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Learning Objectives

● Understanding immune reconstitution after hematopoietic
stem cell transplantation

● Clinical implications of delays in post-transplant immune
reconstitution

● Strategies to improve post-transplant immune reconstitution

Delayed immune reconstitution after hematopoietic stem cell trans-
plantation (HSCT) has been associated with significant morbidity
and mortality, especially after allogeneic HSCT (allo-HSCT),
including infections and relapse.1-3 In particular T-cell immunity is
affected by the combined effects of the conditioning regimen,
thymic involution in the host, donor age,4 type of graft, stem cell
dose, ex vivo or in vivo T-cell depletion, donor-host disparity,
graft-versus-host disease (GVHD) prophylaxis, and GVHD itself
(both acute and chronic).

Innate immunity recovers in the first months after HSCT: first
monocytes, followed by granulocytes and natural killer cells.5 In
contrast, adaptive immunity, which consists of cellular (T lympho-
cytes) and humoral (B lymphocytes) immunity, takes 1-2 years to
recover and a significant number of patients will incur even
longer-lasting deficits.6,7 Post-transplant T-cell recovery can occur
through 2 mechanisms: (1) survival and peripheral expansion of
infused donor (memory) T cells, and (2) de novo generation of
donor T cells in the thymus from donor hematopoietic precursors.6,7

The thymus is the primary site for the development of T cells.
Lymphoid precursors traffic from the BM to the thymus and
undergo a complex process, including proliferation, differentiation,
and positive and negative selection resulting in the export of
functional CD4 and CD8 T cells. Thymopoiesis occurs as a
crosstalk between developing thymocytes and the stroma, which
includes dendritic cells, macrophages, fibroblasts, endothelial cells,
B cells, and thymic epithelial cells (TECs). In the first months after a
HSCT peripheral expansion of the donor T cells is the dominant
mechanism for T-cell recovery (except in the recipients of a T-cell
depleted allograft) and results in particular in clonal expansion of
CD8� T cells with a limited repertoire.8-10

De novo T cell recovery: (1) gradually increases after a few months,
(2) is dependent on a functional thymus, (3) is particularly important

for CD4� T cell recovery, (4) provides a more diverse T cell
repertoire, (5) is impaired in older patients due to age-associated
thymic involution, and (6) can be measured by T-cell receptor
rearrangement excision DNA circles (TRECs; see next section).11

Similar to HIV patients the risk of post-transplant infections is
associated with the CD4 count.12

B cell counts recover by 6 months after auto HSCT and by 9 months
after allo-HSCT. Recovery of humoral immunity is: (1) initially
impaired because of limited antibody repertoire, (2) dependent on T
cell help, and (3) decreased due to GVHD prophylaxis and
treatment, and GVHD itself.13

When comparing immune recovery across graft sources and trans-
plant approaches, the available data suggest that immune recovery
occurs most rapidly in recipients of autologous grafts. As noted
above several factors influence immune recovery after allogeneic
HSCT. In general, immune recovery occurs more rapidly after
unmodified graft transplants than in the setting of in vivo or ex vivo
T-cell depletion. Recovery after cord blood transplants is also
dependent on the use of in vivo T-cell depletion as outlined below
and can be on par with unmodified grafts in the absence of
anti-thymocyte globulin (ATG). Finally, there are increasing num-
bers of haploidentical transplants being performed with post-
transplant cyclophosphamide being used to abrogate alloreactive T
cells. Unpublished data indicate that immune recovery after post-
transplant cyclophosphamide is similar in haploidentical or matched
unrelated donor transplants, but delayed compared to unmodified
HSCT with standard GVHD prophylaxis (McCurdy and Luznik,
personal communication, September 21, 2015).

Monitoring of post-transplant immune reconstitution
Several assays are used to assess post-transplant immune recovery,
including tests that are performed routinely in clinical laboratories
[absolute lymphocyte counts (ALCs), lymphocyte subsets (CD4�

and CD8� T cells, NK cells, B cells), and antibody titers], as well as
assays that are currently performed in the research setting (measures
of thymic output and T cell and B cell repertoire). Studies have
demonstrated an association between the ALC early after autolo-
gous,14,15 or allogeneic transplant,16,17 and progression-free survival
(PFS) and overall survival (OS). For example, an ALC � 500
cells/mcl at day 15 after autologous HSCT was shown to be an
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independent predictor of improved PFS and OS in patients with
multiple myeloma, non-Hodgkin lymphoma, Hodgkin Lymphoma,
acute myelogenous leukemia, primary systemic amyloidosis, and
metastatic breast cancer.14 Similarly, in recipients of allografts, a
higher ALC at days 21 or 30 was associated with improved OS and
disease-free survival (DFS), as well as lower relapse rates.16-18 More
recent studies have shown similar results in recipients of cord blood
transplant (UCBT). Lymphocyte populations including T, B, and
NK cells are also routinely measured on a clinical basis. Early
recovery of CD4� T cells correlated with OS,19 non-relapse
mortality,19 as well as the risk of opportunistic infections.19-21

