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ABSTRACT The recent global health crisis also known as the COVID-19 or coronavirus pandemic has

attracted the researchers’ attentions to a treatment approach called immune plasma or convalescent plasma

once more again. The main idea lying behind the immune plasma treatment is transferring the antibody rich

part of the blood taken from the patients who are recovered previously to the critical individuals and its

efficiency has been proven by successfully using against great influenza of 1918, H1N1 flu, MERS, SARS

and Ebola. In this study, we modeled the mentioned treatment approach and introduced a new meta-heuristic

called Immune Plasma (IP) algorithm. The performance of the IP algorithm was investigated in detail and

then compared with some of the classical and state-of-art meta-heuristics by solving a set of numerical

benchmark problems. Moreover, the capabilities of the IP algorithm were also analyzed over complex

engineering optimization problems related with the noise minimization of the electro-encephalography

signal measurements. The results of the experimental studies showed that the IP algorithm is capable of

obtaining better solutions for the vast majority of the test problems compared to other commonly used

meta-heuristic algorithms.

INDEX TERMS Meta-heuristics, Immune Plasma algorithm, Plasma treatment.

I. INTRODUCTION

Real world problems or complex engineering designs usually

require finding optimum values for hundreds or thousands of

decision parameters. Even though there are special analytic

methods for solving some of the mentioned optimization

problems, they generally utilize from the gradient-derivative

based calculations for determining the search direction and

qualities of the final solutions change dramatically with

chosen start point or points [1], [2]. In order to outcome

the possible drawbacks stemmed from the existing work-

flow of the classical methods, researchers focused on new

problem solving techniques and meta-heuristic algorithms

were proposed as an alternative to them [3]–[5].

Each meta-heuristic algorithm tries to model a well-

known natural phenomena and applies its model for solv-

ing the optimization problems. By considering the natural

phenomena that inspire researchers, meta-heuristics can be

roughly classified into four groups named evolutionary al-

gorithms, swarm-intelligence based algorithms, physic-based

algorithms and human-based algorithms. Evolutionary al-

gorithms are based on Darwin’s theory of survival of the

fittest and model common evolutionary mechanisms such as

mutation, crossover and selection. Genetic algorithm (GA)

proposed by Holland is one of the most popular evolutionary

algorithms [6]. Similar to GA, Differential Evolution (DE) al-

gorithm [7], Evolutionary Strategies (ES) [8], Biogeography-

Based Optimizer (BBO) [9] also model the well-known

evolutionary mechanisms and they are other evolutionary

algorithms.

Swarm-intelligence based meta-heuristics try to model in-

telligent behaviours of the social creatures such as birds, bats,

cats, whales and some insects such as ants, bees, moths and

grasshoppers. One of the most popular swarm-intelligence

based meta-heuristics is Ant Colony Optimization (ACO) al-

gorithm [10]. As its name implies, ACO algorithm is related

with the ants and uses source finding and communication

capabilities of them. Another important swarm-intelligence

based algorithm was proposed by Eberhart and Kennedy

and named as Particle Swarm Optimization (PSO) algorithm

[11]. The PSO algorithm basically models the movements of

the fish schooling and bird flocking. Yang and Deb proposed

Cuckoo Search (CS) algorithm by guiding brood reproduc-

tive behaviours of cuckoo birds [12]. Yang also introduced

a new swarm-intelligence based meta-heuristic called Firefly
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algorithm for short FA [13]. FA mimics the flashing property

of the fireflies used to manage communication. In another

study, Yang investigated the advanced echolocation capa-

bility of bats that are only mammals with wings and Bat

algorithm (BA) was developed [14]. A recent meta-heuristic

proposed by Yang was called as Flower Pollination algorithm

(FPA) or simply Flower algorithm that mimics the self-

pollination and cross-pollination of flowers [15]. Experimen-

tal studies showed that FPA is more efficient than PSO and

GA [15]. The foraging and communication characteristics of

the honey bees become the source of inspiration for Karaboga

and Artificial Bee Colony (ABC) algorithm was introduced

[16]. Mirjalili et al. analyzed the leadership hierarchy and

hunting behaviours of a special type of grey wolves and

presented Grey Wolf Optimizer (GWO) algorithm [17]. The

flying nature of the moths in night and navigation method of

them were guided by Mirjalili and Moth-Flame Optimisation

(MFO) algorithm was developed [18]. The meta-heuristic

techniques introduced by Mirjalili are not limited with the

GWO and MFO algorithms. Mirjalili has recently intro-

duced Ant Lion Optimizer (ALO) algorithm that references

complex hunting strategies of the antlions [19], Dragonfly

algorithm (DA) that mimics the static and dynamic swarming

behaviours of the dragonflies [20], Sine Cosine algorithm

(SCA) using a mathematical model based on sine and cosine

functions [21]. Mirjalili also directly contributed to the devel-

opment of the Whale Optimization algorithm (WOA) [22],

Multi-Verse Optimizer (MVO) [23], Grasshopper Optimisa-

tion algorithm (GOA) [24], Salp Swarm algorithm (SSA)

[25], Harris Hawks Optimizer (HHO) algorithm [26], Marine

Predator algorithm (MPA) [27] and Slime Mould algorithm

(SMA) [28]. Chou et al. modeled the hunting, learning

and terriority determining characteristics of the jaguars and

proposed Jaguar algorithm for short JA [29]. The social

relationship and collaborative behavior of the spotted hyenas

gave inspiration to Dhiman and Kumar and they introduced

Spotted Hyena Optimizer (SHO) [30]. Dhiman and Kumar

also proposed Seagull Optimization algorithm (SOA) by

guiding migration and attacking behaviors of a seagull [31].

Border Collie is one of the most smartest breeds of dogs and

has unique herding style. By referencing the sheep herding

styles of Border Collie dogs, Dutta et al. introduced Border

Collie Optimization (BCO) algorithm [32].

The third group of the meta-heuristics rely on some of

the well-known physical laws or the mechanisms that start

and manage complex chemical reactions. Electromagnetism-

like algorithm (EMA) inspired by the fundamental electro-

magnetism was introduced by Birbil and Fang [33]. The

law of gravity was utilized by Rashedi et al. and Gravita-

tional Search algorithm (GSA) was presented [34]. Central

Force Optimization (CFO) was proposed by Formato with

the guidance of gravitational kinematics [35]. Shah-Hosseini

suggested Intelligent Water Drops (IWD) algorithm [36]. In

IWD algorithm, movement of a water drop from one point of

the river to another was referenced while searching the solu-

tions of the problem [36]. Refraction and reflection of light

rays were modeled in the Light Ray Optimization (LRO)

[37]. Snell’s law that describes the relationship between the

angles of the incident and reflected rays were referenced in

the Ray Optimization (RO) algorithm [37]. Cuevas et al. used

physical principles of the thermal-energy motion mechanism

and proposed States of Matter Search (SMS) algorithm [38].

The nuclear collision reactions including scattering and ab-

sorption were used by Wagner et al. and Particle Collision

algorithm (PCA) was proposed [39]. The push and pull forces

of positive and negative ions gave inspiration to Javidy et al.

and Ions Motion algorithm (IMO) was introduced [40]. The

final group of meta-heuristics imitates the human behaviours

or operations to do with the being human. Tabu Search (TS)

algorithm by Glover is one of the most famous human-based

meta-heuristics [41]. It was designed to prevent the search

mechanics from the local minimas stored in a tabu list or

memory. Kumar et al. introduced Socio Evolution Learning

Optimization (SELO) algorithm by analyzing how humans

organized as families effect other individuals and trigger

a social learning process [42]. The teaching and learning

order in a classroom was investigated by Rao et al. and

Teaching Learning Based Optimization (TLBO) algorithm

was proposed [43].

When the short story of the meta-heuristics given above is

investigated, it might be thought that existing algorithms are

enough and there is no need for a new meta-heuristic tech-

nique. However, No-Free-Lunch (NFL) theorem states that

each meta-heuristic algorithm has different capabilities and

a single algorithm for solving all optimization problems with

the highest efficiency does not exist [5]. As an expected result

of this situation, designing new meta-heuristic algorithm

after analyzing work-flow of an intelligent organizations of

nature still protects its importance for further advances in

computer, information and other engineering disciplines. In

this study, a new meta-heuristic algorithm named as Immune

Plasma (IP) algorithm was introduced. The IP algorithm is

the first meta-heuristic technique that is based on a treatment

method known as immune plasma or convalescent plasma.

