatory activity by reducing the
expression of inflammatory cytokines, including IL1B, and by

4220 Clin Cancer Res; 25(14) July 15, 2019

diminishing the polarization of macrophages to pro-tumorigenic
M2 tumor-associated macrophages (TAM) in vivo and in vitro (97).
Thus, by restricting the negative immune modulating role of M2-
macrophages metformin may disrupt the establishment of an
immune evasive pre-malignant microenvironment, thereby halt-
ing cancer progression.

In addition to this anti-inflammatory role, it was recently
shown that metformin increases the number of CD8" TILs, and
that metformin can protect antitumoral CD8" cytotoxic T cells
from functional exhaustion in the tumor microenvironment (98).
Remarkably, these resulted in increased cancer vaccine effective-
ness by improving CD8" TIL multifunctionality in response to
metformin treatment (98).

Overall, the emerging data support that metformin may limit
cancer progression at least in part by increasing the antitumor
immune response by (i) preventing the M2 polarization of
TAMs, (ii) the secretion of pro-inflammatory and immune
suppressive cytokines, (iii) increasing cytotoxic CD8" T-cell
function, and (iv) preventing T-cell exhaustion in the tumor
microenvironment. This raises the exciting possibility of repur-
posing metformin, which is safely used by millions of type 2
diabetes patients, to boost the activity of immune checkpoint
inhibitors (99).

Immunomodulatory Effects of Other
Targeted Therapies

Bevacizumab, a monoclonal antibody against vascular endo-
thelial growth factor, is FDA approved as a single agent or in
combination with chemotherapy in multiple malignancies. There
is evidence that VEGF inhibition can increase T-cell migration into
tumors (100) and potentially improve efficacy of checkpoint
inhibitors. There is also evidence of efficacy of bevacizumab in
combination with atezeolizumab in renal cell carcinoma and
hepatocellular carcinoma and in combination with chemother-
apy and atezolizumab in nonsquamous non-small cell lung
cancer (101-103). Concerns regarding the risk of hemorrhage
with VEGF inhibition may limit the use of bevacizumab combi-
nations in HNSCC, although there is an ongoing phase II trial
enrolling patients with HPV or EBV associated HNSCC
(NCT03074513).

There is also emerging evidence that cell-cycle inhibition may
be synergistic with checkpoint inhibitors. CDK4/6 inhibitors
abemaciclib and palbociclib have been shown to increase antigen
presentation in breast cancer cell lines, and these agents also
appear to reduce regulatory T cells (104). Based on this data,
several trials are ongoing to study the combination of these agents
with checkpoint inhibitors, including a phase I study combining
PD-L1 inhibitor avelumab with palbociclib and cetuximab in
HNSCC (NCT03498378).

In summary, the importance of the immune system in HNSCC
responses to treatment and patient outcomes is now at the
forefront. The approval and activity of CBI in HNSCC was a
pivotal event which opened entirely new opportunities and
avenues for basic, translational, and clinical research. However,
objective response rates to checkpoint blockade remain quite low
and there is a tremendous amount of work and further investi-
gation needed to better understand the role of the immune system
in HNSCC. Here we highlighted some of the ways by which
conventional therapies including chemotherapy, radiation, and
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cetuximab can modulate the immune system and tumor micro-
environment in HNSCC. The incorporation of this knowledge
and additional data from basic research, translational science, and
ongoing clinical trials will hopefully elucidate mechanisms of
action and the combinatorial strategies needed to improve out-
comes for patients with HNSCC in the era of immunotherapy.
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