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Abstract
Purpose of Review Coronavirus disease 2019 (COVID-19) is caused by a complex interplay between severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) dynamics and host immune responses. Hosts with altered immunity, including solid
organ transplant recipients, may be at increased risk of complications and death due to COVID-19. A synthesis of the available
data on immune responses to SARS-CoV-2 infection is needed to inform therapeutic and preventative strategies in this special
population.
Recent Findings Few studies have directly compared immune responses to SARS-CoV-2 between transplant recipients and the
general population. Like non-transplant patients, transplant recipients mount an exuberant inflammatory response following
initial SARS-CoV2 infection, with IL-6 levels correlating with disease severity in some, but not all studies. Transplant recipients
display anti-SARS-CoV-2 antibodies and activated B cells in a time frame and magnitude similar to non-transplant patients—
limited data suggest these antibodies can be detected within 15 days of symptom onset and may be durable for several months.
CD4+ and CD8+ T lymphopenia, a hallmark of COVID-19, is more profound in transplant recipients, but SARS-CoV-2–reactive
T cells can be detected among patients with both mild and severe disease.
Summary The limited available data indicate that immune responses to SARS-CoV-2 are similar between transplant recipients
and the general population, but no studies have been sufficiently comprehensive to understand nuances between organ types or
level of immunosuppression to meaningfully inform individualized therapeutic decisions. The ongoing pandemic provides an
opportunity to generate higher-quality data to support rational treatment and vaccination strategies in this population.
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Introduction

Coronavirus disease 2019 (COVID-19), the disease caused by
severe acute respiratory syndrome (SARS) coronavirus 2
(SARS-CoV-2), results from a complex interplay between
viral dynamics and host immune responses [1]. Most of the
end-organ complications that characterize severe COVID-19
are attributable to a dysregulated immune response that fol-
lows from SARS-CoV-2 infection. As a result, there has been
intense interest in identifying immunomodulatory therapeu-
tics that may alter the clinical course and outcome of SARS-
CoV-2 infection and prevent or mitigate severe COVID-19.

Despite the growing evidence base for various immuno-
modulatory therapies, there is a relative paucity of high-
quality data on the impact of chronic immunosuppressive
therapy on the immune response to SARS-CoV-2 infection.
The cumulative observational evidence suggests that some
hosts with altered immunity—including solid organ transplant
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(SOT) recipients—may be at elevated risk of complications
and death due to SARS-CoV-2 infection [2–7]. Conversely,
intensity of immunosuppression—as assessed by time since
transplant, type of transplant, number of immunosuppressive
agents, or recent augmented immunosuppression—was not
associated with COVID-19 severity in one large multicenter
series [5]. In more recent comparative studies, clinical out-
comes between transplant recipients and non-transplant pa-
tients appear to be similar when using carefully matched co-
horts [8, 9]; in one such analysis, transplant recipients exhib-
ited faster clinical improvement [10•]. As a result of these
conflicting observations, the approach to the management of
chronic immunosuppressive therapy in SOT recipients with
COVID-19 has largely been extrapolated from experience
with other viral pathogens, not on a detailed understanding
or profiling of the immune response to SARS-CoV-2 in the
SOT population.

Given the ongoing nature of the COVID-19 pandemic and
the burden of severe disease in immunocompromised hosts, a
comprehensive understanding of how immune responses to
SARS-CoV-2 vary in hosts with altered immunity—
including specifically SOT recipients—is needed to provide
a basis for therapeutic and preventative strategies in this pa-
tient population. In this review, we synthesize and provide
context to the available data on immune responses to human
and zoonotic coronaviruses, with a focus on SARS-CoV-2, in
SOT recipients. We also discuss the implications of these
findings, as well as evidence from studies of other pathogens,
for SARS-CoV-2 vaccination in this patient population and
outline potential avenues for future research.