Higher levels of CD3� and CD8� T cells also correlated with
improved PFS.22

The use of multiparameter flow cytometry enables identification of
additional subsets of T, B and NK cells, as well as myeloid subsets
such as dendritic cells (DC). T cell subsets include naïve
(CD45RA�CCR7�), central memory (CD45RA�CCR7�), effector
memory (CD45RA�CCR7�) and effector (CD45RA�CCR7�) T
cells, regulatory T cells (CD4�CD25hiFoxP3�), and T helper 17
cells. A recent study showed that effector memory CD4� and CD8�

T cells were the predominant T-cell subset early after T-cell
depleted allogeneic HSCT.23 Flow cytometry can also asses thymic
output by detection of recent thymic emigrants (RTEs) identified
by the CD4�CD45RA�CD31�CD62LbrightCD95dim and
CD8�CD103�CD62LbrightCD95dim phenotypes. B-cell subsets in-
clude CD27�IgD� naïve B cells, CD27�IgD� “able to class switch”
memory cells, and CD27�IgD� “isotype switched” memory cells.24

NK populations include NK and TCR-V-alpha-24�NKT cells, and
dendritic cells include myeloid DCs (CD123low/�CD11c�) and
plasmacytoid DCs (CD123brightCD11cneg). Flow cytometry can also
identify antigen-specific responses using either intracellular cyto-
kine detection or tetramers.

Functional assays can provide important additional information on
post-transplant immune recovery. Although T-cell proliferative
responses (measured by 3HTdR incorporation) to mitogens (PHA,
OKT3), recall (candida, tetanus), viral or allogeneic antigens are
still used in clinical laboratories,25 more quantitative functional
assays are now used in the research setting. These tests include the
ELISPOT, intracellular cytokine secretion detected by flow cytom-
etry, and tetramers. Cytokine secretion can be elicited by incubation
with cells, lysates, proteins, or peptides. The use of protein-
spanning pools of overlapping peptides has been used to detect both
CD4� and CD8� responses without being limited by the patient’s
HLA.26 These assays can evaluate viral-specific responses including
those to cytomegalovirus (CMV), and Epstein-Barr virus (EBV), as
well responses to tumor antigens, such as WT1, and track cells after
adoptive transfer. Polyfunctional T cells that secrete multiple
cytokines can also be detected by intracellular cytokine secretion.
Studies in infectious diseases have shown that the ability to generate
polyfunctional T-cell responses correlates with improved control of
viral replication. More recently, tumor-specific polyfunctional CD8�

T cells have been demonstrated in patients with advanced mela-
noma immunized against gp100 and tyrosinase.27

Molecular tests can be used to assess thymic output,22,28,29 as well as
newly derived functional bone marrow B cells.30,31 TRECs are
markers of thymopoiesis, and have more rapid recovery in younger
patients and in recipients of conventional grafts compared to T-cell
depleted grafts.29 Low TREC values correlate strongly with severe
opportunistic infections.29 Production of B cells is assessed by

detection of kappa-deleting recombination excision circles
(KRECs).30,31

Finally, molecular techniques can also be used to asses T-cell
receptor (TCR) repertoire and B-cell receptor (BCR) gene rearrange-
ment diversity.23,32 With the development of next generation
sequencing, an increasingly detailed analysis of T-cell and B-cell
diversity is emerging.22,32-34 We recently reported on the TCR
diversity in allogeneic HSCT and found significantly higher diver-
sity in CD4� T cells than CD8� T cells, demonstrating the need to
study subsets separately.33 Furthermore, we showed that the most
rapid recovery in TCR diversity was seen in cord blood recipients,
followed by conventional grafts and T-cell depleted grafts. It should
be noted that recipients of cord blood transplant in this study did not
receive ATG as part of the conditioning regimen. This likely
explains improved immune recovery, but also higher rates of
GVHD, than in other series of cord blood transplant where the use
of ATG in combination with the graft’s naïve immune system has
resulted in delayed immune recovery. Next generation sequencing
can also be used to identify and monitor individual clonotypes,
including known clonotypes specific for viral epitopes.32,33

