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Osteoarthritis (OA), the most common form of arthritis, is a disabling degenerative joint disease affecting synovial
joints and is associated with cartilage destruction, inflammation of the synovial membrane, and subchondral bone
remodeling. Inflammation of the synovial membrane may arise secondary to degenerative processes in articular
cartilage (AC), or may be a primary occurrence in OA pathogenesis. However, synovial inflammation plays a key
role in the pathogenesis and disease progression of OA through the production of pro-inflammatory mediators, and
is associated with cartilage destruction and pain. The triggers that initiate activation of the immune response in OA
are unknown, but crosstalk between osteoarthritic chondrocytes, cartilage degradation products, and the synovium
may act to perpetuate this response. Increasing evidence has emerged highlighting an important role for pro-
inflammatory mediators and infiltrating inflammatory cell populations in the progression of the disease. Tissue
engineering strategies hold great potential for the repair of damaged AC in an osteoarthritic joint. However, an in-
depth understanding of how OA-associated inflammation impacts chondrocyte and progenitor cell behavior is
required to achieve efficient cartilage regeneration in a catabolic osteoarthritic environment. In this review, we will
discuss the role of inflammation in OA, and investigate novel immune modulation strategies that may prevent
disease progression and facilitate successful cartilage regeneration for the treatment of OA.

Introduction

Osteoarthritis (OA) is a complex disease of synovial
joints that is associated with chronic pain and reduced

joint mobility. It is an age-related condition, with known
risk factors for disease development including high body
mass index, particularly in young adults, and previous joint
injury.1–3 OA is characterized by cartilage breakdown, but
the disease process affects various joint structures involving
inflammation of the synovial membrane and subchondral
bone remodeling. Therefore, it has been suggested by Loe-
ser et al. and others that OA should be considered a disease
of the entire joint as an organ.4

An imbalance of cellular homeostasis is an important
feature of OA, with mechanical stress and pro-inflammatory
cytokines postulated to contribute to this change. Cell pro-
liferation and enhanced matrix remodeling in bone and car-
tilage are also major features, and the formation of new bone
at the joint margins.5,6 Articular chondrocytes increase ex-
pression of matrix molecules, and catabolic factors including
matrix metalloproteinases (MMPs), ADAMTs (a disintegrin
and metalloproteinase with thrombospondin motifs), and pro-
inflammatory cytokines. Chondrocytes suffer a loss of char-

acteristic phenotype due to loss of extracellular matrix (ECM)
components and structure, and undergo hypertrophy and ter-
minal differentiation.5 Decreased accumulation of sulphated
proteoglycans and collagen type II has been observed in os-
teoarthritic cartilage compared to healthy.6 Increasing evi-
dence highlights the importance of factors produced by
inflamed synovium to the initiation and progression of the
disease and inflammation of the synovial membrane with
increased vascular density and cellular infiltration is a
prominent feature of OA pathogenesis.7 Additionally, pro-
inflammatory mediators detected in synovial fluid of OA
joints are known to stimulate degradation of cartilage and
inhibit matrix synthesis.8–13 Inflammation of the synovial
membrane may be a primary occurrence in disease patho-
genesis, with thickening of the synovial membrane identified
by MRI in patients with early stage and mild OA.14 Alter-
natively, synovial inflammation may be secondary to degen-
erative processes in articular cartilage (AC), with the release
of cartilage degradation products activating immune and sy-
novial cells and initiating an inflammatory response (Fig. 1).

Tissue engineering strategies can be harnessed to promote
repair of damaged AC in an osteoarthritic joint. However, it is
clear that interplay between joint tissues and pro-inflammatory
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mediators contributes to the loss of cellular homeostasis that is
associated with disease progression. Therefore, inflammatory
processes associated with OA need to be addressed to achieve
successful cartilage repair in the osteoarthritic environment. In
this review, we will examine the role of inflammation in OA
and explore novel immune modulation approaches, which
may halt disease progression and facilitate successful cartilage
regeneration in the osteoarthritic environment.

