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Head and neck squamous cell carcinomas (HNSCCs) are the sixth most common cancer in the world. Despite significant
advances in the treatment modalities involving surgery, radiotherapy, and concomitant chemoradiotherapy, the 5-year survival
rate remained below 50% for the past 30 years. The worse prognosis of these cancers must certainly be link to the fact that
HNSCCs strongly influence the host immune system. We present a critical review of our understanding of the HNSCC escape
to the antitumor immune response such as a downregulation of HLA class I and/or components of APM. Antitumor responses
of HNSCC patients are compromised in the presence of functional defects or apoptosis of T-cells, both circulating and tumor-
infiltrating. Langerhans cells are increased in the first steps of the carcinogenesis but decreased in invasive carcinomas. The
accumulation of macrophages in the peritumoral areas seems to play a protumoral role by secreting VEGF and stimulating the
neoangiogenesis.

1. Epidemiology, Treatment, and Prognosis

Head and neck squamous cell carcinomas (HNSCCs) remain
a significant cause of morbidity worldwide, with approx-
imately 650,000 new cases diagnosed each year [1, 2].
HNSCCs constitute a collection of diseases that, although
united by location and histology, can become very different
types of tumors that differ in pathogenesis, biology, sublo-
cation and treatment and that can affect quality of life,
including survival [1, 2]. HNSCC patients associated with
low clinical stages (stages I and II) have similar survival rates,
with a 5-year survival between 70% and 90%, independent
of the sublocation [3]. In contrast, HNSCC patients with
advanced clinical stages (stages III and IV) display completely
different survival rates depending on the histological type
of the tumor and its sublocation [3, 4]. The treatment of
HNSCC patients with advanced stages of disease combines
surgery, radiation oncology, medical oncology, medical
imaging, and clinical pathology [1–4]. This type of collabo-
rative medical approach was initiated as early as 1970, when

Fletcher and Evers reported the first convincing evidence of
the benefits of combining radiotherapy with surgery [5]. In
this context, cisplatin was investigated in the treatment of
HNSCC in the early 1970s, and from the late 1970s to the
early 1990s, promising results were obtained with the use of
various combinations of postoperative chemotherapy with
radiotherapy in randomized [6] and nonrandomized studies
[7]. In the early 2000s, the Radiation Therapy Oncology
Group [4] and the European Organization for Research
and Treatment of Cancer (EORTC) [8] conducted two
randomized studies to test the relative efficacy of concurrent
postoperative cisplatin administration and radiotherapy in
the treatment of HNSCC. These two studies demonstrated
that local control of the disease was significantly higher
in the combined therapy group than in the group that
received radiotherapy alone [4, 8]. Unfortunately, these
combined treatments were frequently associated with adverse
side effects. Although significant progress has been observed
after combined treatments, a number of statements currently
remain valid concerning HNSCCs: (i) almost two-thirds of
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HNSCC patients have advanced forms (stages III and IV)
of the disease at diagnosis, (ii) 50% of the patients die of
HNSCC within the two years following initial diagnosis, and
(iii) every year, 5% of the patients develop additional primary
tumors. Therefore, novel approaches seem to be required
to provide head and neck oncologists with a more effective
armamentarium against this challenging disease [9, 10].

2. Immune System and Cancers

In the 1950s, Burnet and Thomas proposed the concept of
immune surveillance of cancer. This physiological function
would have the ability to recognize tumor cells as abnormal
cells and to destroy them before they develop into dangerous,
detectable tumors [11]. Tumor growth, invasion, and metas-
tasis are important aspects of the tumor immune escape.
The different mechanisms that are developed by tumor cells
are a defect of expression of antigens on the tumor cell
surface; a loss or a reduction of the expression of MHC
(major histocompatibility complex) class 1 molecules, a loss
of expression of costimulatory molecules, the production of
immunosuppressive molecules such as transforming growth
factor (TGF)-β, prostaglandin (PG) E2 and adenosine, or of
cytokines such as interleukin (IL)-6 and IL-10, the resistance
to apoptosis, and/or the expression of Fas ligand (FasL),
which leads to the death of tumor-infiltrating lymphocytes
(TILs) [12–15] (Figure 1).

Moreover, tumor cells recruit macrophages called tumor
associated macrophages (TAMs) by secreting the colony
stimulating factor (CSF-1), the chemokine ligand 2, 3, 4, 5,
and 8 (CCL2, 3, 4, 5, and 8) and the vascular endothelial
growth factor (VEGF) [16–18]. TAMs constitute the major
inflammatory component of tumor microenvironment [19–
22]. Their functions within the tumor site are various and
sometimes paradoxical. Indeed, according to the environ-
mental stimuli, macrophages present two different pheno-
types. Macrophages of the M1 phenotype kill pathogens
and promote the activation of cytotoxic CD8+ T cells and
the differentiation of naı̈ve CD4+ T cells into Th1 effector
cells and Th17 cells [17, 18, 23]. M2 macrophages stimulate
CD4+ Th2 cells and regulatory T cell differentiation and
can promote angiogenesis and tissue remodeling [17, 18,
23] (Figure 1). Multiple studies have shown a correlation
between a large number of macrophages in the tumor
microenvironment and a worse prognosis. TAMs, therefore,
exercise different protumor functions associated with the M2
phenotype [22, 23].

During tumor initiation, TAMs create a favorable envi-
ronment for tumor growth by secreting epidermal growth
factor (EGF), platelet-derived growth factor (PDGF), TGF-
β, IL-6, IL-1, and tumor necrosis factor (TNF)-α. In hypoxic
areas, TAMs stimulate angiogenesis (by secreting several
factors, such as TGF-β, VEGF, granulocyte macrophage
(GM)-CSF, TNF-α, IL-1, IL-6, and IL-8), promote tumor
cell migration and invasion (via matrix metalloproteinases
(MMPs), TNF-α, and IL-1) and induce immunosuppression
(via TGF-β, PGE2, and IL-10). A subpopulation of TAMs,
which are associated with factors such as EGF, is able to
promote metastasis by guiding tumor cells in the stroma

toward blood vessels, where they then escape into the
circulation [16–18, 24] (Figure 1). On the other hand, other
studies have shown that TAMs could also be correlated
with a good prognosis. TAMs, therefore, exercise antitumor
functions linked to the M1 phenotype [25–29].