Immune Response to SARS-CoV-2
in Non-transplant Patients

The immune response to SARS-CoV-2 in non-transplant pa-
tients has been reviewed extensively elsewhere [1, 11, 12•].
Following SARS-CoV-2 infection of airway epithelial cells,
numerous pro- and anti-inflammatory cytokines (IL-1β, IL-2,
IL-6, IL-10, IFN-γ, IP-10, macrophage inflammatory protein
1α (MIP1α), MIP1β, and MCP1) are elaborated [13]. In pa-
tients with mild-moderate disease, this inflammatory cascade
results in recruitment of monocytes, macrophages, Th1-biased
CD4+ T cells, and generation of anti-SARS-CoV-2–neutraliz-
ing antibodies [14] as well as broadly reactive CD4+ and
CD8+ T cells (with spike as the dominant epitope) [15, 16],
and these effectors together act to limit viral replication and
halt disease progression. Based on longitudinal studies of
adaptive immune responses in non-transplant patients, these
neutralizing antibodies and SARS-CoV-2–reactive T cells can
persist for at least 8 months after initial infection and likely
contribute to protection against reinfection [17–19].

In contrast, in patients that develop severe (and often fatal)
COVID-19, viral replication goes unchecked and the immune
response becomes dysregulated resulting in a “cytokine
storm” that leads to vascular leak, acute lung injury and acute
respiratory distress syndrome (ARDS), sepsis, thrombotic
complications, and multiorgan failure. Systematic immune
profiling of patients with mild and severe COVID-19 has
identified a distinct immune “phenotype” associated with
more severe disease [20, 21•]. This includes persistently ele-
vated and rising levels of pro-inflammatory cytokines such as
IL-6 [13, 22], higher levels of anti-SARS-CoV-2 antibodies
[22, 23] (which have also been associated with multisystem
inflammatory syndrome in children (MIS-C) [24]), and more
profound T cell depletion (and in some studies, exhaustion)
[20]. Additionally, immune profiling studies suggest a dichot-
omous response in patients with severe COVID-19, with im-
mune activation in the lung and blunted responses in the sys-
temic circulation [21•, 25].

This over-exuberant immune response is the target of various
immunomodulatory therapies that have been proven or are under
investigation for the treatment of COVID-19. Early in the pan-
demic, corticosteroids were identified as providing a mortality
benefit to patients with moderate-severe disease [26, 27], and
dexamethasone is now standard of care for such patients. In a
randomized controlled trial, the addition of baricitinib, an inhib-
itor of Janus kinases 1 and 2, to remdesivir was associated with
shorter time to recovery (to hospital discharge or no longer re-
quiring supplemental oxygen) and a greater likelihood of clinical
improvement by day 15 [28]—as a result of this study, baricitinib
became the first immunomodulator to receive emergency use
authorization (EUA) for the treatment of COVID-19 by the US
Food and Drug Administration (FDA). Finally, given the
immunopathogenesis of severe COVID-19, there was early en-
thusiasm for selective IL-6 blockade with tocilizumab and/or
sarilumab and its potential benefit for patients with severe
COVID-19. However, multiple randomized trials and matched
cohort studies have yielded mixed results [29–31], including in
the SOT population [32]. Taken together, the data still suggest
that there may be a role for these agents as adjunctive therapy in
select patient populations with severe COVID-19—for example,
preliminary results from the Randomized, Embedded, Multi-fac-
torial, Adaptive Platform (REMAP-CAP) trial of tocilizumab
and sarilumab suggest a significant reduction in mortality among
patients treated with IL-6 antagonists compared to controls [33].

Immune Responses to Non-SARS-CoV-2
Coronaviruses in SOT Recipients

Human Coronaviruses

The burden of human coronavirus (HCoV) (e.g., HCoV
OC43, HCoV 229E, HCoV NL63, and HCoV HKU1)
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infection in the transplant population has been previously de-
scribed [34], but few studies have explored details of the im-
mune response to these common community-acquired respi-
ratory viruses. Multiple studies have identified an association
between symptomatic respiratory virus infection, including
those due to HCoV, and subsequent development of chronic
lung allograft dysfunction (CLAD) in lung transplant recipi-
ents [35–39]. In one of these studies, HCoVwas the only viral
agent found to be a time-dependent risk factor for CLAD
development [39], but this association is likely not unique to
coronaviruses. Hypothesizedmechanisms for HCoV (and oth-
er respiratory virus) infection and later development of CLAD
include T regulatory (Treg) cell dysregulation [40] or induc-
tion of exosomes containing lung-associated self-antigens
[41]. Notably, pre-existing immunity to endemic HCoV (as
measured by spike-protein–reactive T cells) has been found to
be cross-reactive with SARS-CoV-2 [15, 42, 43] and may
account for some of the heterogeneity in clinical outcomes
seen in COVID-19.