Experimental studies carried out with a set of different op-

timization problems showed that IP algorithm is capable of

obtaining better solutions for most of the problems compared

to the other meta-heuristics. The rest of the paper is organized

as follows: The background of the immune plasma technique

and how its fundamental operations are guided for describing

steps of the IP algorithm are given in Section II. The results

of the experiments and comparative studies are presented in

Section III. Finally, conclusion and possible future works

with the IP algorithm are summarized in Section IV.

II. IMMUNE PLASMA ALGORITHM

An antigen can be described as a foreign invader such as

parasite, fungi, bacteria or virus or a part of these creatures

that can cause an infection in the host [44]–[46]. When an

infection is triggered by the related antigens, the immune

system starts a set of complex defence procedures to seek

out and destroy them with the help of the lymphoid organs
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that are responsible for producing and maturing lymphocytes

such as T and B lymphocytes [44]–[46]. The T and B

lymphocytes or cells play key roles in the adaptive immune

response of the whole system and immune memory of the

host. Both T and B lymphocytes are produced in the bone

marrow. However, while the T cells mature in the thymus

and T stands for thymus, the B cells continue maturing

in the bone marrows [44]–[46]. The B cells are equipped

with B cell receptors on their membrane and can bind to

specific antigen with these receptors [44]–[46]. When the B

lymphocyte binds to a specific antigen, it calls upon a kind

of T cells named as helper T cell or Th cell. The helper T

cell secretes chemicals known as interleukins and interferons

near to the B lymphocytes. These secretions allow the B

lymphocytes to multiply. Moreover, they mature the B cells

into plasma cells [44]–[46]. The Fig. 1 illustrates how a B

cell binds to a specific antigen and matures into plasma cell

with the help of Th cell.

B cell

Antigen

Plasma cell Plasma cell

B cell Helper T cell

InterleukinsInterl

Plasma cell Plasma cell

FIGURE 1. The relationship between B, T and plasma cells

Plasma cells contribute to the defence by producing an-

tibodies that are also called immunoglobulins for short Igs

[44]–[46]. Antibodies are actually proteins and each antibody

consists of two heavy and two light polypeptide chains.

The heavy and light chains connect via covalent bonds and

they form a Y-shaped structure [44]–[46]. The chains of an

antibody contain constant and variable regions. The constant

regions are responsible for binding other structures such as

the membranes of the different immune system cells. The

variable regions are designed with a specific set of amino

acids and help to bind particular antigens for which the

antibodies are build [44]–[46]. The constant and variable

regions of two hypothetical antibodies and how they bind to

their specific antigens are depicted in the Fig. 2.

Each plasma cell is programmed to synthesize one specific

antibody and antibodies visible in the blood or seen on the

membranes of the immune system cells. In either existence

form, they contribute the defence mechanism for the several

scenarios given below:

• When a free-floating antibody determines and binds to

its particular antigen, a virus can lose its capabilities that

Light chain

Heavy chain

Variable region

Light chain

Heavy chain

Variable region

FIGURE 2. Structure of an antibody and connection with an antigen

manage the virus binding operations on the receptors of

the healthy cells.

• The antibodies can label particular antigens or infected

cells for the other immune system cells that can destroy

them.

• The antibodies and their particular antigens can be

aggregated to form insoluble antibody-antigen complex

and inactivate the functionalities of pathogens.

The antibody response of the immune system to an antigen

never seen before is given within a few weeks [44]–[46].

After an infection begins, the level of specific antibodies rises

slowly and reaches to a peak around ten days and decreases

with time. However, the level of these specific antibodies is

not low as in the initial state of the infection and the immune

system produces a huge volume of higher avidity antigens

between one or three days for the subsequent challenges with

the same antigen [44]–[46]. As stated earlier, the plasma cells

produce antibodies and secrete them into the bloodstream.

However, some individuals with the weak immune systems

or immune system diseases are not capable of producing

sufficient amounts of antibodies [44]–[46]. For the infected

individuals, the blood or antigen rich part of it called plasma

from patients who have recovered for the same infection

can be used as a valuable source and a treatment method

known as the convalescent plasma or immune plasma has

been introduced and tested successfully for a wide variety of

diseases [47]–[49]. The strong and biologically evident ideas

lying behind the immune plasma treatment guide designing

a completely new meta-heuristic named as IP algorithm. In

the IP algorithm, while each individual in the population

indicates a possible solution of the problem being optimized,

immune response of an individual represents the quality of

the corresponding solution. The defence operations managed

by the immune system for maturing the B cells and producing
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specific antibodies of the antigen at the beginning of the

infection directly contribute to the exploration or diversifica-

tion characteristic of the IP algorithm. Moreover, determining

the individual or individuals recovered shortly after from an

infection and transferring the plasma or plasmas to the critical

individual or individuals with the same infection maintain a

steady exploitation or intensification in the IP algorithm. For

understanding the general concept of the IP algorithm, The

Fig. 3 should be investigated.

A. GENERATING INITIAL INDIVIDUALS

As stated earlier, each individual of the IP algorithm corre-

sponds to the possible solution of the problem being consid-

ered. Assume that there are D different decision parameters

of the considered optimization problem, the kth individual of

the population of size PS showed by the xk can be generated

with the Eq. (1). In Eq. (1), xkj is matched with the jth

decision parameter of the xk. Also, xlow
j and xhigh

j are lower

and upper bounds of the jth parameter, respectively. Finally,

rand(0, 1) is a randomly determined number between 0 and

+1.

xkj = xlow
j + rand(0, 1)(xhigh

j − xlow
j )

k = {1, 2, . . . , PS} and j = {1, 2, . . . , D}
(1)

B. INFECTION SPREADING AND IMMUNE SYSTEM

RESPONSE

A small portion of infected individuals can effect the whole

population. The secretions of the infectious individuals carry

the antigens. When the secretions of an infectious individual

enter the body of another individual, the immune system

of the new host gives a specific response to protect the

host against an infection. For modeling how the secretions

of an individual suffering from a possible infection effects

another individual and trigger the immune system to generate

a specific response, the Eq. (2) given below is used by the

IP algorithm. In Eq. (2), xkj is the randomly determined jth

parameter of the xk individual being infected and xinf
kj is the

newly calculated jth parameter of the xinf
k that is used on

behalf of the infectious xk individual. The xmj is also the jth

parameter of the previously infected and randomly selected

xm individual.

xinf
kj = xkj + rand(−1,+1)(xkj − xmj)

k = {1, 2, . . . , PS} and m = {1, 2, . . . , PS} − {k}
(2)

If the immune system response of the infectious xk in-

dividual is initiated quickly and the amount of specialized

antibodies is increased substantially, it is said that the im-

mune system of the xk individual recognizes the antigens

and immune system memory is updated for the subsequent

encounter of the same pathogens-antigens or their mutants.

In IP algorithm, the amount of specific antibodies of an

individual is directly related with the objective function value

calculated for the same individual. Assume that f is the

objective function of the optimization problem being consid-

ered and xk is the kth individual of the population of size PS.

When the xinf
k and its objective function value showed by

f(xinf
k ) is better than the objective function value of the xk

showed by f(xk), the jth parameter of the xk is set to xinf
kj .

Otherwise, the jth parameter of the xk individual remains

without change as in the Eq. (3) for a minimization problem.

xkj =

{

xinf
kj ; if f(xinf

kj ) < f(xk)

xkj ; if f(xinf
kj ) ≥ f(xk)

}

(3)

C. PLASMA EXTRACTION AND TRANSFER

The immune system responses of the individuals to an in-

fection can be vary in one individual to another. While some

of the infected individuals require intense care, some of the

individuals in the same infected population recover more

quickly without complex treatments and they can contribute

to the treatment processes of the emerging patient or patients.