In a similar way, CD4+ T cells can also contribute to
tumor destruction or facilitate its development. Among the
four subpopulations of naı̈ve CD4+ T cells, type 1 CD4+

T cells (Th1) facilitate tumor rejection by assisting in the
function of cytotoxic CD8+ T cells whereas type 2 CD4+

T cells (Th2) promote antibody production by B cells by
secreting cytokines [30] (Figure 1). CD4+ Th17 cells, by
producing IL-17, stimulate the production of cytokines and
chemokines, promoting inflammation [31] (Figure 1). Sev-
eral studies have shown that CD4+ T regulatory cells (Tregs)
promote tumor progression by inhibiting the functions of T
cells and natural killer (NK) cells [32, 33] (Figure 1) and that
their accumulation is associated with a worse prognosis [34].
In contrast, Salama et al. have shown that the presence of
Tregs is associated with a better survival rate [35].

Myeloid-derived suppressor cells (MDSCs), which are
induced by VEGF, GM-CSF, TGF-β, IL-6, PGE2, and
cyclooxygenase (COX)-2, are also implicated in tumor
progression by inhibiting the actions of CD4+ and CD8+

T cells (by the production of arginase and reactive oxygen
species (ROS)) [30], by inducing Tregs (through IL-10 and
INF-γ-dependent process) [36]. They also interact with
macrophages inducing a shift of the immunity towards a
type 2 phenotype by increasing the secretion of IL-10 and
decreasing the secretion of IL-12 [37] (Figure 1).

3. Immune System and Head and Neck Cancers

It appears that the origin of head and neck cancer is linked
to environmental carcinogens (tobacco, alcohol) whereas
tumor progression could be linked to a failure of the immune
system to fight against cancer. In addition to escaping the
immune system, some head and neck cancers can also
corrupt the antitumor response via several mechanisms [38].
Strategies employed by head and neck cancers are varied
and can target the antigen-processing machinery (APM)
via the downregulation or a loss of expression of human
leukocyte antigen (HLA) class I molecules and/or of other
components of the APM [39, 40]. Although effective anti-
tumor immune responses likely involve many components
of the immune system, T-cells continue to be considered as
the critical immune cells involved in antitumor immunity.
The development of HNSCCs is strongly influenced by
the host immune system [38, 41–45]. Recent evidence
suggests that the antitumor responses of HNSCC patients
are compromised in the presence of functional defects or
apoptosis of T-cells, both circulating and tumor-infiltrating
[41–45]. Tumor-derived factors or factors produced by
normal cells in a local microenvironment favor tumors and
disable TIL. In fact, TILs look like activated T-cells but are
functionally compromised [38]. Functional assays with TILs
isolated from the tumor bed have identified a number of
defects, including (i) absent (or low) expression of the CD3
zeta chain (CD3ζ), which is the key signaling molecule in
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Figure 1: Immunosuppressive mechanisms in the tumor microenvironment: several mechanisms are developed by cancerous cells to escape
to the immune system such as a loss or a reduction of the expression of MHC class 1 molecules and costimulatory molecules, the expression
of FasL to induce apoptosis of tumor-infiltrating lymphocytes and the production of immunosuppressive molecules such as TGF-β, PGE2,
IL-6, IL-10, and adenosine. Among the subpopulations of naı̈ve CD4+ T cells, CD4+ Th17 T cells promote inflammation by secreting IL-17
whereas CD4+ Th2 T cells promote antibody production by B cells. Tregs promote tumor progression by inhibiting the functions of CD4+

and CD8+ T cells and NK cells. TAMs M2 phenotype induce the expression of CD4+ Th2 T cell and Tregs. Moreover, M2 phenotype promote
growth tumor (EGF, PDGF, TGF-β, IL-6, IL-1, and TNF-α), angiogenesis (TGF-β, VEGF, GM-CSF, TGF-α, IL-1, IL-6, and IL-8), invasion
(MMPs, TNF-α, IL-1), immunosuppression (TGF-β, PGE2, and IL-10) and metastasis. MDSCs induce Treg, secrete IL-10, and inhibit CD4+

and CD8+ T cells.

the T-cell receptor pathway [38], (ii) decreased proliferation
in response to mitogens or IL-2 [38], (iii) the inability to
kill tumor cell targets [44, 45], (iv) an imbalance in the
cytokine profile, with the striking absence of IL-2 and/or
IFN-γ production [46], and (v) evidence of pronounced
apoptotic features in a considerable proportion of TILs [38,
47]. Moreover, immune cell dysfunction in HNSCC patients
appears to extend far beyond the tumor microenvironment
because both functional defects and massive lymphocyte
death have also been observed in the peripheral circulation
of patients with advanced HNSCC [48]. In addition, HNSCC
cells that produce proinflammatory cytokines autonomously
are endowed with an advantage with respect to survival and
growth [49]. HNSCC cells also produce high quantities of

TGF-β1, which reduces the expression of NK cell receptor
NKG2D and CD16 and inhibits the biological functions of
NK cells [50]. The induction of T-cell immunity following
the vaccination of an orthotopic murine HNSCC model with
a recombinant vaccinia virus expressing IL-2 induces tumor-
specific CD8+ cytotoxic T cell (CTL) and CD4+ Th1-type
helper T cells [51], which are targets of the cytocidal effects
of galectin-1 secreted by cancer cells [52].