Tissue Engineering Applications in OA

Current approaches for the treatment of AC damage re-
sulting from OA include bone marrow stimulation techniques
such as microfracture.15 This method involves drilling or
abrasion of subchondral bone and subsequent release of pro-
genitor cells from the bone marrow to induce repair. However,
generation of suboptimal reparative fibrocartilage may occur,
which limits the effectiveness of this technique for repair of
AC defects and restoration of function.16 Regenerative pro-
cedures such as osteochondral autografting (mosaicplasty),
autologous chondrocyte implantation (ACI), and matrix-
induced autologous chondrocyte implantation (MACI) are
considered favorable therapeutic strategies, given their poten-
tial for the generation of hyaline cartilage.17–19 ACI involves
the use of cultured autologous chondrocytes harvested from a
nonweight bearing region of the knee, to resurface chondral
defects.18 In the case of MACI, chondrocytes are seeded on to
a type I/III collagen scaffold for implantation.19 Both ACI and
MACI have been found to be superior to microfracture for the
treatment of larger articular defects.20,21 However, the current
standard for treatment of severe joint injuries and advanced
OA still involves partial or total joint replacements.

New tissue engineering/regenerative medicine (TERM)
strategies such as direct intra-articular delivery of progenitor
cells, progenitor cell delivery on scaffolds or cell-free
scaffolds coated with biological factors for recruitment of
endogenous cells have been investigated for AC repair.22–24

The use of cell-based therapeutics such as mesenchymal
stem cells (MSCs) has been extensively studied for efficacy
in OA.25 MSCs are considered a favorable cell source for
therapeutic applications in joint repair due to their chon-
drogenic differentiation capacity and paracrine effects on
host cells.26,27 Intra-articular injection of autologous MSCs
in to the knee joints of patients with OA has been well
tolerated and a significant reduction in pain has been ob-
served, with paracrine anti-inflammatory activity of MSCs
postulated to contribute to this outcome.28–30 Furthermore,
treatment of patients undergoing partial meniscectomy sur-
gery with an intra-articular injection of allogeneic MSCs has
resulted in meniscal regeneration as well as a significant
reduction in pain.31 To achieve successful regeneration with
tissue engineering approaches in an osteoarthritic joint, an
in-depth understanding is required of how OA-associated
inflammation impacts chondrocyte and progenitor cell behav-
ior. Addressing inflammatory processes in OA with TERM
strategies may not only facilitate successful repair but halt the
progressive destruction of an OA joint.

Inflammation in OA

Inflammation of the synovial membrane is a prominent
feature of OA pathogenesis (Fig. 1), and increasing evi-
dence highlights the role of cells of the innate and acquired
immune system, and other inflammatory components, in
disease progression. The innate immune system functions
as a frontline of defence, involving cells such as macro-
phages, dendritic cells, and neutrophils, which act to rec-
ognize invading pathogens and elicit an antimicrobial and
pro-inflammatory response.32 The interaction between these
antigen-presenting cells of the innate immune system and T
lymphocytes is vital for the activation of T cell-dependent
responses of the acquired immune system, which function to
eliminate infected cells or further propagate inflammation.33

The synovial membrane is characterized by a lining layer

FIG. 1. Schematic repre-
sentation of inflammatory
processes associated with the
pathogenesis of osteoarthritis
(OA). Activation of resident
synoviocytes by cartilage
degradation products or pro-
inflammatory mediators, and
infiltration of the synovium
by immune cells, may induce
destructive processes in car-
tilage and drive disease pro-
gression. Color images
available online at www
.liebertpub.com/teb
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containing macrophages and fibroblasts, termed synovio-
cytes, and CD68 + macrophages and T lymphocytes, gen-
erally described as CD3 + T cells, have been identified as the
most abundant immune cells in infiltrates present in OA
synovium.34 An in-depth understanding of the role played
by each cell type implicated in the propagation of inflam-
mation in OA may allow for the development of therapeutic
strategies for modulation of the pro-inflammatory milieu
and facilitate successful tissue regeneration.