One of the ways in which recovered individuals contribute to

the treatment of the emerging patients is the method known

as the convalescent plasma or immune plasma. The immune

plasma method mainly depends on transferring antibodies

from the blood of the recovered individuals into the critical

patients. In the IP algorithm, plasma transfer operations

are started by determining number of donors (NoD) and

number of receivers (NoR). After determining NoD and

NoR, IP algorithm decides which individuals should be

donors and which individuals should be receivers. While the

donor individuals are determined as the best NoD individual

or individuals of the populations of size PS, the receiver

individuals are determined as the worst NoR individual or

individuals in the same population. Assume that xrcv
k is the

kth receiver individual and xdnr
m is the randomly determined

donor individual. For modeling the plasma transfer from

the xdnr
m individual to the xrcv

k receiver individual, the IP

algorithm uses the Eq. (4) given below.

xrcv−p
kj = xrcv

kj + rand(−1,+1)(xrcv
kj − xdnr

mj )

j = {1, 2, . . . , D}
(4)

In Eq. (4), xrcv−p
k individual represents the xrcv

k after

plasma treatment and xrcv−p
kj is matched with the jth param-

eter of the xrcv−p
k individual. If the immune system response

of the xrcv
k individual after one dose plasma showed by

f(xrcv−p
k ) is better than the immune system response of the

donor individual showed by f(xdnr
m ), the xrcv

k individual

is updated with the xrcv−p
k and plasma treatment for xrcv

k

continues with the xdnr
m donor individual. When the deci-

sion mechanism that is used to update xrcv
k with xrcv−p

k is

investigated, it is clearly seen that xrcv−p
k must be better than

xdnr
m and intrinsically better than xrcv

k . The idea lying behind

executing this kind of comparative mechanism is to provide

a clear vision about the efficiency of the plasma treatment

for the xrcv
k and possible usage of the next dose of plasma.

If the first dose of the plasma significantly contributes to the
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FIGURE 3. General concept of the IP algorithm

xrcv
k and immune response of the xrcv

k after plasma treatment

becomes better than the immune response of the xdnr
m donor

individual, it is assumed that the xrcv
k receiver is now capable

of resisting the infection similar to the xdnr
m donor and the

plasma treatment should be continued. For the subsequent

plasma dose, if the immune response of the xrcv
k individual

after new dose showed by f(xrcv−p
k ) is better than the

immune system response of the receiver individual showed

by f(xrcv
k ), the xrcv

k individual is updated with the xrcv−p
k

and plasma treatment of xrcv
k continues with the xdnr

m donor

individual. Because of the reason that new xrcv
k is already

better than the xdnr
m if the first dose of the plasma successes,

the decision whether the plasma treatment continues with the

next dose or not is made by simply comparing f(xrcv
k ) and

f(xrcv−p
k ) values.

The plasma treatment should be completed at a time after

controlling its efficiency on the selected patient. If the im-

mune system response of the xrcv
k for the first dose of plasma

is not better than the immune system response of the xdnr
m , the

xrcv
k receiver is simply strengthen by changing its parameters

with the corresponding parameters of the xdnr
m donor indi-

vidual to guarantee that one dose plasma is transferred and

then plasma treatment is completed. If it is understood that

the plasma treatment will be completed after the second or

subsequent doses, there is no need to update the xrcv
k receiver

with the information of the xdnr
m because of the contribution

of the first plasma dose on the xrcv
k . The Alg. (1) describes

in detail how the mentioned treatment strategy is executed in

the IP algorithm.

The immune response or antibody level of an individual

Algorithm 1 Plasma transfer operations in the IP algorithm

1: //Plasma transfer for critical individuals

2: doseControl[1 . . . NoR] ← set each element to 1

3: dIndexes[1 . . . NoD] ← get the indexes of the donors

4: rIndexes[1 . . . NoR] ← get the indexes of the receivers

5: treatmentControl[1 . . . NoR] ← set each element to 1

6: for i ← 1 . . . NoR do

7: k ← rIndexes[i] and m ← a random element from dIndexes

8: xrcv
k , xdnr

m ← get the kth and mth individuals from the population

9: while treatmentControl[i] == 1 do

10: if tcr < tmax then

11: tcr ← tcr + 1 and x
rcv−p
k

← plasma treatment to xrcv
k with xdnr

m using Eq. (4)

12: if doseControl[i] == 1 then

13: if f(x
rcv−p
k

) < f(xdnr
m ) then

14: doseControl[i] ← doseControl[i] + 1 and update xrcv
k with x

rcv−p
k

15: else

16: Update xrcv
k with xdnr

m
17: Set treatmentControl[i] to 0 for completing transfer

18: end if

19: else

20: if f(x
rcv−p
k

) < f(xrcv
k ) then

21: Update xrcv
k with x

rcv−p
k

22: else

23: Set treatmentControl[i] to 0 for completing transfer

24: end if

25: end if

26: Update xbest with xrcv
k if f(xrcv

k ) < f(xbest)

27: end if

28: end while

29: end for

who recovered and contributed to the treatment processes of

the emerging patient or patients as plasma donor changes as

time goes by. With the completion of the plasma treatment,

IP algorithm applies a controlled-randomize procedure for

changing the previously determined donor individual or indi-

viduals. If the random number generated between 0 and +1
is less than the ratio between current fitness evaluation (tcr)

and predetermined maximum fitness evaluations (tmax), each

parameter of the xdnr
m individual or solution is modified by

guiding the previously assigned values of them as described

VOLUME 4, 2016 5



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3043174, IEEE Access

in Eq. (5). When the approach modeled for updating donor

individual or individuals is analyzed, it is clearly seen that

the probability of protecting antibody composition of a donor

individual is increased with the subsequent evaluations. By

executing this kind of mechanism, a donor individual can get

a chance of strengthening the immune system memory for the

same or similar infections. However, if the random number

generated between 0 and +1 is higher than the tcr/tmax, it is

assumed that the immune system response of the individual

helped critical patient or patients as donor is strong but not

enough to obtain stationary antibody memory for the current

antigen and its parameters are re-initialized with the Eq. (1).

xdnr
mj = xdnr

mj + rand(−1,+1)xdnr
mj (5)

For summarizing how IP algorithm generates initial in-

dividuals, manages distribution of infection, determines im-

mune responses, selects donor and receiver individuals, uses

plasmas for the receivers and finally updates donors, the

detailed pseudo-code given in the Alg. (2) should be inves-

tigated. The infection distribution (lines between 6 and 14
in the pseudo-code of Alg. (2)) is the stage that maintains

the diversification or exploration property of the IP algo-

rithm. As mentioned before, the individuals of the population

correspond to the possible solutions of IP algorithm. In

the infection distribution, each individual is infected with

a randomly selected individual. In other words, a candidate

solution is generated at the neighborhood of each individual

and problem space gets a chance of searching. The plasma

transfer between donor and receiver individuals (lines be-

tween 16 and 44 in the pseudo-code of Alg. (2)) helps the

exploitation or intensification operations. Especially, when a

receiver is treated with the same plasma, the neighborhood of

the solution represented with that receiver is searched more

sensitively. The donor update (lines between 46 and 57 in

the pseudo-code of Alg. (2)) is a stage that contributes both

exploitation and exploration properties of the IP algorithm.

At this state, a donor can be changed completely and a new

region in the search space is discovered. In addition to this,

a donor can be modified slightly and the neighborhood of

the solution represented with this donor is searched more

sensitively.

When the detailed pseudo-code of the IP algorithm given

in the Alg. (2) is controlled, it is clearly seen that the num-

ber of evaluations or number of calls to calculate objective

function values per cycle-iteration can vary. If the first dose

of the plasma significantly contributes to the treatment of a

patient, the subsequent dose is prepared and plasma transfer

continues. Even though the number of evaluations per cycle

changes in the IP algorithm, it does not cause a problem

for the fair comparison with other meta-heuristics. For a fair

comparison between meta-heuristics, the value of maximum

evaluations abbreviated as tmax in the Alg. (2) is determined

first and then competitor meta-heuristics are terminated when

they reach to the predetermined tmax. Assuming that the

IP algorithm is used for solving a D-dimensional problem

requiring calculation of an objective function with the com-

plexity of O(D), the running time of the IP algorithm is

found equal to O(tmax ×D).

Algorithm 2 Fundamental steps of the IP algorithm

1: Assign values to PS, D, NoD and NoR control parameters.