Another mechanism employed by the tumor to escape
antitumor immunity is the immunosuppressive action of
Tregs. Various studies have demonstrated an increased
abundance of Tregs in the TILs and of peripheral blood
mononuclear cells in head and neck cancer patients [53]
(Figure 2). Head and neck cancers can also directly inhibit
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the immune response by producing soluble mediators such
as VEGF, PGE2, TGF-β, IL-6, and IL-10 [40, 54]. Finally,
the number of TAMs seems to be correlated to the patient
prognosis, suggesting possible protumoral functions of these
cells in head and neck cancers [55] (Figure 2).

4. Disruption of the Antigen-Presenting
Machinery in Head and Neck Cancers

HLAs are proteins of the MHC in humans and are present
at the surface of antigen-presenting cells (APCs). T lympho-
cytes recognize antigens that are linked to these molecules.
The APM is composed of β subunits of the proteolytic
delta and MB1, inducible proteasome β-type subunits LMP2,
LMP7, and LMP10, peptide transporters TAP1 and TAP2,
which are essential for introducing peptides into the endo-
plasmic reticulum from the cytosol, and the endoplasmic
reticulum chaperones calnexin, calreticulin, ERp57, and
tapasin. All of these components play an important role
in the generation of antigenic peptides, their translocation
into the endoplasmic reticulum and loading of the β2-
microglobulin-associated MHC class I H chain with pep-
tides. These interactions induce the trafficking of MHC
class I molecules to the cell surface and the presentation of
peptides to CD8+ T lymphocytes [56, 57].

As mentioned previously, downregulation or loss of the
expression of HLA class I molecules and/or of components
of the APM is one of the strategies used by tumor cells to
escape the immune system. Using immunohistochemistry,
Ogino and co-authors observed a downregulation of HLA
class I antigen and of most APM components in a clinical
series of 63 primary laryngeal squamous cell carcinomas.
Moreover, the downregulation of HLA class I antigen and of
LMP2 (a component of the APM) associated with low CD8+

T cell infiltration were significantly associated with lower
survival rates in these patients [58]. These observations were
confirmed by Grandis et al., who described the loss of HLA
class I protein expression in 50% of HNSCCs. This finding
was also correlated with the presence of regional lymph node
metastases [59]. Oral squamous cell carcinoma (OSCC)-
derived gangliosides induce the downregulation of several
MHC class I APM components, suggesting that this is one
of the mechanisms used by the tumor to induce alterations
in APM components [60].

5. Dendritic Cells and Head and Neck Cancers

5.1. Dendritic Cells Functions. Dendritic cells (DCs) are a
family of specialized APCs and are essential mediators of
immunity and tolerance [61, 62]. DCs are derived from
the bone marrow and may have a myeloid origin (myeloid
dendritic cells, MDCs) or a lymphoid origin (plasmacytoid
dendritic cells, PDCs). MDCs are divided into two groups:
(i) the Langerhans cells present in the epidermis and in
the mucosae of the upper aerodigestive tract and (ii) the
dermal/interstitial MDCs located in the dermis [63]. PDCs
are found in the blood and in the T centers of lymphoid
organs (thymus, tonsils, spleen, lymph nodes, etc.) [64]. In

nonlymphoid tissues (peripheral tissues such as skin), DCs
are immature and characterized by a high capacity for anti-
gen capture and processing. The presence of inflammatory
mediators (IL-1, TNF-α, and IL-12) and microbial products
promotes the maturation of DCs that have lost the ability
to capture antigens and have acquired an increased capacity
to present antigens and to stimulate T cells. Moreover,
mature DCs upregulate costimulatory molecules such as
CD40, CD80, and CD86 and cytokines such as IL-1, IL-12,
and TNF-α. Mature DCs then migrate out of nonlymphoid
tissues into the blood and into secondary lymphoid organs,
where they present antigens captured in peripheral tissues
to T lymphocytes and stimulate T cell differentiation in
effector cells (such as cytotoxic CD8+ T cells that are able
to kill tumor cells). For these reasons, DCs can be viewed
as the sentinels of the immune system [61, 65]. In contrast,
immunosuppressive agents such as IL-10 and TGF-β convert
immature DCs into tolerogenic DCs that can induce antigen-
specific T-cell tolerance via several mechanisms, such as acti-
vation of Tregs, silencing of differentiated antigen-specific T
cell tolerance, and differentiation of naı̈ve CD4+ T cells into
Tregs [66–68]. Three main immunohistochemical markers
are used to detect DCs: CD1a and S-100 for immature DCs
and CD83 for mature DCs.

5.2. Langerhans Cells and Head and Neck Cancers. Langer-
hans cells (LCs) are dendritic APCs located within the
stratified squamous epithelium of the skin and mucosa of
the upper aerodigestive tract. LCs are found in the suprabasal
layers and constitute 2–8% of the intraepithelial cell content
(Figure 2). Although observed in these epithelia, it is now
clear that LCs are a dynamic population that migrates from
the bone marrow to the stratified squamous epithelium.
Regarding their roles, LCs intercept and bind new antigens
detected in the squamous epithelium. Subsequently, they
migrate back to the regional lymph nodes and assume
the features of interdigitating dendritic cells, where they
initiate a primary immune response by stimulating naı̈ve
T-lymphocytes. Later, when LCs meet recall antigens, they
can present antigens to memory T-lymphocytes circulating
through the extranodal skin and mucosa-associated lym-
phoid tissue and stimulate a secondary immune response
within the mucosa [69]. Several molecules are sufficiently
specific for use as LC immunohistochemical markers, such
as CD1a, S100 protein and CD207.