Synovitis

The synovial membrane is an area of high functional
importance within the joint, responsible for nourishing
chondrocytes and removing metabolites. Inflammation of
the synovium results in synovitis, which is believed to re-
flect structural progression of OA.35 Synovial hypertrophy
and hyperplasia are associated with synovial inflammation,
and synovitis may contribute to the catabolism of cartilage
through pro-inflammatory mediator production. Joint injury
has been reported to increase the risk of developing OA and
traumatic knee meniscal injuries are associated with syno-
vial inflammation.36,37 Long-term coculture models of sy-
novial tissue and cartilage explants highlight the role of
activated synoviocytes in cartilage destruction associated
with OA.38 The synovial tissue was found to secrete high
levels of interleukin (IL)-6, IL-8, and osteoprotegerin,
and to produce cytokines throughout the culture period.
Furthermore, cartilage explant glycosaminoglycan (GAG)
content was found to be significantly lower following a 21-
day exposure to the synovial tissue compared with cartilage
monocultures.38 It is evident that pro-inflammatory media-
tors produced by inflamed synovium are capable of driving
the progression of OA through induction of destructive
processes in cartilage (Table 1), and the abundance of such
catabolic factors in an osteoarthritic joint may greatly im-
pede cartilage tissue engineering strategies.

Synovial macrophages

Synovial macrophages, which are localized to the lining
and sublining synovial layers, are considered primary cel-

lular mediators of synovial inflammation in an OA joint.39

These cells are capable of phagocytosis and antigen pre-
sentation, and they play a prominent role in the production
of the pro-inflammatory cytokines tumor necrosis factor-a
(TNF-a), IL-1b, IL-6, and oncostatin M.38,40–42 IL-1b and
TNF-a induce destructive processes in chondrocytes associ-
ated with OA pathology including downregulation of collagen
type II and proteoglycan, and upregulation of MMP-9 and
cyclooxygenase-2 (COX-2).43 The enzyme COX-2 functions
in the production of prostaglandins, which are known to play a
role in pain and inflammation, and COX-2 expression is ele-
vated in multiple immune cell types.44 Moreover, IL-1b in-
duces COX-2 and prostaglandin E2 (PGE2) expression in
human chondrocytes and is associated with cartilage matrix
calcification.45

In addition to pro-inflammatory cytokine production, mac-
rophages secrete high mobility group box protein 1 (HMGB1)
as a late mediator of inflammation following stimulation
with TNF, IL-1b, and lipopolysaccharide (LPS).46 Secretion of
HMGB1 can occur in response to pro-inflammatory signals,
resulting in pro-inflammatory cytokine-like activity of HMGB1,
whereby it may further propagate inflammatory responses.47

HMGB1 expression has been detected in both normal and os-
teoarthritic synoviocytes, and it was found to act in synergy with
IL-1b to amplify the expression of pro-inflammatory media-
tors.48,49 Additionally, HMGB1 has been shown to have syn-
ergistic activity on TNF, IL-8, IL-6, and MMP-3 production by
OA synovial fibroblasts when added to cultures in preformed
complexes with LPS and IL-1b. In addition to propagating in-
flammatory responses, HMGB1 may promote destructive ef-
fects in joint tissues. The release of HMGB1 by chondrocytes
has been reported by Taniguchi et al. to act as a chemoattractant
for osteoblasts and osteocytes, regulating endochondral bone
formation.50 The process of endochondral ossification is a fea-
ture of osteophyte formation in OA, and endochondral signaling
resulting from HMGB1 secretion may play an additional role in
progression of the disease.51,52 Synovial macrophages have
been identified as key players mediating osteophyte formation
in OA, with a significant reduction in TGF-b-induced osteo-
phyte formation observed following the depletion of synovial
macrophages utilizing clondronate liposomes.53,54

Table 1. Inflammatory Mediators that Negatively Impact Joint Structures

Mediator Effects References

IL-1b Catabolic effects on cartilage phenotype: decreases collagen type II and
proteoglycan, increases PGE2, MMP-9, and COX-2

Wang et al.45

Li et al.12

Johnson et al.13Induces cartilage matrix calcification through the expression of
transglutaminases