2: Set xbest as the best individual of the PS individuals.

3: Select tmax and set tcr to PS.

4: while tcr < tmax do

5: //Infection distribution

6: for k ← 1 . . . PS do

7: if tcr < tmax then

8: tcr ← tcr + 1 and x
inf
k

← infect xk with xm using Eq. (2)

9: if f(x
inf
k

) < f(xk) then

10: Update xk with x
inf
k

as described in Eq. (3)

11: Update xbest with xk if f(xk) < f(xbest)

12: end if

13: end if

14: end for

15: //Plasma transfer for critical individuals

16: doseControl[1 . . . NoR] ← set each element to 1

17: dIndexes[1 . . . NoD] ← get the indexes of the donors

18: rIndexes[1 . . . NoR] ← get the indexes of the receivers

19: treatmentControl[1 . . . NoR] ← set each element to 1

20: for i ← 1 . . . NoR do

21: k ← rIndexes[i] and m ← a random element from dIndexes

22: xrcv
k , xdnr

m ← get the kth and mth individuals from the population

23: while treatmentControl[i] == 1 do

24: if tcr < tmax then

25: tcr ← tcr + 1 and x
rcv−p
k

← plasma treatment to xrcv
k with xdnr

m using Eq. (4)

26: if doseControl[i] == 1 then

27: if f(x
rcv−p
k

) < f(xdnr
m ) then

28: doseControl[i] ← doseControl[i] + 1

29: Update xrcv
k with x

rcv−p
k

30: else

31: Update xrcv
k with xdnr

m
32: Set treatmentControl[i] to 0 for completing transfer

33: end if

34: else

35: if f(x
rcv−p
k

) < f(xrcv
k ) then

36: Update xrcv
k with x

rcv−p
k

37: else

38: Set treatmentControl[i] to 0 for completing transfer

39: end if

40: end if

41: Update xbest with xrcv
k if f(xrcv

k ) < f(xbest)

42: end if

43: end while

44: end for

45: //Donor update

46: for i ← 1 . . . NoD do

47: if tcr < tmax then

48: tcr ← tcr + 1 and m ← dIndexes[i]

49: xdnr
m ← get the mth individual from the population

50: if (tcr/tmax) < rand(0, 1) then

51: Update xdnr
m using Eq. (5)

52: else

53: Update xdnr
m using Eq. (1)

54: end if

55: Update xbest with the xdnr
m if f(xdnr

m ) < f(xbest)

56: end if

57: end for

58: end while

The calculation of the running time of the IP algorithm

in terms of maximum evaluation numbers and cost of objec-

tive function simplifies a generalized comparison with other

meta-heuristics. However, the effect of the interior operations

carried out in the infection distribution, plasma transfer and

donor update should also be taken into account and included

in the calculation of the running time of the IP algorithm.

When the IP algorithm with the PS individuals is used to

solve D-dimensional problem of O(D), the computational

complexity of the infection distribution is found O(PS×D).
For determining receiver and donor individuals, the IP algo-

rithm utilizes from a sorting algorithm for which its com-

putational complexity is O(PS× logPS). After determining

receiver and donor individuals, the computational complexity

of giving one dose plasma for each of the NoR receivers and

updating NoD donors is found O(PS × logPS + NoR ×
D + NoD × D). By considering the special requirements
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of different operations, the overall computational complexity

of the IP algorithm for a cycle or iteration is defined as

O(PS × logPS +D × (PS +NoR+NoD)).

III. EXPERIMENTAL STUDIES

In order to analyze the solving capabilities of the IP algorithm

on different scenarios, the whole experimental studies were

divided into four parts1. In the first part of the experimental

studies, IP algorithm was tested on solving 30-dimensional

benchmark problems by assigning different values to the PS,

NoR and NoD control parameters. The results of the IP

algorithm were also compared with the results of the PSO

[11], DE [7], RCBBO [9], CS [12], FA [13], GSA [34], ABC

[16] and AMO [50] algorithms. The second part of the ex-

perimental studies was devoted to the performance investiga-

tion of the IP algorithm on high-dimensional problems. The

benchmark problems including 100 and 200 parameters were

solved by the IP algorithm and its results were compared with

the PSO [11], GSA [34], BA [14], FPA [15], SMS [38], FA

[13], GA [6], MFO [18] and ALO [19] algorithms. In the

third part of the experimental studies, ten bound constrained,

single-objective and computationally expensive benchmark

functions first presented at the CEC 2015 were solved with

the IP algorithm. The results of the IP algorithm for CEC

2015 benchmark functions were compared with the results

of the SOA [31], SHO [30], GWO [17], PSO [11], MFO

[18], MVO [23], SCA [21], GSA [34], GA [6] and DE

[7]. Finally, in the fourth part of the experimental studies, a

complex engineering problem that depends on decomposing

EEG signal into noise and noise-free parts was solved with

the IP algorithm and its results were compared with the

results of the GA [6], PSO [11], DE [7], ABC [16], GSA

[34], MFO [18], SCA [21] and SSA [25].

A. SOLVING CLASSICAL BENCHMARK PROBLEMS

WITH IP ALGORITHM

The experimental studies in this subsection is related to the

analysis of the IP algorithm over the 30 dimensional classical

benchmark functions. Formulations, lower and upper bounds

of these functions are summarized in the Table 1. For the

benchmark functions given in the Table 1 except the f8, the

global minimum value is zero. Only for the f8 function, the

global minimum value is equal to −D × 418.98 where D
shows the number of parameters. In the experiments, the

population size of the IP algorithm is set to 30. In order to

understand that how the performance of the IP algorithm

changes with the different values of the NoR and NoD
parameters, nine different combinations are used. The total

evaluation number is set to 150, 000 for the f1, f6, f10, f12
and f13 functions, 200, 000 for the f2 and f11 functions,

300, 000 for the f7, f8 and f9 functions. Finally, the total

evaluation number is set to 500, 000 for the f3, f4 and f5
functions. For each benchmark function, 30 independent runs

with random seeds are carried out. The mean best objective

1Source code is available upon request.

function values and standard deviations are recorded and

summarized in the Table 2.

The results given in the Table 2 give important information

about the appropriate NoR and NoD combination of the IP

algorithm. While the IP algorithm is capable of obtaining

global best solutions of the f6, f9, f10 and f11 functions

for all of the nine NoR and NoD combinations, more

qualified solutions of the f1, f2, f3, f4, f5, f7, f8, f12 and

f13 functions can be found by the IP algorithm with the

subtly determined NoR and NoD parameters. For f5, f8,

f12 and f13 functions, IP algorithm shows better performance

by setting both NoR and NoD parameters to their smallest

value compared to the other parameter configurations. For f1
function, if there is more than one receiver in other words

the NoR is bigger than 1, the NoD parameter should be

chosen equal or bigger than the NoR parameter. Similar

generalizations can also be made about the f3 function by

considering the obtained results. For this benchmark func-

tion, the IP algorithm should set the NoD parameter higher

than the NoR parameter. Finally, for the f2 and f4 functions,

the IP algorithm produce better results by setting the NoR
and NoD to 2 or 3 when compared to the other NoR and

NoD configurations.

The values assigned to the NoR and NoD parameters of

the IP algorithm have an impact on the convergence perfor-

mance of it. For providing a visual representation about the

convergence characteristics of the IP algorithm with varying

NoR and NoD parameters, some curves are plotted and

illustrated in the Fig. 4 and Fig. 5. In the Fig. 4, the NoR
parameter is set to a fixed value while the NoD parameter is

changed. In the Fig. 5, the NoR parameter is changed while

the NoD parameter is set to a fixed value. The curves of

the figures help to make a rough generalization about that

the IP algorithm converges more quickly when the NoD
parameter is chosen equal or less than the NoR parameter.

As mentioned before, the IP algorithm supports the a receiver

with the plasma of the selected donor. If most of the receivers

are supported with the plasma taken from the same donor, the

neighborhood of the solution represented with the selected

donor is examined continuously and the convergence speed

of the IP algorithm is accelerate intrinsically. Even though

there are more than one donor with the condition that number

of donors is equal or less than the number of receivers,

examining donors with the similar qualities still contributes

to the performance of the IP algorithm. However, it should

be noticed that the convergence speed accelerated at the

initial cycles with the usage of small NoD parameter can

cause trapping local optimums especially for the problems in

which there are local optimums relatively close to the global

optimum or optimums.