Tobacco and alcohol consumption, which are well-
established risk factors for abnormal oral mucosal changes
(metaplasia and dysplasia) and oral squamous cell carci-
noma, seem to be capable of stimulating mucosal LCs. Inter-
estingly, these exposures are associated with an increased
number of oral mucosal LCs (OMLCs) [69] (Figure 2).
Indeed, a greater number of CD1a+ OMLCs has been
observed in smokers at sites that are often affected by squa-
mous cell carcinoma, such as the lips and the lateral border of
the tongue [70]. Similarly, an increase in HLA-DR+ OMLCs
in the lip has been observed [71] whereas smokeless tobacco
(chewing tobacco and preparations that are absorbed by the
oral or nasal mucosae (snuff)) has the opposite effect [72].
LC numbers were reportedly not associated with alcohol
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Figure 2: Description of immunosuppressive mechanisms during the head and neck tumor progression: in the normal epithelia of the
upper aerodigestive tracts, LCs are present in the suprabasal layers. When mucosae of these areas are exposed to tobacco, the number of
LCs increases whereas these cells decrease in invasive carcinomas. The mature DCs are prominent in the peritumoral area and correlated
positively with the expression of VEGF. DCs are also more abundant in patients with metastasis. A higher level of TAM is observed in
HNSCCs, and these cells constitute a source of VEGF which play a crucial role in angiogenesis. HNSCCs can induce the apoptosis of CD8+

T cells using the mitochondrial and/or Fas/FasL pathways. Tregs can induce apoptosis of CD8+ T cells and inhibition of the proliferation of
CD4+ T cells.

consumption, age, or sex, but alcohol consumption may act
synergistically with tobacco use [71]. Recently, Boyle and co-
authors estimated the effect of tobacco on the human oral
mucosal transcriptome and demonstrated an increase of LCs
in the oral mucosa of smokers [73].

The presence of S100+ LC in normal mucosa, prema-
lignant and malignant lesions of the oral mucosa has been
investigated by Girod et al. [74]. Their results showed a
greater number of S100+ LCs in benign lesions than in
normal mucosa. A higher LC population was also observed in
the epithelium of vocal cord polyps in comparison with the
normal vocal cord mucosa [75]. On the other hand, neoplas-
tic lesions exhibited fewer S100+ cells than did benign lesions

[74] (Figure 2). In a series of oral squamous cell carcinoma,a
decrease of S100+ cells was shown in high-grade compared to
low-grade tumors [76] (Figure 2). In laryngeal carcinomas,
a strong infiltration of LCs was significantly associated
with less cervical lymph node metastasis, longer disease-
free survival, less locoregional recurrence and less clinical
N-positivity [77]. Other studies dedicated to nasopharynx
and larynx carcinomas have shown that a greater infiltration
of LCs is correlated with a better prognosis [78, 79].
Moreover, the number of S100+ LCs decreased with the loss
of tumoral differentiation [74]. These observations show that
LC infiltration is prognostically important in head and neck
cancers, confirming that these cells may act as important
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immune factors that function as APCs in the defense against
HNSCCs.

5.3. Myeloid Dendritic Cells and Head and Neck Cancers.
HNSCCs seem have a significant impact on dendritic cells
(DCs). In this context, Li et al. have observed a larger number
of DCs in nonmetastatic lymph nodes than in metastatic
lymph nodes in a series of hypopharyngeal and laryngeal
carcinomas. The immature DC marker CD1a was especially
present in the cancer “nest” whereas the mature DC marker
CD83 was prominent in the peritumor area [80] (Figure 2).

The relationship between the expression of VEGF, an
angiogenic factor released by tumor cells, and DC infil-
tration, which plays an important role in immune defense
against tumors, remains unclear. Therefore, several studies
have analyzed the expression of VEGF isoforms in tumors.
VEGF-A and VEGF-C were increased in the tumor tissue
in comparison with the normal epithelium, and VEGF-D
was decreased in the presence of cervical nodal metastasis.
VEGF-A expression correlated with microvessel density,
disease progression, a reduced number of mature DCs and
an increased number of immature DCs. VEGF-A is involved
in angiogenesis, tumor progression and immunosuppression
[81]. Another study showed the strong expression of VEGF
in oral squamous cell carcinomas from patients with regional
lymph node metastasis, but in that case, the expression of
VEGF was correlated inversely with the number of CD1a+

immature DCs and positively with the number of CD83+

mature DCs (Figure 2). The authors suggested that VEGF
could inhibit the differentiation of CD1a+ immature DCs
from progenitor cells and increase the levels of dysfunctional
CD83+ mature DCs [82]. Moreover, in oral SCCs, Kikuchi
and co-authors observed a greater number of S100+ and
CD1a+ immature DCs in adjacent tissue and regional lymph
nodes in patients without metastasis; in contrast, CD83+

mature DCs were more abundant in patients with metastasis
[83] (Figure 2).

In lip SCCs, a higher peritumoral DC density (detected
using anti-S100 antibody) was associated with a low rate
of metastasis whereas a lower peritumoral DC density
correlated positively with TILs. In contrast, the intratumoral
DC density did not correlate with metastasis [84].

Tumor cells can modulate the expression of TLRs present
on the surface of immune cells [85]. Frenzel et al. analyzed
the influence of HNSCC on the TLR expression of MDCs
originating from the peripheral blood. MDCs expressed all
TLRs except TLR4, -9, and -7 demonstrated the strongest
expression. This finding confirms that the alteration of
TLR expression is an important tumor-promoting event in
HNSCC progression [86].

HNSCCs can also influence the circulating MDC and
PDC populations. So, the proportion of circulating PDCs
(LIN-DR+123+) did not differ considerably in patients
suffering from HNSCC compared with the healthy sub-
jects. However, the number of circulating MDCs (LIN-
DR+CD11c+) was significantly lower in patients with
HNSCC. In a significant number of patients, the circulating
MDC population increased after removal of the tumor,
which highlights that this reduction was due to the presence

of tumor and was also reversible. This deficiency in circu-
lating MDCs could contribute to tumor immune escape in
HNSCC patients [87].