TNF-a Induces catabolic and pro-inflammatory enzymes: COX-2 and MMP-9 Shakibaei et al.43

Dvir-Ginzberg et al.10

Westacott et al.11
Decreases cartilage-specific gene expression: reduces expression of ECM

genes and aggrecan
Contributes to cartilage matrix degradation and focal loss of cartilage

TGF-b Induces osteophyte formation Scharstuhl et al.138

Zhen et al.139Associated with changes in subchondral bone architecture
IL-6 Downregulation of collagen type II and aggrecan in articular chondrocytes Legendre et al.9

HMGB1 Amplifies expression of pro-inflammatory mediators Yang et al.47

Garcia-Arnandis et al.48Synergistic activity with IL-1b on amplifying IL-6, IL-8, MMP-1, and MMP-3
by synoviocytes

COX-2, cyclooxygenase-2; ECM, extracellular matrix; HMGB1, high mobility group box protein 1; IL, interleukin; MMP, matrix
metalloproteinases; PGE2, prostaglandin E2; TNF-a, tumor necrosis factor-a.
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Synovial fibroblasts

Inflammatory mediators produced by synovial macro-
phages may induce activation and further pro-inflammatory
mediator production by neighboring synoviocytes. OA sy-
novial fibroblasts have been reported to produce IL-6, IL-8,
macrophage colony stimulating factor, and vascular endo-
thelial growth factor (VEGF) in response to IL-1b stimu-
lation.55 Furthermore, the AC pericellular matrix protein
Laminin-111 may bind to and activate synovial fibroblasts
in the presence of TGF-b1, which was found to result in
IL-6 and IL-8 secretion, a mechanism by which synovial
fibroblasts may contribute to disease pathology outside pe-
riods of acute inflammation.56,57 Synovial fibroblasts also
upregulate expression of vascular cell adhesion molecule-1
(VCAM-1) in response to chemokine (C-C motif ) ligand 2
(CCL2) and CCN family member 4, both of which are de-
tected in synovial fluid of patients with OA. This process
may facilitate the adhesion of mononuclear cells to the site
of inflammation.58,59 These findings indicate that synovial
fibroblasts may contribute to synovial inflammation through
propagating inflammatory responses following activation by
pro-inflammatory mediators, or by facilitating the adhesion
of infiltrating immune cells. However, the contribution of
synovium to the progression of OA appears to be primarily
mediated by inflammatory cells including resident macro-
phages and infiltrating immune populations.

Mast cells

Mast cells are also considered to play a role in contrib-
uting to inflammation associated with OA. Elevated mast cell
counts in the synovial fluid of patients with OA have been
reported, with higher levels of histamine, tryptase, and nitrite
detected in OA synovial fluid.60,61 Furthermore, a role for
TNF-a in the induction of mast cell chemotaxis in OA has
been elucidated.62 Studies have suggested that the observed
increase of mast cells in OA may be due to the expansion of
a tryptase but not chymase containing population, with an
increase in this population reported in the synovial tissue of
OA patients compared with control.63 The serine protease
tryptase is released from mast cells upon degranulation along
with other products including heparin, histamine, and many
proteases.64 Tryptase can induce IL-8 release and expression
of the adhesion molecule intercellular adhesion molecule 1
(ICAM-1) by epithelial cells and upregulate IL-8 and IL-1b
gene expression in endothelial cells, suggesting a potential
role of tryptase in the propagation of inflammatory responses
through cellular recruitment.65,66

The complement system

The complement system is an essential component of the
innate immune system, functioning to eliminate macro-
molecules and foreign bodies by opsonization or cell lysis.67

A role of complement activation in the pathogenesis of OA
has been elucidated, with increased gene expression of
complement factors in OA synovium reported.68 This group
pursued studies utilizing a medial meniscectomy model of
OA with mice genetically deficient in complement compo-
nents C5, C6, and CD59a, to reveal that the membrane at-
tack complex of the complement pathway was involved in
the development of the disease. Proteomic studies identified

differential expression of complement proteins in human
OA synovial fluid compared to control, further suggesting a
potential role of these proteins in catabolic processes asso-
ciated with OA.69