In order to analyze how the qualities of the final solutions

of the IP algorithm change with the increased population

sizes, two different values including 50 and 100 are assigned

to the PS and the benchmark functions given in the Table

1 are solved again. The total evaluation number is set to

150, 000 for the f1, f6, f10, f12 and f13 functions, 200, 000
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TABLE 1. Classical benchmark functions used in experiments

Name Range Formulation

Sphere [-100, 100] f1(~x) =
∑D

i=1

(

x2
i

)

Schwefel2.22 [-10, 10] f2(~x) =
∑D

i=1 |xi| +
∏D

i=1 |xi|

Schwefel1.2 [-100, 100] f3(~x) =
∑D

i=1

∑i
j=1 xj

Schwefel1.2 [-100, 100] f4(~x) = maxi(|xi|, 1 ≤ i ≤ D)

Rosenbrock [-30, 30] f5(~x) =
∑D−1

i=1

(

100(xi+1 − x2
i

)2
+ (xi − 1)2)

Step [-100, 100] f6(~x) =
∑D

i=1 (⌊xi + 0.5⌋)2

Random [-1.28, 1.28] f7(~x) =
∑D

i=1

(

ix4
i

)

+ random[0, 1)

Schwefel [-500, 500] f8(~x) =
∑D

i=1

(

−xisin
(

√

|xi|
))

Rastrigin [-5.12, 5.12] f9(~x) =
∑D

i=1

(

x2
i − 10cos (2πxi) + 10

)

Ackley [-32, 32] f10(~x) = 20 + e − 20exp

(

−0.2
√

1
D

∑D
i=1 x2

i

)

− exp
(

1
D

∑D
i=1 cos (2πxi)

)

Griewank [-600, 600] f11(~x) = 1
4000

(

∑D
i=1 x2

i ,
)

−
(

∏D
i=1 cos

(

xi√
i

))

+ 1

Penalized [-50, 50]

f12(~x) = π
D

(

10sin2(πyi) +
(

∑D
i=1

(

yi − 1)2(1 + 10sin2(πyi+1

)

))

+
∑D

i=1 u(xi, 10, 100, 4)

u(xi, a, k,m) =







k(xi − a)m, xi > a
0, −a ≤ xi ≤ a

k(−xi − a)m, xi







yi = 1 + 1
4 (xi + 1)

Penalized1 [-50, 50]

f13(~x) = 0.1
(

10sin2(πyi) +
(

∑D
i=1

(

yi − 1)2(1 + 10sin2(πyi+1

)

))

+
∑D

i=1 u(xi, 10, 100, 4)

u(xi, a, k,m) =







k(xi − a)m, xi > a
0, −a ≤ xi ≤ a

k(−xi − a)m, xi







yi = 1 + 1
4 (xi + 1)

for the f2 and f11 functions, 300, 000 for the f7, f8 and

f9 functions. Finally, the total evaluation number is set to

500, 000 for the f3, f4 and f5 functions. The NoR parameter

is set to 1 and the NoD parameter is set to 1 and 2,

respectively. For each benchmark function, 30 independent

runs with random seeds are carried out. The mean best ob-

jective function values and standard deviations are recorded

and summarized in the Table 3. When the results given in

the Table 3 are investigated, it is clearly seen that the IP

algorithm with the increasing population size still protects its

performance on the f6, f9, f10 and f11 functions. While the

IP algorithm finds more qualified solutions for the f5 and f8
functions with the PS equal to 50, the population size equal

to 30 is found more appropriate for the f1, f2, f3, f4, f7,

f12 and f13 functions. Because of the different characteristics

of the used benchmark functions, the requirements of the IP

algorithm to do with the PS, NoR and NoD parameters can

be vary. However, the results given in the Table 2 and Table

3 help for making a generalization that the PS parameter

can be chosen between between 30 and 50 and the NoR and

NoD parameters can be set to 1 or 2.

For verifying the results of the IP algorithm, it is compared

with the PSO [11], DE [7], RCBBO [9], CS [12], FA [13],

GSA [34], ABC [16] and AMO [50] algorithms. The popula-

tion or colony size of these algorithms is taken equal to 50 or

100 for setting the number of evaluations to 100 per cycle or

iteration [50]. In the comparisons, the population size of the

IP algorithm is also taken equal to 50. The NoR parameter

is set to 1 for each benchmark function. Moreover, the NoD
parameter is set to 2 for f3, f4 and f7 functions while it is set

to 1 for the other benchmark functions. The total evaluation

number is set to 150, 000 for the f1, f6, f10, f12 and f13
functions, 200, 000 for the f2 and f11 functions, 300, 000 for

the f7, f8 and f9 functions, 500, 000 for the f3, f4 and f5
functions [50]. The mean best objective function values of the

30 independent runs and standard deviations are summarized

in the Table 4.

From the results given in the Table 4, it is seen that the

IP algorithm produces equal or better solutions than the

compared meta-heuristics for eleven of the thirteen bench-

mark functions and shows its comparative performance with

the average rank found equal to 1.3077 and overall rank

found equal to 1. Only for the f12 and f13 functions, the

IP algorithm lags behind two meta-heuristics and its rank

is determined as 3. The idea lying behind the distribution

of the infection between individuals provides an efficient

exploration capability for the IP algorithm. In addition to

this, the plasma transfer mechanism that starts with the de-
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FIGURE 4. Convergence curves of the IP algorithm with varying NoD parameters for the 30-dimensional f1 (a), f3 (b), f6 (c), f10 (d) and f11 (e) functions
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FIGURE 5. Convergence curves of the IP algorithm with varying NoR parameters for the 30-dimensional f1 (a), f4 (b), f7 (c), f9 (d) and f12 (e) functions
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termination of the receiver and donor individuals, continues

with the treatment of the receiver or receivers and terminates

with adjustment of antibody density of the donor or donors

significantly contributes to the exploitation characteristic of

the IP algorithm. The effect of this unique mechanism of the

IP algorithm becomes more apparent for the f1, f2, f3, f4, f7
and f10 benchmark functions.

The mean best objective function values, average and

overall ranks of the IP algorithm show its comparative per-

formance. However, some statistical evidences about the

performance of the IP algorithm should be provided. In order

to decide that the solutions found by the IP algorithm are

strongly enough to prove the efficiency of the IP algorithm

with statistical outputs, the Wilcoxon signed-rank test that

is one of the most commonly used non-parametric tests is

used. In the Wilcoxon signed-rank test, the significance level

showed by ρ is taken equal to 0.05. If the ρ value calculated

for the two competitors is less than 0.05, it is accepted

that there is a statistical difference between competitors in

favor of one of them. Otherwise, it is said that the statistical

difference between two competitors is not meaningful for

deciding in favor of one of them. The Wilcoxon signed-

rank test results between IP algorithm and other tested meta-

heuristics are given in the Table (5). In Table (5), W+ column

corresponds to the sum of the ranks for which IP algorithm

is worse than the compared meta-heuristic. Similarly, W−
column shows the sum of the ranks for which IP algorithm

is better than the compared meta-heuristic. Finally, Z-value

is equal to the mean difference between IP algorithm and

other technique. When the test results summarized in the

Table (5) are investigated, it is seen that the superiority of the

IP algorithm is also proven statistically. While the statistical

significance is in favor of IP algorithm compared to the PSO,

DE, RCBBO, CS, FA, GSA and ABC, there is no statistical

difference between IP and AMO algorithms. Even though the

results found by the IP algorithm are better or equal to the

results of the AMO for eleven of thirteen problems, they are

not enough to generate a statistically significant difference.