5.4. Plasmacytoid Dendritic Cells and Head and Neck Cancers.
PDCs produce large amounts of interferon (IFN)-α in
response to viruses, and it seems that their antigen capture
potential is less developed compared to other APC [88].
Hartmann et al. studied the presence and function of PDCs
in HNSCC and showed that PDCs infiltrated the tumor
tissue. They used oligonucleotides containing CpG motifs
known as microbial stimuli for PDCs (recognized via Toll-
like receptor (TLR) 9) to study the functional capacity of
PDCs to produce IFN-α. They noticed that HNSCC PDCs
decreased IFN-α production in response to CpG motifs. The
authors hypothesized that this decreased IFN-α production
may be due to a tumor-induced downregulation of TLR9
expression. To test this hypothesis, they determined the levels
of TLRs 1–10 in PDCs from peripheral blood in the presence
or absence of the supernatant from the HNSCC cell line PCI-
1. In the absence of the PCI-1 supernatant, PDCs expressed
high levels of TLR1, -7, and -9 and low levels of TLR6 and
-10, whereas the other TLRs were at the detection limit.
However, in the presence of the PCI-1 supernatant, all of
these TLRs showed decreased expression levels. Therefore,
the downregulation of TLR9 induced by HNSCC cells is
likely one mechanism that contributes to the impaired PDC
function [89].

PGE2 and TGF-β are two immunosuppressive factors
found in tumor tissue. A recent study showed that TGF-β
synergized with PGE2 inhibited IFN-α and tumor necrosis
factor (TNF) production of TLR7- and TLR9-stimulated
PDCs [90].

6. Macrophages and Head and Neck Cancers

Macrophages migrate from the bone marrow as imma-
ture monocytes, circulate in the bloodstream and finally
migrate into tissues by extravasation to undergo differ-
entiation into resident macrophages, including osteoclasts
in the bone, alveolar macrophages in the lung, histiocytes
in the connective tissue, microglia in the neural tissue,
mesangial cells in the kidney, and Kupffer cells in the
liver. Macrophages participate in the innate and adaptive
immune systems and are critical mediators of inflammatory
processes. They have several functions, including antigen
presentation, target cell cytotoxicity, removal of debris and
tissue remodeling, regulation of inflammation, induction of
immunity, thrombosis, and various forms of endocytosis [18,
23, 91]. The main marker used in immunohistochemistry to
detect macrophages of both the M1 and M2 phenotypes is
CD68.

Several studies have suggested the involvement of tumor-
associated macrophages (TAMs) in angiogenesis and tumor
progression of HNSCCs. In a clinical series of oral carci-
nomas, the number of TAMs (detected by immunohisto-
chemistry using CD68) is higher in carcinomas. A significant
association between the expression of TAMs and stages of
invasion, intratumoral microvessel density, and angiogenic
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factors such as VEGF was also observed (Figure 2) [92].
The hypothesis of the involvement of TAMs in tumoral
progression was also issued during an analysis of the
expression of cell cycle (cyclin E and p53) and proliferation
markers (Ki67) as well as macrophage infiltration in a series
of HNSCCs. In general, weak expression of Ki67, cyclin E,
and p53 is associated with a better prognosis. Additionally, a
direct correlation between the macrophage infiltration and
the tumor proliferation index was noted, which suggested
that the number of TAMs is functionally linked to tumor
progression [93].

Extravascular fibrin deposits are frequently observed in
the tumoral and peritumoral tissue and are involved in
tumoral growth. In laryngeal and hypopharyngeal carci-
nomas, the accumulation of macrophages (detected using
a Ki-M7 monoclonal antibody) was observed in areas of
fibrin deposition, which suggests that these macrophages
participate in the stabilization of intratumoral fibrin and
facilitate tumor matrix generation and angiogenesis [94].
It is currently well accepted that the growth and spread
of solid/malignant tumors require angiogenesis, which is
described as the formation of new blood vessels in the
tumor microenvironment. VEGF is a secreted endothelial
cell-specific growth factor and is one of the most important
factors in angiogenesis [95, 96]. Several studies have shown
that apart from tumor cells, macrophages constitute a source
of VEGF in carcinomas, which supports the hypothesis that
macrophages play a role in tumoral formation by contribut-
ing to neovascularization [95–97] (Figure 2). Moreover, a
paracrine angiogenic loop was also discovered between
HNSCCs and macrophages. In fact, HNSCCs could attract
macrophages by secreting MCP-1 and TGF-β1. Following
activation, macrophages secrete VEGF and IL-8, but they also
secrete TNF-α and IL-1, which in turn stimulate tumor cells
to secrete increased levels of VEGF and IL-8 [98].

In oral SCCs, a significant correlation was observed
between the presence of TAMs and the lymph node involve-
ment and the tumor size. Hypoxia-inducible factor (HIF-
1α) expression and TAMs can change cancer cell behavior
by making them more invasive and more aggressive. The
presence of tumor cell-lined vessels, HIF-1α expression
and the high rate of TAMs could facilitate the prognosis
of patients with oral squamous cell carcinoma [99]. The
impact of TAMs on tumoral aggressiveness was previously
studied in a series of oral cavity or oropharyngeal squamous
cell carcinomas. In that study, the authors demonstrated
a correlation between the aggressive behavior of HNSCCs
and the level of infiltration of macrophages in the primary
tumor. Indeed, the patients whose tumors showed high levels
of macrophage infiltration tended to develop lymph node
metastasis and to present extracapsular lymph node spread
[100].