T cells

Infiltrating CD3 + T cells have been detected in the sy-
novial perivascular area of patients with early stage dis-
ease.70 Furthermore, T cells expressing antigens of early,
intermediate, and late activation have been detected in the
synovium of patients with advanced OA.71 CD4 + effector T
cells may be classified according to several subsets, with
varying immunological functions associated with their char-
acteristic cytokine expression profile. Cells of the T helper 1
(Th1) subset are associated with production of IL-2 and in-
terferon (IFN)-g, and can establish cell-mediated inflamma-
tory responses such as macrophage and cytotoxic T-cell
activation, which functions to clear intracellular patho-
gens.72,73 Conversely, cells of the T helper 2 (Th2) subset
express IL-4, IL-5, and IL-10, resulting in increased antibody
production, and elimination of parasitic infections.73–75 De-
tection of CD4 + effector T cells and CD8 + cytotoxic T cells,
predominantly in the sublining layer of synovium from pa-
tients with OA has been reported.76 Furthermore, increased
levels of IFN-g and IL-2 were detected compared with IL-4,
suggesting a prevalence of Th1 cells.71,76 In additional stud-
ies, infiltration of CD4 + effector T cells and macrophages
were found in association with increased expression levels of
VEGF and abundant ICAM-1 expression in early OA syno-
vial tissue.40 VEGF is expressed by macrophages and known
to induce endothelial cell chemotaxis and mediating vascular
permeability, an important process in inflammation.77–79

Interestingly, intra-articular injection of VEGF in mice has
increased calcification of AC, cartilage degradation, and
subchondral bone sclerosis, implicating a role of VEGF in
OA.80 ICAM-1 is upregulated by osteoarthritic synoviocytes
in response to pro-inflammatory stimuli and plays an impor-
tant role in transendothelial migration of T cells and may
therefore mediate the migration and infiltration of lympho-
cytes in the synovium.81,82

Using CD4 + T cell depletion in a murine anterior cruciate
ligament-transection (ACLT) model for induction of OA,
Shen et al. elegantly identified a role for CD4 + T cells in the
pathogenesis of the disease.83 Increased levels of infiltrating
CD4 + T cells were evident in the synovium and localized
throughout the membrane 30 days after ACLT alone. In-
creased synovial expression of the chemokine macrophage
inflammatory protein (MIP)-1g was detected in the ACTL
group compared with the CD4 + T cell depleted ACLT
model. Furthermore, T-cell depletion was found to correlate
with increased levels of IL-4 and tissue inhibitor of
metalloproteinase-1. T cells may further play a role in OA
disease progression and contribute to inflammation through
the recognition of cartilage matrix molecules, with aggrecan
epitopes previously identified as targets of self-reactive
T cells in patients with OA.84

Current Pharmacological Agents Targeting
Inflammation in OA

Current anti-inflammatory therapies recommended for the
management of knee and hip OA include COX-2 selective and

58 FAHY ET AL.



nonselective nonsteroidal anti-inflammatory drugs (NSAIDs).85

Although these pharmacological agents have been reported to
provide analgesia and reduce inflammation following short-
term treatment,86 long-term use is associated with adverse side
effects, including gastrointestinal toxicity and increased risk of
cardiovascular events.87,88 Furthermore, Reijman et al. have
reported that NSAIDs use may increase progression of OA,89

and certain NSAIDs have been found to negatively impact
collagen metabolism and GAG synthesis.90,91 Although ad-
ministration of NSAIDs and COX-2 inhibitors provide
symptomatic relief, the ability of these agents to limit dis-
ease progression remains to be seen.