Another investigation about the IP algorithm is carried

out how the execution time of it changes with the different

values assigned to the PS, NoR and NoD parameters. For

each 30-dimensional benchmark problem, the IP algorithm

coded with C programming language is tested 30 different

times on a PC equipped with a single core 1.33 GHz Intel

processor by using the previously mentioned termination

criteria. The average execution times in terms of second

over the 30 independent runs and related standard deviations

are calculated and summarized at the Table 6. The results

given in the Table 6 show that the execution time of the

IP algorithm increases slightly with the size of population

even though the termination criteria is same. The main reason

lying behind this kind of change is directly related with

the donor and receiver selection. When the population size

is increased from 30 to 50 or 100, determination of the

donor and receiver individuals requires more comparisons

and brings extra computational burden to the execution time

of the IP algorithm. Another important situation that should

be considered when analyzing the execution time of the IP

algorithm is the number of donor and receiver individuals.

The results in the Table 6 indicate that the number of donor

and receiver individuals does not increase the execution time

of the IP algorithm substantially compared to the selection of

the donor and receiver individuals.

B. SOLVING HIGH-DIMENSIONAL BENCHMARK

PROBLEMS WITH IP ALGORITHM

The results of the IP algorithm for 30 dimensional benchmark

functions provide information about the comparative and

promising performance of it. However, the performance of

the IP algorithm should also be evaluated on solving high

dimensional problems and comparative studies should be

carried out for deciding whether the mechanisms of the IP

algorithm are still useful or not. For this purpose, the bench-

mark functions ranging from f1 to f12 given in the Table 1

are solved with the IP algorithm by setting the number of

parameters of to 100 and compared with the MFO [18], PSO

[11], GSA [34], BA [14], FPA [15], SMS [38], FA [13] and

GA [6]. In order to provide a fair comparison with the MFO,

PSO, GSA, BA, FPA, SMS, FA and GA, the population size

of the IP is 30 and total evaluation number is 30, 000 for

each benchmark function [18]. The NoR parameter of the IP

algorithm is taken equal to 1 for each benchmark function.

Moreover, the NoD parameter is set to 2 for f3, f4 and

f9 functions while it is set to 1 for the other benchmark

functions. When the results calculated after 30 different runs

in the Table 7 is analyzed, it is understood that the IP

algorithm still protects its solving capabilities even though

the dimensionality of the problems is increased. For ten of the

twelve benchmark functions, the IP algorithm outperforms

other competitors and its overall rank is determined as 1.

While the IP algorithm is the third best method for the f4
on the basis of the mean objective function values, it lags

behind GSA, MFO, FPA and PSO for f12 function and its

rank is determined as 5.

For deciding whether the results of the IP algorithm

generate statistical difference in favor of the IP algorithm

compared to the MFO, PSO, GSA, BA, FPA, SMS, FA and

GA, the Wilcoxon signed-rank test with the significance level

0.05 is used and test outputs are given in the Table 9. As seen

from the test results in the Table 9, the capability of the IP

algorithm is also proven statistically. While the IP algorithm

is found statistically significant compared to the MFO, PSO,

GSA, FPA, SMS and FA with the ρ value equal to 0.00781,

its dominance is more apparent compared to the BA and GA

with the ρ value equal to 0.00024.

The benchmark functions ranging from f1 to f12 are

solved one more again with IP algorithm by setting the

number of parameters to 200 and obtained results of the IP

algorithm are compared with the ALO [19], PSO [11], SMS

[38], BA [14], FPA [15], CS [12], FA [13] and GA [6]. For

a fair comparison between algorithms, the population size is

set to 100 and total evaluation number is 500, 000 [19]. Each
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TABLE 5. Statistical comparison between meta-heuristics for 30 dimensional

problems

IPA vs.
Sum of Ranks

Z-val. ρ-val. Sign.
W+ W−

PSO 12 66 2.07963 0.01877 IPA

DE 11 55 1.91252 0.02790 IPA

RCBBO 12 66 2.07963 0.01877 IPA

CS 12 66 2.07963 0.01877 IPA

FA 12 66 2.08043 0.01874 IPA

GSA 12 66 2.07963 0.01877 IPA

ABC 10 45 1.73392 0.04146 IPA

AMO 18 47 1.24598 0.10638 -

TABLE 6. Average execution times of the IP algorithm for 30 dimensional

problems

Fn.

PS = 30 PS = 50 PS = 100
NoR = 1 NoR = 1 NoR = 1

NoD = 1 NoD = 2 NoD = 1 NoD = 2 NoD = 1 NoD = 2

f1
Mean 0.231 0.259 0.257 0.288 0.340 0.334

Std. 6.227e-02 2.403e-02 2.498e-02 3.063e-02 4.398e-02 3.748e-02

f2
Mean 0.391 0.390 0.398 0.414 0.476 0.440

Std. 3.772e-02 7.006e-02 2.203e-02 3.481e-02 2.471e-02 3.623e-02

f3
Mean 4.368 4.424 4.461 4.727 4.790 4.843

Std. 2.839e-01 2.087e-01 4.661e-01 5.499e-01 2.802e-01 2.586e-01

f4
Mean 0.752 0.766 0.954 0.877 1.056 0.935

Std. 2.218e-02 4.679e-02 1.688e-01 2.995e-02 4.508e-02 7.168e-02

f5
Mean 1.055 1.122 1.380 1.176 1.414 1.435

Std. 2.848e-02 3.933e-02 4.900e-02 4.738e-02 4.922e-02 1.633e-01

f6
Mean 0.963 0.982 1.103 1.022 1.146 1.118

Std. 2.021e-02 2.720e-02 3.561e-02 9.500e-02 1.103e-01 1.817e-01

f7
Mean 1.751 1.895 2.070 1.905 2.122 1.982

Std. 6.892e-02 3.456e-01 1.049e-01 2.288e-01 2.786e-01 2.650e-01

f8
Mean 1.906 1.843 1.992 1.867 2.085 1.932

Std. 2.359e-01 7.934e-02 2.223e-01 3.898e-02 4.353e-01 1.576e-01

f9
Mean 1.731 1.783 1.914 1.922 2.073 1.967

Std. 9.404e-02 2.420e-01 3.497e-01 2.851e-01 4.132e-01 4.425e-02

f10
Mean 1.430 1.397 1.465 1.485 1.526 1.580

Std. 1.733e-01 2.200e-01 1.351e-01 1.103e-01 5.229e-02 1.246e-01

f11
Mean 2.776 2.642 3.257 3.250 3.398 3.523

Std. 1.381e-01 2.064e-01 6.062e-01 6.984e-01 5.392e-01 3.442e-01

f12
Mean 2.379 2.501 2.458 2.633 2.754 2.737

Std. 7.689e-02 1.794e-01 1.865e-01 3.692e-01 1.944e-01 1.282e-01

f13
Mean 2.379 2.575 2.497 2.599 2.554 2.675

Std. 8.987e-02 3.246e-02 2.977e-01 8.347e-02 1.722e-01 1.189e-01

benchmark problem is solved 30 different times with the

random seeds and mean best objective function values and

standard deviations are presented at the Table 8. The results

given in the Table 8 prove that the IP algorithm shows the best

performance among the ALO, PSO, SMS, BA, FPA, CS, FA

and GA with the average rank calculated as 2.333. While the

IP algorithm outperforms other competitors for the f1, f2,

f6, f7, f8, f10, f11 and f12 functions, it lags slightly behind

the ALO and becomes the second best algorithm for the f5
function. However, when the performance of the IP algorithm

on solving f3 and f4 functions is investigated, it is seen that

the unique operations of infection distribution, receiver and

donor determination, plasma transfer and subsequent donor

modification lose some advantageous sides.

C. SOLVING CEC2015 BENCHMARK PROBLEMS WITH

IP ALGORITHM

In the final part of the experimental studies, the performance

of the IP algorithm is analyzed by solving ten different

computationally expensive benchmark functions represented

at the CEC 2015 [51]. The complexities of the benchmark

problems of the CEC 2015 are tried to be increased by

applying some rotation, shifting or both rotation and shifting

operations. Moreover, some of the problems are generated

by combining or hybridizing classical benchmark functions.

The lower and upper bounds of the benchmark functions are

determined −100 and +100, respectively [51]. The details

about the benchmark problems including their names, their

base functions and the reference values using as the global

minimums are summarized in the Table 10 [51].