7. T Cells and Head and Neck Cancer

7.1. T Cell Functions. Immature T lymphocytes derive from
stem cells of the bone marrow and mature in the thymus
(primary lymphoid organ). Mature T lymphocytes leave the
thymus and travel through blood and lymphoid vessels to

reach secondary lymphoid organs (lymph nodes, spleen),
where they are present in a naı̈ve state [101]. In these organs,
APCs can present antigens to naı̈ve T lymphocytes. The
activation of T lymphocytes requires two signals: (i) the
link between MHCs from APCs and T cell receptors (TCRs)
and (ii) the expression of costimulatory molecules [101].
Once activated, T lymphocytes develop into effector or
memory cells. Effector cells include (i) CD4+ helper T cells,
which facilitate B lymphocyte production of antibodies and
phagocytes to destroy the ingested microbes and (ii) CD8+

cytotoxic T cells, which can induce cell death [101]. Helper
T cells are divided into three subpopulations (Th1, Th2 and
Th17), which are characterized by the secretion of various
cytokines [30]. CD4+ T cells, or Tregs, play a critical role in
the induction of tolerance to self-antigens and are divided
into two main groups: naturally occurring regulatory T
cells (nTregs) and peripherally induced regulatory T cells
(iTregs). The iTregs include Tr1 and Th3 cells [53, 102].
Memory T lymphocytes are cells that are able to induce
a rapid immune response in case of a second encounter
with a previous antigen. The main immunohistochemical
markers characterizing the various types of T lymphocytes
are CD45RA for naı̈ve T cells, CD45RO for memory T cells,
CD69 for activated T cells, CD4 for helper T cells, CD8 for
cytotoxic T cells, and CD25 and forkhead box p3 (Foxp3) for
Tregs.

7.2. Apoptosis of T Cells in Head and Neck Cancers. Several
studies have investigated the mechanisms responsible for
T cell apoptosis in patients with head and neck cancer
and have demonstrated that one of these mechanisms
involves the Fas/FasL signaling pathway. Indeed, Gastman
et al. studied the expression of FasL on the cell surface of
HNSCC cells. To demonstrate that the expression of FasL
on the cell surface can lead to the T cell apoptosis, they
coincubated HNSCC cell lines with the Fas-sensitive Jurkat
T cell line. As a result, an apoptotic signal was induced
in lymphocytes, which suggests that the Fas/FasL pathway
is potentially immunosuppressive [103]. They also showed
that if Fas-mediated apoptosis in Jurkat cells is executed in
the presence of mitochondria-specific inhibitors or synthetic
caspase inhibitors, tumor-induced apoptosis is inhibited,
suggesting that this phenomenon is significantly amplified
by a mitochondrial loop and that tumor cells can trigger
caspase-dependent apoptotic cascades in T lymphocytes
[104, 105]. Once again, Hoffmann et al. showed that the
Fas/FasL pathway is involved in the spontaneous apoptosis
of circulating Fas+ T lymphocytes [48].

In fact, other pathways are also implicated in the T cell
apoptosis. Some oral squamous cell carcinoma cell lines
are also able to induce Jurkat T cell apoptosis via TRAIL
and TNF-α [106]. Another study showed that MAGE3/
6+FasL+MHC class I+ tumor-derived membranous vesicles
isolated from the serum of patients with HNSCC induce
Jurkat T cell apoptosis [107]. Moreover, Kim et al. observed
that FasL+ membranous vesicles induced caspase-3 cleavage,
cytochrome c release, loss of mitochondrial membrane
potential, and reduced TCR-ζ chain expression and thus the
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mitochondrial apoptotic pathway in Jurkat and activated T
cells [108].

Some pro- and antiapoptotic proteins of the mitochon-
drial pathway were analyzed in the lymphocytes of HNSCC
patients and healthy controls. A higher level of proapoptotic
Bax and antiapoptotic Bcl-XL was noted in CD8+ lympho-
cytes, as well as a higher ratio Bax/Bcl-2 in HNSCC patients
compared with healthy controls. These results suggest the
involvement of the mitochondrial pathway in the apoptosis
of CD8+ T cells [109] (Figure 2).

Bcl-2 protein, an inhibitor of apoptosis, seems to be
involved in the regulation of T lymphocyte apoptosis.
The Bcl-2 expression in CD4+ and CD8+ T lymphocytes
was significantly higher in laryngeal cancer patients than in
controls. In carcinoma patients, Bcl-2 expression was also
higher in CD4+ T cells than in CD8+ T cells. These results
support that the Bcl-2 protein could play a role in the
regulation of T lymphocyte apoptosis [110].

The hypothesis that the mechanism of Treg suppression
depends on Fas/FasL-mediated apoptosis of responder cells
was proposed by Strauss and colleagues. Using the blood
of HNSCC patients, they showed that Tregs induced Fas-
mediated apoptosis in CD8+ T cells (Figure 2). In contrast,
CD4+ T cells were resistant to Fas-mediated apoptosis by
Tregs but were able to induce Treg apoptosis in presence of
low concentrations of IL-2 [111].

CD39 and CD73 are ectonucleotidases expressed by
Tregs that convert ATP into immunosuppressive adenosine.
The adenosinergic pathway in Treg-mediated suppression
has also been studied in HNSCC patients. These patients
demonstrated higher levels of CD39, CD73, and adenosine
compared with healthy controls. This overexpression could
be involved in the observed stronger effector T cell suppres-
sion [112].

Bergmann and co-authors used cell culture techniques
with weak doses of IL-2, IL-10, and IL-15 to show that
the tumor microenvironment generated Tr1 cells with a
phenotype distinct from nTregs and that these cells abolished
autologous responders proliferation via the secretion of IL-
10 and TGF-β (Figure 2). The Tr1 cell frequency and their
suppressor functions were significantly higher in patients
with advanced HNSCC [102, 113].

7.3. T Cells and Prognosis of HNSCCs. Recently, the prog-
nostic value of various tumor-infiltrating CD4+ T-cell
populations (CD4+CD25+, CD4+CD69+, and CD4+FOXP3+

T cells) was determined in HNSCC patients [114]. Interest-
ingly, a high level of CD4+CD69+ T cells was linked to a
better prognosis, and CD4+Foxp3+ T cells were positively
correlated with better locoregional control. In nasopharyn-
geal carcinomas, the density of Foxp3+ TILs was correlated
to better overall survival and progression-free survival [115].