Novel pharmacological agents have been developed to
target inflammatory mediators associated with OA pathol-
ogy. A TNF-a-binding antibody, Adalimumab, has been
reported to decrease the progression of structural damage in
inflamed joints of patients with erosive hand OA, however,
an effect on inflammation was not observed.92 Other groups
have found this TNF-a antagonist to provide symptomatic
relief for patients with knee OA, including an improvement
in pain and swelling.93 However, the ability of this therapy
to slow down the development of structural damage in the
OA knee requires further investigation. Additional studies
performed to target pro-inflammatory cytokines associated
with OA pathogenesis have generated mixed results.
Symptomatic efficacy of the IL-1 inhibitor Diacerein for
treatment of knee and hip OA has been reported.94,95

However, no significant improvement in symptoms was
observed following intra-articular injection of a recombinant
form of IL-1-receptor antagonist (IL-1RA) to patients with
knee OA.96 It appears that the potential of current anti-
inflammatory therapies to improve structural damage is
limited, and the development of novel immune modulation
strategies is required to alter the progression of OA.

The Effect of Inflammation on Tissue
Engineered Cartilage

As previously discussed, TERM-based strategies may
represent the key to improved cartilage regeneration both in
isolated defects and treatment of OA. However, it is evident
that inflammation plays a significant role in OA pathogen-
esis and the immune response is increasingly recognized as
a key factor influencing tissue regeneration. For example,
disorders such as diabetes mellitus that are associated with an
inflammatory state are also characterized by impaired tissue
regeneration.97 TERM strategies for cartilage regeneration
may be compromised as a result of dysregulated inflamma-
tory processes and pro-inflammatory mediators in the joint.
IL-1b has been reported to reduce collagen type 2 expression
and GAG content of human nasal and articular chondrocytes
cultured on a type 1 collagen scaffold,98 and both IL-1b
and TNF-a have been shown to impact the integration of
engineered cartilage with native tissue.99 Additionally, these
pro-inflammatory cytokines have been shown to inhibit the
migratory potential of chondrogenic progenitor cells in
osteoarthritic cartilage,100 which may limit the success of
strategies utilizing cell-free scaffolds for recruitment of en-
dogenous cells and in situ cartilage regeneration.24

In addition to directly impacting engineered cartilage and
endogenous cellular repair, inflammation may also hinder
stem cell-based repair strategies. Previous studies have re-

ported a detrimental effect of IL-1b and TNF-a on chon-
drogenic differentiation of MSCs in aggregate culture.101

Furthermore, IL-1a treatment of chondrogenically differ-
entiating MSCs seeded on a 3D woven poly(e-caprolactone)
scaffold, has been shown to decrease accumulation of ECM
components and reduce the mechanical properties of the
construct.102 In addition to these findings, OA synovium-
conditioned medium and synovial fluid have been shown to
inhibit MSC chondrogenesis.103,104 It is evident that mod-
ulation of the inflammatory environment in an OA joint is
vital to maintain the integrity of engineered cartilage, or
achieve efficient cell-based repair.

Tissue Engineering Strategies
for Immunomodulation in OA

Given that the inflammatory milieu may determine the
success of tissue regeneration strategies, regulation of in-
flammatory processes in the OA joint is required to achieve
successful cartilage repair. TERM-based strategies such as
the use of biomaterials with immunomodulatory capacity,
the delivery of cells and anti-inflammatory proteins, or gene
therapy approaches may serve as favorable strategies for
gaining control over the pro-inflammatory environment
present in OA and subsequently interfere with the disease
process.

Biomaterials

The use of biomaterials as a scaffold for the delivery of
cells or proteins with immunomodulatory capacity may
serve as an efficient strategy to attenuate disease progression
in OA and facilitate successful tissue regeneration. How-
ever, implantation of biomaterials may induce local tissue
injury and inflammation.105 Studies performed by Gro-
tenhuis et al., have assessed the effect of different bioma-
terials on macrophage responses in vitro, and found that
biomaterials alone have the ability to influence macrophage
inflammatory phenotype.106 Additionally, nanocrystalline
hydroxyapatites have been reported to increase pro-inflam-
matory cytokine production by macrophages, indicating
activation of the innate immune system.107 In light of these
findings, it is apparent that the interaction of biomaterials
with immune cells, such as macrophages, needs to be care-
fully considered to avoid exacerbating existing inflamma-
tion. Anti-inflammatory a-melanocyte-stimulating hormone
coated poly (D, lactic-co-glycolic) acid microspheres have
been reported to modulate biomaterial-induced inflamma-
tion following subcutaneous implantation in rats.108 How-
ever, whether this approach would be beneficial in the
context of a chronic inflammatory environment requires
further investigation.