Vaccines
As noted above, HSCT results in T-cell and B-cell deficiencies. In
particular GVHD and rituximab use have a profound effect on
B-cell recovery, irrespective of the stem cell source (double cord
blood, conventional or T-cell depleted peripheral blood or bone
marrow).35 B-cell counts typically recover by 3-12 months post-
HSCT, except in patients who received rituximab. CD4� T cell
recovery, which is impacted by factors, such as patient age, GVHD,
and the use of T-cell depletion, usually occurs by 6-9 months after
HSCT in pediatric patients, and up to twice as long in adult
recipients. These delays in immune recovery result in decreased
response to vaccines.36 In the absence of revaccination, antibody
titers to vaccine-preventable diseases decline during the first decade
after autologous or allogeneic HSCT.37-39 HSCT recipients are
therefore at increased risk for infections, particularly with certain
organisms such as pneumococcal infection, Hemophilus influenza
type b (Hib) infection, measles, varicella, and influenza. Further-
more, due to recent reductions in vaccination rates, there has been a
decrease in heard immunity and resultant outbreaks of measles and
mumps. Current guidelines recommend that HSCT recipients
undergo revaccination after HSCT.40

Although there is limited clinical data on vaccine efficacy in HSCT
recipients, it is accepted that there has to be at least partial recovery
of T and B cells. Although the timing of recovery differs between
autologous and allogeneic HSCT and also based on graft source and
manipulation, most guidelines on immunization are based on timing
from HSCT. Vaccination with inactivated or toxoid containing
vaccines is recommended as early as 3-6 months following HSCT,
whereas administration of live-attenuated vaccines is recommended
at 24 months post-HSCT.40 The delayed use of live-attenuated
vaccines is based on concerns about transmission of vaccine-
mediated disease and the limited data on the safety and immunoge-
nicity of earlier vaccination.41

Inactivated vaccines should be preferred over live vaccines for
patients receiving immunosuppressants because of their reduced
ability of mounting sufficient immune responses and the risks of
uncontrolled virus replications. The question remains whether
patients with ongoing GVHD should be vaccinated. Guidelines
suggest that live vaccines should be avoided in these patients, but
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there is no conclusive evidence showing that inactivated vaccines
exacerbate GVHD.42

Recent data from our center has shown the safety and immunogenic-
ity of the live attenuated varicella vaccine when given according to
pre-set immune milestones (CD4 cells �200/�L, normal PHA, IgG
�500 mg/dL at least 6 weeks post-IVIG).43 In contrast, we have
also shown that despite acquisition of minimal milestones of
immune reconstitution, only 15% of patients respond to a single
conjugated meningococcal vaccine and 35% of patients did not
respond to any of the 4 serotypes. This data suggests that a series of
two MCV4 as currently recommended for patients with asplenia,
complement deficiency, or HIV should be evaluated in this patient
population.44 Additional research is needed to ascertain the optimal
timing of post-HSCT vaccines and immunization based on immune
recovery parameters rather than time from HSCT.

Donor vaccination. Pre-HSCT donor vaccination may represent a
potentially attractive strategy to boost immunity and prevent
infections to pathogens that cause significant morbidity and mortal-
ity. However, despite an extensive effort, studies are still inconclu-
sive and have not shown any beneficial effect in preventing
infections.45 In addition, there are ethical issues related to donor
immunization. As a result, the 2013 Infectious Diseases Society of
America guidelines recommend against immunizing the donor
solely for the benefit of the recipient.

Virus-specific T-cell clones. An alternative approach to provide
anti-viral immunity for transplanted recipients is through the
isolation of donor derived virus-specific T cells or through the ex
vivo amplification and expansion of virus-specific T cells stimulated
with antigen-presenting cells expressing the viral antigens. Virus-
specific T cells for common post-transplant pathogens (including
EBV, CMV, and adenovirus) have been successfully generated,
showing the safety and efficacy of these strategies in improving
immune recovery after HSCT. Furthermore, recent studies have
demonstrated that 3rd-party viral-specific T cells against EBV or
CMV can be safely administered to allo-HSCT as well as solid
organ transplant recipients with encouraging clinical results. Al-
though, several limitations in this approach have to be addressed
(such as the costs, the complexity of the manufacturing and the time
to produce clinical grade T cells), adoptive transfer of virus-specific
T cells still represents an attractive strategy to prevent post-
transplant viral infections46

Novel strategies
At present there is no “standard-of-care” approach to enhance
post-transplant immune reconstitution, however, several strategies
are being developed in preclinical models as well as early clinical
trials. The following strategies are currently in clinical development.

Interleukin-7 (IL-7). IL-7 has many lymphopoietic effects on both
T and B cells through: (1) supporting lymphoid precursors, (2)
promotion of T-cell development in the thymus, and (3) anti-
apoptotic effects during T-cell development.