Moreover, a higher density of CD4+CD25+ Tregs was also
linked to a good prognosis in HNSCCs [116]. In contrast
with previous studies, Strauss et al. showed that the pres-
ence of Tregs in TILs was linked to a worse prognosis
in HNSCC patients. Indeed, suppression in the tumor
microenvironment is mediated by a unique subset of

CD4+CD25highFoxp3+ Tregs that produce IL-10 and TGF-β,
exerting a more suppressive effect on proliferation [117].

The tumoral infiltration of different subpopulations
of lymphocytes (CD3+, CD20+, CD43+, CD45+ RO, and
CD56+) was assessed in laryngeal carcinomas. An increase
of the CD43+ subpopulation was observed in the group of
patients presenting lymph node metastasis. In patients with
advanced carcinoma (stage IV), a correlation was established
between the survival time and intensity of CD43+ and CD45+

RO lymphocyte infiltrations [118].

TCR recognizes antigens but is not able to initiate signal
transduction in T lymphocytes. To achieve this, a complex
must form between CD3 and the ζ chain linked to the TCR.
The TCR-associated ζ chain functions as a transmembrane
signaling molecule in lymphocytes [119]. Changes in the
expression of the ζ chain of TILs are biologically significant
because the absence or low expression of this chain in TILs in
patients with stage III or IV HNSCC predicts a poor survival
compared with patients expressing a normal ζ chain [120,
121]. This was confirmed by other study which demonstrated
the importance of the ζ chain by showing that circulating
CD4+ and CD8+ T cells and CD3−CD56+CD16+ NK cells
presented lower expression of the ζ chain in the blood of
patients with HNSCC in comparison to healthy controls.
Additionally, the patients that presented a more aggressive
tumor or that experienced a recurrence within the last 2
years of the study demonstrated the lowest expression levels
of the ζ chain [122]. Reduced expression of the ζ chain was
also noticed in laryngeal carcinomas before and after surgical
treatment, and this reduction was not immediately restored
after the treatment [123]. Reichert et al. studied the DC
population and the expression of the ζ chain in TILs in a
large series of 132 oral SCCs. A low density of DCs and absent
or low expression of the ζ chain in TILs was correlated with
a poor prognosis of survival and a high risk of recurrence
[124].

Distel et al. tested different immunological markers using
oro- and hypopharynx carcinomas in a low-risk group of 62
patients (surgery followed by radiotherapy) and in a high-
risk group of 53 patients (inoperable, radiochemotherapy).
The more advanced cases demonstrated higher rates of Tregs
and B cells and fewer CD8+ T cells. In the low-risk group,
a high concentration of CD20+ TILs was linked to a better
survival rate, whereas this increase was linked to a worse
prognosis in the high-risk group [125].

7.4. Circulating T Cells and Head and Neck Cancers. The
peripheral blood of patients with tobacco-related oral
SCChas shown significantly decreased CD3+ and CD4+ T
cells (Figure 2). Moreover, the frequency of CD3+IL-4+ and
CD8+IL-4+ T cells was significantly higher and the number of
CD4+IL-2+ T cells significantly lower in these patients than
in healthy controls. In late-stage cancer, the expression of IL-
2 in CD4+ and CD8+ cells was also reduced [134]. IL-18 has
also been assessed in patients with HNSCC, and higher levels
of this cytokine seem to be produced in this type of cancer
[135]. The concentrations of IL-10 were higher in patients
with nodal metastasis and in T3/T4 stage tumors compared
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with patients without nodal metastasis and in T1/T2 stage
tumors. These findings suggest that patients with advanced
HNSCC exhibit a decreased Th1 immune response and an
increased Th2 immune response [136].

An increase of CD4+CD25+Foxp3+ Tregs has been
observed in the peripheral blood and in the tumor site
of patients with nasopharyngeal carcinoma (Figure 2). This
increase is linked to an increase in the suppressive activity
of these cells on the proliferation of CD4+CD25− T cells,
which suggests the involvement of Tregs in the decreased
antitumor immunity of T cells [137] (Figure 2). Increased
numbers of Tregs have also been detected in HNSCCs [138].
A comparison of the numbers of CD25+Foxp3+ Tregs and
CD3+Foxp3+ and CD8+Foxp3+ in TILs between oral SCCs
and 15 human tumor-free tonsils again revealed an increased
number of Tregs in carcinomas whereas no significant change
was noted in the number of CD3+Foxp3+ and CD8+Foxp3+

in TILs [139]. Strauss et al. studied the expression of Tregs
in the lymphocytes of the peripheral blood in HNSCCs.
Interestingly, patients with no evident disease presented
more Tregs and a stronger suppressive function than did
the patients with active disease, suggesting that oncologic
therapy favors the expansion of Tregs [140].

Young et al. analyzed the immune inhibitory mediators
released from cancer tissues and from the immune infiltrate
within the tumor in 219 HNSCCs and 64 metastatic lymph
nodes. Tumor cells released substantial quantities of TGF-β,
PGE2 and IL-10, which were associated with a decrease in
CD8+ T cells within the tumor (Figure 2). GM-CSF, which
was associated with the intratumoral presence of CD34+

cells, was also secreted. The authors suggested that HNSCC
would evade immune suppression with reduced numbers of
CD8+ T cells and reduced numbers or altered functions of
intratumoral CD4+ T cells [47].

8. Eosinophils and Head and Neck Cancers

In HNSCCs, the function of eosinophils still remains unclear.
Several studies showed that eosinophils were associated with
a good prognosis [126, 127]. In fact, patients with tumour-
associated tissue eosinophilia (TATE) presented higher sur-
vival in oral SCCs and less incidence of distant metastasis
in head and neck cancer [126, 127]. On the other hand,
some studies suggested that eosinophils were associated with
a poor prognosis [128–131] or even no effect on tumor
progression [132, 133]. With regard to poor prognosis, it
has been shown that eosinophilic infiltration and tumor
cells expressing HLA-DR antigen were correlated with an
unfavorable prognosis [128]. TATE in OSCCs also reflected
stromal invasion and metastasis [130, 131].