Cell therapy

Stem cells such as MSCs are considered a promising cell
type for OA cell therapy and cartilage tissue engineering due
to their potential to differentiate and replace chondrocytes, as
shown using muscle-derived stem cells modified to express
BMP-4 and an inhibitor of angiogenesis.27,109 However, as
previously discussed the presence of an inflammatory envi-
ronment may impede the use of MSCs in cell replacement
strategies. Alternatively, paracrine effects of MSCs may act
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to recruit endogenous progenitor cells or be immunomodu-
latory.110 Trophic factors released by MSCs in response to
pro-inflammatory cytokine stimulation have been reported to
reduce the expression of IL-1b, MMP-1, and MMP-13 by
OA synovium explants, indicating an anti-inflammatory and
anti-catabolic effect of MSCs.111 Furthermore, MSCs exert a
suppressive effect on activated immune cells and studies
investigating the suppressive effect of MSCs on T-cell pro-
liferation have reported a major role of the anti-inflammatory
cytokine IL-10 in the suppression of T-cell activation.112,113

An immunosuppressive effect of MSCs on mast cells has
been demonstrated following coculture experiments, with a
decrease in mast cell degranulation, TNF-a production and
chemotaxis observed.114 Macrophages exhibit a high degree
of plasticity, with the potential to change phenotype according
to environmental cues. They can be categorized as classically
activated (M1), which produce high levels of pro-inflamma-
tory cytokines or alternatively activated (M2) macrophages,
which are associated with anti-inflammatory properties and
play a role in wound healing and immune regulation.115

Coculture studies have been performed with MSCs and
macrophages to investigate the immunomodulatory capacity
of MSCs on macrophage phenotype. MSC-treated macro-
phages were reported to express the M2 macrophage marker
CD206, with increased expression of IL-10, and low ex-
pression of the M1-associated cytokines IL-12 and TNF-
a.116,117 Furthermore, transplanted collagen scaffolds seeded
with MSCs and polymer complexed-IL-10 plasmids have
resulted in macrophage polarization, with an observed in-
crease in CD63+ M2 polarized and a decrease in CD80 + M1
polarized macrophages.118 Additionally, delivery of MSCs
with IL-10 polyplexes reportedly increased the retention rate
of MSCs in vivo, which was associated with increased IL-10
levels and decreased pro-inflammatory cytokines.

Intra-articular injection of MSCs has been reported to in-
hibit the development of posttraumatic arthritis in an intra-
articular fracture mouse model, with an increase in systemic
IL-10 levels observed.119 Moreover, intra-articular injection
of adipose-derived stem cells (ASCs) has been shown to
reduce synovial lining thickness and decrease cartilage
damage in a collagenase-induced OA mouse model.120 ASCs
were identified in close proximity to synovial macrophages
and reduced IL-1b gene expression levels were detected
in synovial tissue, indicating immunomodulatory activity
of these stem cells within the OA joint. In addition to this
study, Desando et al. have observed reduced synovial lining
thickness and cellular infiltration, and decreased cartilage
expression of TNF-a following intra-articular injection of
ASCs in a rabbit ACLT model.121 In light of these findings,
the use of MSCs or ASCs may serve as a suitable cell ther-
apeutic strategy to attenuate inflammation in OA via para-
crine mechanisms and through the modulation of activated
immune cells, which contribute to disease pathogenesis.