Each 30-dimensional benchmark function given in the

Table 10 is solved with the IP algorithm for which NoR and

NoD parameters are set to 1 and its results are compared

with the SOA [31], SHO [30], GWO [17], PSO [11], MFO

[18], MVO [23], SCA [21], GSA [34], GA [6] and DE [7]

algorithms. For providing a fair comparison, the population

size of the algorithms is 100 and total evaluation number is

100, 000 for each benchmark function [31]. When the mean

best objective function values and standard deviations calcu-

lated after 30 different runs in the Table 11 are controlled, it is

seen that the IP algorithm with the average and overall ranks

equal to 1.8000 and 1 respectively outperforms SOA, SHO,

GWO, PSO, MFO, MVO, SCA, GSA, GA and DE. While the

f3, f4, f5, f6, f7, f8, f9 and f10 functions are solved more

robustly by the IP algorithm, SOA performs better than the

tested meta-heuristics on the f1 function and GSA performs

better than the tested meta-heuristics on the f2 function.

In order to investigate that whether the results of the IP

algorithm are enough to generate a statistical difference in

favor of the same algorithm or not, the Wilcoxon signed-rank

test with the significance level equal to 0.05 is utilized and

test outputs are listed in the Table 12. While the IP algorithm

proves its statistical significance with the ρ values calculated

as 0.00195, 0.02734, 0.03710 and 0.04882 compared to

SOA, SHO, GWO, MFO, SCA, GSA, GA and DE, its results

are not enough to generate statistical difference compared to

PSO and MVO algorithms. Even though the the statistical

significance is not in favor of IP algorithm compared to PSO

and MVO algorithms, it should be noticed that IP algorithm

produces better results than both of the PSO and MVO on

eight of ten benchmark problems.

D. SOLVING SIGNAL DECOMPOSITION PROBLEMS

WITH IP ALGORITHM

Abbass et al. [52]–[54] have recently introduced a new op-

timization problem that has a strong relationship with the

big data concept of the computer science and the unique

properties of the newly introduced problem have attracted

the researchers for solving it with the techniques developed

by guiding the well-known meta-heuristics. They directly

utilized from the measurement results of the EEG signals

when describing their problems and stated that decomposing

the obtained EEG signals into two different parts is the main

motivation of the problem. The EEG measurements for a

second are classified based on the number of time series and

problem instances with four time series are named as D4

and D4N and problem instances with twelve time series are

named as D12 and D12N [52]–[54]. In the D4 and D4N, four

signal sources are utilized for measurements and two signal

sources are used in modeling of the noise part [52]–[54].
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TABLE 9. Statistical comparison between meta-heuristics for 100
dimensional problems

IPA vs.
Sum of Ranks

Z-val. ρ-val. Sign.
W+ W−

MFO 0 28 2.41755 0.00781 IPA

PSO 0 28 2.41755 0.00781 IPA

GSA 0 28 2.41755 0.00781 IPA

BA 0 78 3.48710 0.00024 IPA

FPA 0 28 2.41755 0.00781 IPA

SMS 0 28 2.41755 0.00781 IPA

FA 0 28 2.41755 0.00781 IPA

GA 0 78 3.48710 0.00024 IPA

TABLE 10. CEC 2015 benchmark functions used in the experiments

Function Name Related Basic Functions Ref.

f1 Rotated Bent Cigar Function Bent Cigar function 100

f2 Rotated Discus Function Discus function 200

f3 Shifted and Rotated Weierstrass function Weierstrass function 300

f4 Shifted and Rotated Katsuura function Katsuura function 500

f5 Shifted and Rotated HappyCat function HappyCat function 600

f6 Shifted and Rotated HGBat function HGBat function 700

f7
Shifted and Rotated Expanded Griewank’s

plus Rosenbrock’s function

Griewank’s function

Rosenbrock’s function
800

f8
Shifted and Rotated Expanded Scaffer’s

f6 function

Expanded Scaffer’s f6
function

900

f9 Hybrid function 2 (N=4)

Griewank’s function

Weierstrass function

Rosenbrock’s function

Scaffer’s f6 function

1100

f10 Compositional function 2 (N=3)

Schwefel’s function

Rastrigin’s function

High conditioned elliptic
1400

In the other problem instances, twenty-five different signal

sources are used for both obtaining required EEG signal and

measurement artifacts. While the D12 and D12N instances

are related with the first twelve signal sources, the remaining

signal sources are overlapped with the signal sources used

for obtaining main EEG signals. Even though measurement

noise is included in all problem instances, the problem in-

stances ended with N abbreviation are also complicated with

the extra noise addition as their names imply [52]–[54].

Given that X is a matrix and it has N rows and M
columns. The N value actually represents the number of

time series and M value corresponds to the lengths of each

time series. S is an N × M dimensional matrix and it

represents one of the four problem instances. Also, A is a

square matrix of size N × N and used to transform S into

X matrix. For understanding how the X , S and A matrices

are related with each other, the Eq. (6) should be controlled

[52]–[54]. As stated earlier, the main purpose of the problem

is decomposing the S matrix into appropriate matrices. The

noiseless component of the S matrix is matched with the

S1 matrix and it is known that the S1 should be similar

to the original S matrix. In addition to this, the noise or

measurement artifacts on the S matrix corresponds to the S2
matrix [52]–[54]. Although the S matrix is decomposed into

S1 and S2 matrices, the sum of S1 and S2 matrices must be

equal to the S matrix and the sum of transformed S1 and S2
matrices must also be equal to the X matrix as described in

the Eq. (7) and Eq. (8), respectively [52]–[54].

Although the connection of these matrices is described

with simple matrix operations, obtaining the S1 and S2
matrices from S by considering described purpose of the

problem is not so straightforward. However, Abbass et al.

[52]–[54] showed that some statistical indicators about the

X , A and S1 matrix being guessed can be useful for guiding

the division of the S matrix. One of the statistical indicators

that can be utilized for guiding the division of the S matrix

and calculated as in Eq. (9) is related with the correlation co-

efficients of Pearson [52]–[54]. In the Eq. (9), C is the matrix

showing Pearson correlation coefficients and var(X) is the

variance matrix. Also, var(A× S1) and covar(X,A× S1)
are variance and covariance matrices, respectively [52]–[54].

While the S1 is extracted from the original S matrix, it is

considered that the off-diagonal elements of the C matrix

should be minimized and the other elements of the same C
matrix should be maximized [52]–[54].

X = A× S (6)

S = S1 + S2 (7)

X = A× S1 +A× S2 (8)

C =
covar(X,A× S1)

var(X)× var(A× S1)
(9)

After splitting S matrix into S1 and S2 matrices and cal-

culating C, the relevance of the S1 matrix with the original

S matrix and appropriateness of the C matrix should be

measured. By aiming at determining quality of the division,

Abbass et al. [52]–[54] presented objective functions given in

the Eq. (10) and Eq. (11). The objective function given in the

Eq. (10) describes the appropriateness of the matrix showed

by C. Other objective given in Eq. (11) is devoted to the

calculation of similarity between the S and S1 matrices [52]–

[54]. When the first and second objective function values

are investigated, it is understood that an accurate signal

decomposition should minimize them. If the S1 matrix that

minimizes the sum of the equally weighted f1 and f2 given

as (f1 + f2) is tried to be found, an optimization problem

with the single objective is easily introduced [52]–[54]. If

both f1 and f2 objective functions are tried to be minimized

simultaneously, it is said that there are more than one objec-

tives required to be optimized and a multi-objective big data

optimization problem can be defined. For single and multi-

objective interpretations of the problems, lower and upper

bounds of the elements in S1 matrix are set to −8 and +8
[52]–[54].

f1 =
1

(N2 −N)

∑

i 6=j

(Cij)
2 +

1

N

∑

i

(1− Cii)
2 (10)

f2 =
1

N ×M

∑

ij

(Sij − S1ij)
2 (11)
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TABLE 12. Statistical comparison between meta-heuristics for CEC2015

problems

IPA vs.
Sum of Ranks

Z-val. ρ-val. Sign.
W+ W-

SOA 8 37 1.65632 0.04882 IPA

SHO 0 45 2.88563 0.00195 IPA

GWO 0 45 2.88563 0.00195 IPA

PSO 17 28 0.56759 0.28515 -

MFO 8 37 1.65632 0.04882 IPA

MVO 17 28 0.56759 0.28515 -

SCA 0 45 2.88563 0.00195 IPA

GSA 6 39 1.92135 0.02734 IPA

GA 0 45 2.88563 0.00195 IPA

DE 7 38 1.78526 0.03710 IPA

In order to analyze that whether the IP algorithm still

protects its capabilities for complex engineering problems

or not, single objective D4, D4N, D12 and D12N instances

are solved with the IP algorithm and its results are compared

with the results of the GA [6], PSO [11], DE [7], ABC [16],

GSA [34], MFO [18], SCA [21] and SSA [25]. For each

algorithm, the population or colony size is set to 50 and

maximum fitness evaluations are taken equal to 10, 000. The

crossover and mutation probabilities of the GA is 0.95 and

0.001, respectively [6]. In addition to these, the best 20% of

the whole GA population are preserved at each generation

by the elitism strategy. For the PSO algorithm, given that

xmin
j and xmax

j are lower and upper bounds of the jth
decision parameter, lower and upper bounds of the velocity

are (xmin
j −xmax

j )×0.2 and (xmax
j −xmin

j )×0.2 [11]. While

the inertia weight is determined between 0.2 and 0.9, the c1
and c2 acceleration coefficients are taken equal to 2 [11].