9. Impact of Human Papillomavirus on the
Immune System of Head and Neck Cancers

It has been established that tobacco consumption and alcohol
abuse are significant risk factors for the development of
HNSCC but a proportion of the patients do not have these
risk factors, and therefore several studies have suggested an
association between the development of HNSCC and viral

infection such as oncogenic (high-risk) human papilloma
virus (HPV) types. The significance of hrHPV infection and
its relationship with patient prognosis is still an important
matter of debate, especially considering the contradictory
results that are present in different studies in the literature
[141, 142]. In fact, several studies have demonstrated that the
presence of HPV DNA is a favourable prognostic factor with
regard to recurrence and survival [143–148]. In contrast,
other studies showed that patients with hrHPV positivity
had a worse prognosis [142, 149, 150] or did not show a
significant correlation between hrHPV infection and clinical
outcomes [151–156]. A persistent HPV infection which can
lead to te development of cancer requires immune tolerance
and HPV developed several mechanisms for evading the
host’s immune system such as downregulation of IFN-α and
TLR9, production of TGF-β, maintenance of low viraemia,
viral gene expression and viral protein synthesis are confined
to keratinocytes and the virus does not cause cell lysis and
thus no inflammatory response [157]. In HNSCCs, there is
an increased frequency of T cells specific for peptides derived
from the oncogenic HPV E7 protein in patients whose
tumors expressing HPV16 in comparison with patients
whose tumors are negative for HPV or healthy volunteers.
Therefore, antiviral immunity exists against E7 oncogenic
protein but these T cells are unable to eliminate the tumor.
So, further studies are necessary to explain this tumor’s
resistance [158, 159]. Williams et al. investigated whether
HPV-specific immune mechanisms can result in tumor
clearance. For that, they examined immune-competent and
immune-incompetent mice with or without HPV. In the
immune-competent mice group, one third of the HPV+ mice
cleared their tumors in comparaison with none of the mice
HPV−. Moreover, mice HPV+ had a significantly longer
survival than mice HPV−. In the mice group lacking B- and
T-cell immunity, there was no difference in growth pattern
or survival between HPV+ and HPV− group. Therefore,
the difference between HPV+ and HPV− mice is immune
mediated. CD4+ and CD8+ T cells were found to be required
to mount this immune response. They also showed that
lymphocytes from mice that cleared their tumor can confer
protective tumor immunity to immunoincompetent animals
[160].

10. Conclusions

A better understanding of the factors that cause an immune
suppression in HNSCCs might be relevant for the devel-
opment of new therapeutic or prophylactic anticancer
approaches. The worse prognosis of these cancers must
certainly be link to the fact that HNSCCs strongly influ-
ence the host immune system. Antitumor responses of
HNSCC patients are caused by the presence of functional
defects or apoptosis of T-cells, both circulating and tumor-
infiltrating. Langerhans cells are increased in benign tumors
but decreased in invasive carcinomas. The accumulation of
macrophages in the peritumoral areas seems to play a crucial
role in the neoangiogenesis by secreting VEGF.
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[110] J. Klatka, J. Roliński, K. Kupisz, S. Klonowski, and D. Skomra,
“Expression of bcl-2 protein in lymphocytes of patients
with laryngeal carcinoma,” European Archives of Oto-Rhino-
Laryngology, vol. 256, no. 6, pp. 299–302, 1999.

[111] L. Strauss, C. Bergmann, and T. L. Whiteside, “Human
circulating CD4+CD25highFoxp3+ regulatory T cells kill
autologous CD8+ but not CD4+ responder cells by Fas-
mediated apoptosis,” Journal of Immunology, vol. 182, no. 3,
pp. 1469–1480, 2009.

[112] M. Mandapathil, M. J. Szczepanski, M. Szajnik et al.,
“Increased ectonucleotidase expression and activity in regu-
latory T cells of patients with head and neck cancer,” Clinical
Cancer Research, vol. 15, no. 20, pp. 6348–6357, 2009.

[113] C. Bergmann, L. Strauss, Y. Wang et al., “T regulatory
type 1 cells in squamous cell carcinoma of the head and
neck: mechanisms of suppression and expansion in advanced
disease,” Clinical Cancer Research, vol. 14, no. 12, pp. 3706–
3715, 2008.

[114] C. Badoual, S. Hans, J. Rodriguez et al., “Prognostic value of
tumor-infiltrating CD4+ T-cell subpopulations in head and
neck cancers,” Clinical Cancer Research, vol. 12, no. 2, pp.
465–472, 2006.

[115] Y. L. Zhang, J. Li, H. Y. Mo et al., “Different subsets of tumor
infiltrating lymphocytes correlate with NPC progression in
different ways,” Molecular Cancer, vol. 9, article 4, 2010.

[116] D. Loose, A. Signore, E. Bonanno et al., “Prognostic value
of CD25 expression on lymphocytes and tumor cells in
squamous-cell carcinoma of the head and neck,” Cancer
Biotherapy and Radiopharmaceuticals, vol. 23, no. 1, pp. 25–
33, 2008.

[117] L. Strauss, C. Bergmann, M. Szczepanski, W. Gooding,
J. T. Johnson, and T. L. Whiteside, “A unique subset of
CD4+CD25high Foxp3+ T cells secreting interleukin-10 and
transforming growth factor-β1 mediates suppression in the
tumor microenvironment,” Clinical Cancer Research, vol. 13,
no. 15, pp. 4345–4354, 2007.

[118] A. Gabriel, G. Namysłowski, A. Ziółkowski, K. Morawski, K.
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