Zoonotic Coronaviruses

Only two cases of SARS (due to the virus now named SARS-
CoV-1) [44, 45] and three cases of Middle East respiratory
syndrome (MERS, due to MERS-CoV) [46, 47] have been
described in SOT recipients. While detailed immunologic as-
sessments were not conducted in these patients, they did ex-
hibit clinical features suggestive of an altered immune re-
sponse, including atypical presenting features [46, 47], vire-
mia [47], a high number of secondary cases consistent with
increased or prolonged viral shedding [44], and a high case
fatality rate (4 of 5 reported cases died).

Immune Responses to SARS-COV-2 in SOT
Recipients

Initial clues that the immune response to SARS-CoV-2 may
differ among SOT recipients came from observational cohort
studies that described clinical manifestations and virologic out-
comes that were different from the non-transplant population
[48]. For example, in the largest published series of transplant
recipients with COVID-19, investigators reported lower rates of
fever, higher rates of gastrointestinal symptoms, more signifi-
cant lymphopenia, and higher case fatality rates compared to
those described in the general population [3–7, 49]. Other stud-
ies reported high rates of SARS-CoV-2 RNAemia [50] and
prolonged shedding of viral RNA based on serial respiratory
tract sampling [51••, 52–54]. Like in the non-transplant popu-
lation, RNAemia has been associated with worse clinical out-
comes in SOT recipients [51••]. Finally, although detection of
subgenomic RNA in respiratory tract samples by nucleic acid
amplification does not translate into the presence of infectious

virus, at least one study found an association between “immu-
nocompromised” status (broadly defined by the investigators,
but a category which included SOT recipients) and culture pos-
itivity in the respiratory tract [55].

In addition to clinical and virologic data, several isolated case
reports and small (<5 patients) case series have also profiled the
immune response to SARS-CoV-2 in SOT recipients. However,
there are limited prospectively collected data directly comparing
immune responses to SARS-CoV-2 in the transplant and non-
transplant population. As a result, most conclusions about rela-
tive characteristics of inflammatorymarkers, cytokines, antibod-
ies, and lymphocyte subsets in transplant recipients are based on
comparisons made between studies, which may be challenging
to interpret and generalize because of differences in the study
populations (i.e., type of transplant, time since transplant, immu-
nosuppressive regimen, severity of COVID-19 illness), sam-
pling timepoints, and assay performance characteristics.

To provide the most comprehensive but meaningful syn-
thesis of the published data, we focused our review on studies
of transplant recipients that included five or more patients and
which reported any data on immunologic endpoints. We in-
cluded relevant findings from individual case studies or small-
er cohorts when they provided additional nuance to the overall
data (Table 1).

Innate Responses in Transplant Recipients

Most studies of transplant recipients with COVID-19 have
only reported data on non-specific markers of inflammation
(i.e., erythrocyte sedimentation rate, C-reactive protein, ferri-
tin, D-dimer, lactate dehydrogenase, and procalcitonin) and
IL-6 levels. No studies have conducted more detailed innate
immune profiling among SOT recipients that might provide
insight into subtle differences in the early inflammatory cas-
cade in this patient population or evidence of a compartmen-
talized response as has been observed in non-transplant pa-
tients. Based on the limited available data, it seems early re-
sponses to SARS-CoV-2 infection are similar between SOT
recipients and non-transplant patients. In studies that have
compared SOT recipients with carefully matched non-
transplant cohorts, levels of inflammatory markers and IL-6
are similar among hospitalized patients [8, 9, 10•, 62]. As in
the non-transplant population, the levels of these inflammato-
ry markers—specifically IL-6—correlated with disease sever-
ity in some studies [3, 56], but are imperfect predictors of
disease progression. Whether select SOT recipients might
benefit from combinations of proven or investigational immu-
nomodulators is an area of ongoing research [63].