Mouse models of allogeneic allo-HSCT have shown that IL-7
enhances thymopoiesis, stimulates T-cell proliferation, increases
T-cell numbers, and enhances T-cell diversity.47,48 Initial clinical
trials with recombinant human IL-7 (rhIL-7; CYT99–007, Cytheris)
demonstrated a dose-dependent expansion of CD4� and CD8� T
cells in patients with solid tumors or HIV infection49,50 We recently
completed a phase I trial of rhIL-7 (CYT107, Cytheris) in patients

with myeloid hematologic malignancies who underwent a T-cell
depleted allogeneic HSCT.23 Patients were treated with escalating
doses of rhIL-7 (3 at 10 mcg/kg, 6 at 20 mcg/kg, 3 at 30 mcg/kg)
administered SQ weekly for 3 weeks starting at a median of 103
days post-transplant (range, 60-244 days). IL-7 was well tolerated
and no patients have developed GVHD, anti-IL-7 antibodies or
neutralizing antibodies. In most patients, we observed an increase in
CD4� and CD8� T cells with evidence of recent thymic emigrants
and TRECs, as well as increased TCR repertoire diversity and
functional T-cell responses to viral antigens. A phase I clinical trial
with IL-7 in HSCT recipients of a CD34� selected allograft
demonstrated low toxicity and no GVHD at doses, which could
increase T-cell recovery and T-cell repertoire diversity.23

Keratinocyte growth factor (KGF). KGF has been approved for
the prophylaxis of mucositis in patients receiving chemo- and/or
radiation therapy, however, preclinical studies have indicated that
KGF administration can also enhance thymopoiesis through the
induction of proliferation of TECs.51 A clinical trial to test the effect
of KGF in combination with leuprolide (see below) on post-
transplant T-cell reconstitution is underway.

Sex steroid ablation (SSA). Both estrogen and testosterone have
inhibitory effects on early lymphoid precursors, thymopoiesis and B
lymphopoiesis.52-58 The mechanisms through which this occurs are
largely unknown, but studies are underway. For example, sex steroids
in the thymus seem to decrease the expression of Notch ligand, which is
an important driver of T-cell development.59 Studies both in man and
mouse demonstrated that SSA using castration (in mice) or the
luteinizing hormone releasing hormone (LHRH) agonist Leuprolide
after auto- and allo-HSCT or cytoablative therapy per se results in: (1)
increased numbers of lymphoid precursors and import of thymic
precursors into the thymus, (2) improved thymopoiesis, (3) enhanced B
lymphopoiesis, and (4) improved recovery of functional immunity.51

As mentioned above, a clinical trial combining SSA with leuprolide
and KGF in HSCT recipients is underway.

Growth hormone (GH). Preclinical studies have shown that GH
administration can enhance in thymopoiesis in old animals and
improve HSC function. Clinical studies in HIV� patients demon-
strated enhanced thymopoiesis and antiviral immunity.60,61 In
addition, several strategies are being developed in preclinical
models, including: (1) Flt3L: administration of Flt3L enhances
thymic dependent and independent T-cell recovery and increases
Flt3L� precursors in the BM, but decreases B lymphopoiesis.62,63

(2) IL-22: upon thymic injury innate lymphoid cells type 3 in the
thymus secrete IL-22 to promote endogenous regeneration of
TECs64; IL-22 administration can promote thymic, as well as
intestinal regeneration after injury65 and a phase I study in patients
with GVHD is planned. Other cytokines and growth factors, which
can enhance immune reconstitution in animal models include:
IGF-1, IL-2, IL-12, IL-15, parathyroid hormone, and retinoic acid.11

T-cell precursors. Preclinical studies have shown that T-cell
precursors can be generated and expanded from HSCs in an ex vivo
culture system using Notch-1 stimulation, as well as IL-7 and Flt3L.
Adoptive transfer of these cells with the allograft can be done across
MHC barriers and results in enhanced thymopoiesis, chimerism,
development of host-tolerant and fully functional T cells, and
enhanced NK reconstitution.66,67

Thymic tissue transplant has been used for the treatment of children
with DiGeorge syndrome (congenital hypoplastic thymus).68 A
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number of groups are employing tissue engineering techniques to
create an artificial thymus, using various biomaterials, thymic
epithelial precursor cells, and/or mesenchymal cells.

Several studies have shown that the regulatory T cell (Treg) content
in the allograft is associated with improved immune reconstitution
and less GVHD and CMV infection.69-72 Initial studies regarding
adoptive cell therapy with donor-derived regulatory T cells have
also shown improved T-cell reconstitution and less GVHD.73,74
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