The use of induced pluripotent stem cells (iPSCs) may
provide an additional cell source for cartilage tissue engi-
neering.122 iPSCs generated from the reprogramming of
mouse fibroblasts have been successfully differentiated to-
ward the chondrogenic linage, and shown to integrate with
native cartilage tissue and produce cartilage matrix in an
in vitro cartilage defect model.123 Furthermore, chondro-
genic differentiation of MSC-like cells derived from human
iPSCs has been shown by Guzzo et al. to result in a cellular

phenotype that more closely resembles articular chondro-
cytes, compared with undifferentiated iPSCs.124 iPSC-
derived MSCs inhibit lymphocyte proliferation and suppress
Th2-associated cytokine production in a similar manner
to MSCs, and have been found to elicit a comparable im-
munomodulatory effect in a mouse model of allergic in-
flammation.125,126 Given that MSCs are associated with an
age-related reduction in proliferation and differentiation
capacity, iPSC-derived MSCs may serve as a useful cell
source for large-scale generation of MSCs for cell therapy
approaches in OA.127

Anti-inflammatory protein delivery

Anti-inflammatory IL-10 has the ability to suppress pro-
inflammatory mediator production by activated macro-
phages.128 Various studies on immune modulation by MSCs
have implicated IL-10 as an important mediator.113 Inter-
estingly, synergistic activity of IL-4 with IL-10 has been
previously reported.129 Recent studies have demonstrated a
protective effect of IL-4 in combination with IL-10 on blood-
induced cartilage damage compared to IL-10 treatment
alone.130 The use of these factors may be beneficial to limit
cartilage damage resulting from joint bleeding during sur-
gical procedures for treatment of OA-related defects. A study
utilizing a rat model of instability-induced experimental OA
has reported that IL-4 may have a chondroprotective effect in
mechanical stress-induced OA through suppressing nitric
oxide production by chondrocytes and preventing cartilage
destruction following intra-articular injection.131 The use of
biomaterial scaffolds for localized delivery of anti-inflam-
matory proteins may be a beneficial strategy to antagonize
pro-inflammatory mediator production in an osteoarthritic
joint, and subsequently counteract the negative influence of
pro-inflammatory mediators on cartilage regeneration.

Gene delivery

Gene therapy approaches for the treatment of cartilage
defects in OA have been previously examined. For example,
the potential of overexpression of the cartilage transcription
factor SOX9 by MSCs for AC repair has been evaluated,
utilizing a rabbit full-thickness cartilage defect model.132

Improved integration of newly formed tissue with native
cartilage and positive staining for type II collagen was re-
ported following implantation of transduced MSCs seeded
on a polyglutamic acid scaffold. The therapeutic efficacy of
inflammatory mediator overexpression in an OA environ-
ment has also been evaluated. A decrease in gross patho-
logic abnormalities was observed following adenoviral
vector-mediated IL-1RA gene delivery, in an equine ex-
perimental OA model.133 The effects of retrovirally deliv-
ered human IL-1RA and IL-10 have also been assessed
following injection in to the knee joint in a rabbit model of
OA.134 Intra-articular expression of these genes was found
to have a chondroprotective effect with an evident reduction
in cartilage degradation. Administration of both IL-1RA and
IL-10 was reported to have a greater effect, compared with
administration of either gene alone. The delivery or over-
expression of anti-inflammatory mediators via gene therapy
approaches may therefore offer a novel therapeutic strategy
for the treatment of OA, through attenuating the destructive
effect of inflammation on cartilage (Table 2).
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Conclusion

Modifying the intra-articular environment in OA through
the attenuation of destructive processes affecting cartilage
and synovium would offer great therapeutic benefit. Synovial
inflammation is a key player in the pathogenesis of OA and is
highly associated with cartilage destruction and disease pro-
gression. Furthermore, infiltrating inflammatory cell popula-
tions play a key role in propagating inflammatory responses.
Modulation of synovial inflammation has been shown to
impact clinical symptoms and prevent structural damage. The
immune response is increasingly recognized as a key factor
influencing tissue regeneration, and gaining control of the
pro-inflammatory environment associated with OA is vital to
achieve efficient tissue repair with TERM-based strategies
and halt disease progression. Combining cell-based therapy
using MSCs with anti-inflammatory genes to deliver immu-
nomodulatory factors in vivo, may serve as a favorable
strategy to attenuate destructive inflammatory processes and
promote regeneration of cartilage defects in an OA joint.
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