Humoral Responses in Transplant Recipients

The available data on humoral responses to SARS-CoV-2 in
the transplant population come from case reports or small case
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series—which tend to be biased toward cases that failed to
seroconvert [64, 65], had delayed seroconversion [66, 67],
or had rapid loss of antibodies [68]—as well as seroprevalence
surveys conducted at individual transplant centers [57••,
69–71], or observational cohort studies of transplant recipients
with laboratory-confirmed COVID-19 [50, 51••, 58, 59••,
60••, 61••, 72].

Collectively, these data show that, similar to the non-
transplant population, transplant recipients can mount
SARS-CoV-2–specific antibodies within 1–2 weeks after the
onset of COVID-19 symptoms and these antibodies may be
durable for at least 2 months [51••, 58, 61••], and potentially
up to 4 to 6 months [59••, 72] post-infection. Furthermore, a
robust antibody response can be elicited regardless of illness
severity [51••, 58, 61••] (two small studies of six and 18 pa-
tients, respectively, did report a higher [54, 72] and more
durable [54] antibody response in patients who experienced
severe illness), including in the first few weeks after transplan-
tation and following asymptomatic infection.

Although these data provide reassurance regarding the po-
tential for SOT recipients to mount a humoral immune re-
sponse to SARS-CoV-2, they yield limited novel insight into
unique aspects of the humoral response in this patient popu-
lation, for several reasons: (1) Many studies only reported
qualitative results (e.g., positive or negative) which precludes
any comparison of the magnitude of the antibody response
with non-transplant patients; (2) most studies measured anti-
bodies at too few timepoints to derive meaningful conclusions
about antibody kinetics, which may differ in transplant recip-
ients; (3) studies utilized different antibody assays with vari-
able targets and performance characteristics, making it diffi-
cult to definitively distinguish cases from controls or to eval-
uate qualitative differences in the antibody response (i.e., most
studies measured anti-nucleocapsid rather than anti-receptor
binding domain (spike) antibodies, and the former may not be
neutralizing, and most studies measured antibodies using
enzyme-linked immunosorbent assay (ELISA) rather than
neutralization-based assays); (4) the number of patients with
detectable antibodies was often too small to analyze for asso-
ciations with clinically relevant baseline characteristics (such
as organ type, time from transplant, or induction and mainte-
nance immunosuppressive regimen); and (5) few studies di-
rectly compared transplant with non-transplant patients en-
rolled contemporaneously at the same site.

To date, only one study has directly compared humoral
immune responses to SARS-CoV-2 between transplant and
non-transplant recipients with and without COVID-19
[61••]. Using banked samples from uninfected kidney trans-
plant recipients as negative controls, this study of 18 kidney
transplant recipients with symptomatic COVID-19 found that
most patients exhibited broad activation of B cell subsets
(switched, activated, and memory) but not T follicular helper
(TFH) cells, as well as a robust anti-SARS-CoV-2

nucleocapsid IgM and IgG antibody response as measured
by ELISA. The authors observed similar responses in non-
transplant patients with COVID-19 admitted to the same cen-
ter. The investigators could not identify any differences in the
humoral response between transplant patients with mild, mod-
erate, or severe COVID-19 illness (based on a 7-point ordinal
scale), even though this has been observed in studies of non-
transplant patients. Additionally, withdrawal of the anti-
proliferative agent (e.g., mycophenolate) at the time of
COVID-19 diagnosis did not seem to impact the magnitude
of the antibody response—notably, the sample sizes in these
analyses may have been too small to detect any differences.
Finally, in three patients that underwent sampling at multiple
timepoints, there was a trend toward lower percentages of B
cell subsets (switched, activated, and memory) and antibody
levels by 2 months after symptom onset.