The crossover rate of the DE is set to 0.90 and the scaling

factor is adjusted randomly between 0.2 and 0.8 [7]. The limit

parameter of the ABC algorithm is calculated as (PS×D)/2
[16]. For the MFO, the b constant used in the calculations of

the logarithmic spiral is 1 [18]. The a constant of the SCA is

set to 2 [21]. The c1 coefficient of the SSA is calculated by

using the formula 2e−(16l2/L2) where l is the current iteration

and L is the maximum number of iterations [25]. Finally, the

NoR and NoD parameters of the IP algorithm are set to 8
and 4.

For each algorithm, problem instances are solved 30 times

with different random seeds. The mean best, best objective

function values and standard deviations are recorded and

presented at the Table 13. The results given in the Table 13

show that the IP algorithm filters the measurement noise and

obtains more robust EEG signals compared to the GA, PSO,

DE, ABC, GSA, MFO, SCA and SSA algorithms for all of

the four problem instances. While the mean best objective

function values obtained by the IP algorithm are between

1.0597 and 12.3272 times better than its competitors for the

D4 instance, the mean best objective function values obtained

by the IP algorithm are also between 1.0353 and 11.9848
times better than its competitors for the D4N instance. More-

TABLE 13. Comparison between IP algorithm and other meta-heuristics for

D4, D4N, D12 and D12N instances

Alg.
Instances

D4 D4N D12 D12N

IPA

Mean 1.6599e+00 1.6989e+00 1.8370e+00 1.8359e+00

Best 1.5458e+00 1.5871e+00 1.7710e+00 1.7076e+00

Std. 6.1728e-02 5.2602e-02 3.8295e-02 5.2990e-02

Rank 1 1 1 1

GA

Mean 2.1300e+00 2.1491e+00 2.8016e+00 2.7769e+00

Best 1.8930e+00 1.8715e+00 2.5454e+00 2.3848e+00

Std. 1.5558e-01 1.5647e-01 1.5078e-01 1.5087e-01

Rank 3 3 3 3

PSO

Mean 7.8788e+00 7.8962e+00 1.0634e+01 1.0613e+01

Best 7.2433e+00 7.5527e+00 1.0024e+01 1.0271e+01

Std. 2.7104e-01 2.2522e-01 1.9250e-01 1.5696e-01

Rank 6 6 6 6

DE

Mean 1.4654e+01 1.6886e+01 2.2396e+01 2.2439e+01

Best 7.4238e+00 5.3421e+00 2.1890e+01 2.2020e+01

Std. 6.3289e+00 7.0483e+00 2.0155e-01 1.7023e-01

Rank 7 7 9 9

ABC

Mean 2.0042e+01 2.0101e+01 2.1958e+01 2.1954e+01

Best 1.8982e+01 1.9608e+01 2.1599e+01 2.1431e+01

Std. 4.2809e-01 3.2692e-01 1.9688e-01 2.2401e-01

Rank 8 8 7 7

GSA

Mean 1.7590e+00 1.7588e+00 2.1962e+00 2.2106e+00

Best 1.6384e+00 1.5660e+00 2.0587e+00 2.1154e+00

Std. 7.9340e-02 8.6096e-02 5.6204e-02 4.3377e-02

Rank 2 2 2 2

MFO

Mean 2.0462e+01 2.0361e+01 2.2027e+01 2.1970e+01

Best 1.9546e+01 1.9852e+01 2.1819e+01 2.1394e+01

Std. 3.1975e-01 3.5109e-01 1.2472e-01 2.2827e-01

Rank 9 9 8 8

SCA

Mean 6.0747e+00 6.4380e+00 6.9154e+00 6.8059e+00

Best 3.0410e+00 3.5316e+00 5.8082e+00 2.3134e+00

Std. 1.4271e+00 1.0361e+00 4.6994e-01 1.0449e+00

Rank 5 5 5 5

SSA

Mean 2.7771e+00 2.8256e+00 3.0998e+00 3.1211e+00

Best 2.6027e+00 2.6706e+00 2.9668e+00 2.9541e+00

Std. 1.1751e-01 8.5527e-02 7.3073e-02 7.7361e-02

Rank 4 4 4 4

over, while the mean best objective function values obtained

by the IP algorithm are between 1.1955 and 12.1916 times

better than its competitors for the D12 instance, the mean

best objective function values obtained by the IP algorithm

are also between 1.2041 and 12.2223 times better than its

competitors for the D12N instance. The effect of the plasma

that is extracted from a donor and transferred into a receiver

becomes more dominant on the exploitation mechanism of

the IP algorithm and significantly improves the qualities of

the final solutions when the difficulty and dimensionality of

the problems increase as in the considered signal decompo-

sition problems. Modifying a receiver solution by changing

all of the parameters with the support of the donor or the

plasma extracted from it helps preserving promising solution

more longer in the population and searching the vicinity of

the promising solution more steadily.

IV. CONCLUSION

The convalescent plasma or immune plasma is one of the

well-known treatment methods based on transferring the

antibodies of an individual who has recovered previously

to another patient or patients of the same infection. In this

study, the simple but efficient idea lying behind the plasma

treatment was investigated and a new meta-heuristic algo-

rithm named as Immune Plasma algorithm for short IPA was

introduced. Each individual of a population in IP algorithm
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is matched with the possible solution of the optimization

problem being solved and immune response of an individual

to the spreading infection corresponds to the appropriateness

or quality of the solution. In order to analyze the capa-

bilities of the IP algorithm, a set of experimental studies

was conducted. In the first part of the experiments, thirteen

classical benchmark problems were solved with IP algorithm

by assigning different values to the specific NoR and NoD
parameters. The second part of the experimental studies was

devoted to the analysis the IP algorithm on high dimensional

benchmark problems. In the third part of the experimental

studies, complex benchmark problems presented at the CEC

2015 were solved with the IP algorithm. Finally, in the fourth

part of the experimental studies, the IP algorithm was used to

solve a complex engineering problem.

The results of the experimental studies were compared

with the standard implementations of the previously intro-

duced well-known meta-heuristic algorithms including GA,

PSO, DE, RCBBO, CS, FA, GSA, AMO, ABC, BA, MFO,

FPA, SMS, ALO, SOA, SHO, GWO, MVO, SCA and SSA.

From the detailed comparisons between IP algorithm and

other meta-heuristics, it was concluded that IP algorithm

is capable of obtaining better solutions for most of the

benchmark problems. The model used to distribute infection

between individuals provides an efficient exploration mech-

anism. This efficient exploration mechanism is balanced by

a detailed exploitation operation in which donor individual

or individuals are used as plasma sources for the emerging

patient or patients and more than one dose plasma can be

transferred to the patient or patients if required. In future, the

performance of the IP algorithm can be analyzed by solving

different constrained or non-constrained single and multi-

objective optimization problems. The discrete variants of the

IP algorithm can also be developed and tested. Moreover,

IP algorithm can be modified by using different infection

distribution approaches or adaptive IP algorithm variants by

assigning required values to the NoR and NoD parameters

for each infection period dynamically can be introduced.
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