Cellular Responses in Transplant Recipients

Although multiple studies have described profound lympho-
penia among SOT recipients with COVID-19, we identified
only two studies that conducted a more detailed evaluation of
cellular immune responses to SARS-CoV-2 in this patient
population. Candon et al. [60••] measured the frequency of
SARS-CoV-2–reactive T cells using IFN-gamma enzyme-
linked immune absorbent spot (ELISpot) among kidney trans-
plant recipients with COVID-19—their cohort included five
patients with PCR-confirmed infection (all of whom had
moderate-severe disease and were hospitalized), six with
suspected infection (but who were PCR-negative, and five
of whom had mild disease and were managed in the ambula-
tory setting), as well as two non-transplant patients with end-
stage renal disease on hemodialysis with PCR-confirmed
moderate-severe COVID-19 that were used for comparison.

In this analysis, the kidney transplant patients with PCR-
confirmed COVID-19 displayed broadly reactive SARS-
CoV-2–specific CD4+ and CD8+ T cells from 2 to 6 weeks
after symptom onset, with frequencies similar to the non-
transplant patients on hemodialysis (as well as those reported
in the literature for non-transplant patients)—notably, all five
of the transplant recipients underwent reduction of immuno-
suppression at the time of diagnosis of COVID-19 [60••].
Interestingly, of the six transplant patients who tested negative
for SARS-CoV-2, none generated SARS-CoV-2–specific an-
tibodies, and three had no detectable SARS-CoV-2–reactive T
cells—five of these patients did not have their immunosup-
pression reduced at the time of diagnosis. These findings sug-
gest not only that at least some of the suspected cases in this
series did not, in fact, have COVID-19, but also that in the
three PCR-negative patients who did have low levels of
SARS-CoV-2–reactive T cells (but no antibodies), milder in-
fection (and consequent continuation of immunosuppressive
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therapy) may be associated with an attenuated immune
response.

Hartzell et al. [61••] assessed both the frequency and phe-
notype of SARS-CoV-2–reactive T cells in 18 kidney trans-
plant recipients with laboratory-confirmed COVID-19 and
compared these with banked peripheral blood mononuclear
cells (PBMCs) from uninfected transplant recipients as well
as non-transplant patients with and without COVID-19 en-
rolled contemporaneously at the same center. Like non-
transplant patients, the transplant patients with COVID-19
exhibited T lymphopenia, with a bias toward CD8+ T lympho-
penia. There was no emergence of exhausted, anergic, or se-
nescent T cell populations among the transplant patients, un-
like what has been observed in some studies of non-transplant
patients with severe COVID-19. The investigators could not
identify any differences in CD4+ or CD8+ T cell responses
between transplant patients with mild, moderate, or severe
COVID-19 illness (based on a 7-point ordinal scale), though
the sample size may have been inadequate to detect any asso-
ciation. This study was too small to provide insights on the
durability of the T cell response or the induction of T cell
memory in the transplant population, both of which are likely
relevant to long-term protective immunity and the risk of re-
infection or recrudescent infection.

Data Synthesis

Overall, as in the non-transplant population, in SOT recipi-
ents, SARS-CoV-2 infection triggers a broad array of pro- and
anti-inflammatory cytokines, and the same innate immune
responses that have been associated with severe disease in
non-transplant patients have also been identified in transplant
recipients. However, this is not a consistent observation and,
in some studies, the degree of overlap of these markers among
those with mild, moderate, and severe (and fatal) disease
makes it difficult to draw any substantive conclusions about
their individual prognostic value [73].

Similarly, based on very limited data, transplant recipients
appear to be able to mount humoral and cellular responses of
similar magnitude to non-transplant patients. However, larger
and more detailed analyses will likely be needed to detect
qualitative differences (for example, in kinetics or breadth of
response) that may underlie the differences in clinical out-
comes that have been observed among transplant recipients
with COVID-19 in some studies. Ultimately, in the absence of
a systematic (i.e., stratified by organ type, time since trans-
plant, immunosuppressive regimen) and comprehensive (i.e.,
multiplex panels, immunophenotyping, systems biological
approaches) assessment of immune responses in this patient
population, we can draw limited meaningful conclusions
about differences in the immune response to SARS-CoV-2
between SOT recipients and the general population.

Implications for SARS-CoV-2 Vaccines
in Transplant Recipients

Vaccine Platforms and Transplantation

A number of vaccine platforms are being utilized to develop
vaccines against SARS-CoV-2 [12•]. In the absence of a spe-
cific signature of the immune response to SARS-CoV-2 that is
unique to transplant recipients, or an immunologic correlate of
protection against COVID-19, it is difficult to devise a tailored
vaccination strategy for SOT recipients [12•, 74]. Experience
with licensed vaccines has shown that these patients mount
less robust immune responses to vaccines compared with non-
transplant patients regardless of vaccine type [75], though the
specific impact of each component of transplant immunosup-
pression on vaccine immunogenicity is poorly understood.
Nevertheless, these observations have implications for the an-
ticipated immunogenicity and efficacy of the various SARS-
CoV-2 vaccine platforms in this population (Table 2).

As of January 2021, two messenger RNA (mRNA) vac-
cines (mRNA-1273 and BNT162b2) have been given EUA
by the US FDA. In phase III trials, these vaccines were more
than 90% effective at preventing COVID-19, across all age
groups and in pre-specified subgroups at high risk of severe
disease [80, 81]. These trials specifically excluded patients
receiving chronic immunosuppressive drug therapy (i.e.,
SOT recipients). Notably, prior to the COVID-19 vaccine
studies, mRNA (and related DNA) vaccine technologies had
been demonstrated to be immunogenic in non-transplanted
individuals, but there were no pre-pandemic data on mRNA-
based vaccines in SOT recipients, and only limited data on the
closely related DNA vaccine platform in this patient popula-
tion. A cytomegalovirus DNA vaccine was demonstrated to
be immunogenic in allogeneic stem cell transplant recipients
[82], but not kidney transplant recipients [77].

Multiple protein subunit vaccines against SARS-CoV-2 are
also currently in clinical trials [12•]. Like the studies of mRNA
vaccines, some, but not all of these trials are excluding pa-
tients receiving chronic immunosuppressive therapy. The
principal advantages of these vaccines will be their simpler
dosing schedules, storage requirements, scalability, and po-
tential impact on disease transmission. In the absence of an
adjuvant, subunit vaccines are known to be less immunogenic
in SOT recipients [75], but many of the SARS-CoV-2 protein
subunit vaccines currently under investigation are adjuvanted
products.

Finally, several vectored vaccines using either human or
chimpanzee adenovirus vectors have been demonstrated to
be immunogenic and effective in non-transplant patients in
phase III trials [83] and have been granted emergency use
authorization in some countries. Similar to other live vaccines,
live replicating vectored vaccines would likely not
be recommended for use in SOT recipients and other
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immunocompromised hosts, though high-quality safety data
for live vaccines in these patient populations are limited [84].

SARS-CoV-2 Vaccine Safety and Alloimmunity

One theoretical concern about the use of SARS-CoV-2 vac-
cines in transplant recipients is the risk of inducing
alloimmunity and potentially even allograft rejection. Based
on large observational cohort studies of transplant patients
with COVID-19, there has not yet been any signal linking
natural SARS-CoV-2 infection with subsequent rejection, in-
cluding in lung transplant recipients—whether there will be an
association with late development of CLAD has yet to be
seen. Vaccines could induce alloimmunity by triggering an
immune response that is cross-reactive with the allograft, by
stimulating previously alloreactive immune cells, or through
the non-specific stimulatory effects of adjuvants that could
lead to de novo alloimmunity. Indeed, three groups of inves-
tigators described de novo donor-specific antibody (DSA) de-
tection among separate cohorts of kidney and heart transplant
recipients that had received AS03-adjuvanted 2009 H1N1
pandemic influenza vaccines [85–87].

Importantly, the association between vaccines and
alloimmunity and rejection is not a consistent observation

(Table 2). Despite their reactogenicity, in the trials of both
mRNA-1273 and BNT162b2, there were no safety signals to
suggest a heightened risk of autoimmune phenomena. In a na-
tional survey of 187 SOT recipients (64% of whom were front-
line healthcare workers) who had received a single dose of
either mRNA-1273 or BNT162b2, there were no self-reported
episodes of rejection or autoimmune phenomena [76].
Similarly, in a systematic review of vaccine studies in SOT
recipients, Mulley et al. [79] identified no increased risk of
alloimmunity or allograft rejection following routine vaccines,
though most of the studies included in this analysis focused on
influenza vaccine. A systematic review of safety data specifi-
cally focused on AS03-adjuvanted H1N1 influenza vaccines in
transplant recipients found no signal to suggest an increased
risk of allograft rejection associated with receipt of this adjuvant
[88]. In smaller studies of other investigational and licensed
adjuvanted vaccines, no increased rates of alloimmunity or re-
jection have been reported, including an experimental
monophosphoryl lipid A (MPL)-adjuvanted hepatitis B vaccine
in kidney and liver transplant recipients [89–91], a licensed
MF59-adjuvanted influenza vaccine (FluAd®) [92] and inves-
tigational CMV vaccine in kidney transplant recipients [93], or
the recently licensed recombinant herpes zoster subunit vaccine
(AS01B adjuvanted) in kidney transplant recipients [94].

Table 2 Vaccine platforms used in SARS-CoV-2 vaccines (tested in phase III trials as of January 2021) and published data on immunogenicity and
alloimmunity in SOT recipients

Vaccine platform Example products against
SARS-CoV-2

Evidence of immunogenicity of this vaccine
platform in SOT recipients

Evidence on alloimmunity related to this
vaccine platform in SOT recipients

mRNA mRNA-1273
BNT162b2
CVnCoV

No data No self-reported episodes of rejection in a
national survey of 187 SOT recipients
after a single dose of mRNA-1273 or
BNT162b2 [76]

DNA AG0302-COVID19
ZyCoV-D

ASP0113, a DNA-based cytomegalovirus
vaccine (encoding glycoprotein B and
phosphoprotein 65), was not immunogenic in
kidney transplant recipients [77]

No difference in rates of rejection between
ASP0113 and placebo [77]

Nanoparticle NVX-CoV2373 No data No data

Virus-like particle CoVLP Suboptimal immunogenicity of quadrivalent
human papillomavirus (HPV) vaccine in SOT
recipients [78]

No data

Protein subunit or
peptide

ZF2001
EpiVacCorona
SCB-2019

For most routine protein subunit or inactivated
vaccines, SOT recipients generate less robust
immune responses compared with
non-transplant patients

Reviewed in [75]

No evidence of alloimmunity associated with
routine vaccines

Reviewed in [79]
Inactivated virus BBIBP-CorV

CoronaVac
BBV152 A, B, C
Inactivated WIV04
Inactivated KMS-1
QazCovid-in

Adenovirus (Ad)
vectored

Gam-Covid-Vac
Ad26.COV2.S
Ad5CoV

No data No data

Chimpanzee Ad
vectored

ChAdOx1/AZD1222 No data No data
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Together, these data suggest that any concerns about the
theoretical risk of alloimmunity related to SARS-CoV-2 vac-
cines must be carefully weighed against the very real risks of
natural SARS-CoV-2 infection. The most recently published
guidance from the American Society of Transplantation
(AST) supports the use of SARS-CoV-2 vaccines in SOT
recipients in regions where transmission continues at a high
level [95].

Conclusions and Future Directions

Since the identification of SARS-CoV-2 at the beginning of
2020, much has been learned about the complex
immunopathogenesis of COVID-19. Although SOT recipi-
ents and other hosts with altered immunity may exhibit an
altered clinical phenotype compared with the general popula-
tion (e.g., more atypical manifestations, more severe disease,
increased viral shedding), the precise immunologic basis for
these differences has yet to be characterized.

Given the ongoing nature of the pandemic, there continues
to be an opportunity to more rigorously and systematically
assess the immune response to SARS-CoV-2 in SOT recipi-
ents. This includes more detailed analyses of both the magni-
tude and quality of the immune response to both natural
SARS-CoV-2 infection and vaccination, including kinetics,
breadth, and durability, across a wider spectrum of organ re-
cipients and immunosuppressive regimens. Such data could
yield valuable insights that would guide appropriate manage-
ment of immunosuppression, use of immunomodulatory
agents, and vaccination strategies for SARS-CoV-2 as well
as other typical and emerging pathogens in this vulnerable
patient population.
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