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We live in a hostile environment, surrounded by micro-
bial pathogens and subject to a range of physical and
chemical insults. To survive in this environment, verte-
brates have evolved complex immune systems. A key
element of this defence is the deployment of rapid
response elements at the most probable sites of attack,
which are the epithelial-cell boundaries between the
body and the environment in the skin, gut and lungs.

As the body’s largest and most exposed interface with
the environment, the skin has a central role in host
defence. Before the relatively recent discovery of the
immunological defences of skin, the cutaneous interface
was viewed as a passive barrier between the host and the
hostile environment. In the past few decades, however, it
has become apparent that the mechanical aspects of epi-
dermal defence are reinforced by a versatile and robust
system of immune surveillance1 (FIG. 1). The crucial role
of immune surveillance in maintaining homeostasis is
evident from the marked increase in the frequency and
severity of cutaneous malignancies and infections when
immune function is limited, for example in patients with
genetic and acquired immunodeficiency disorders and
in those receiving immunosuppressive therapy after
organ transplantation2,3. The regulation of skin
defence mechanisms is also crucial, as inappropriate or

misdirected immune activity is implicated in the patho-
genesis of a large variety of acquired inflammatory skin
disorders, including psoriasis, atopic and allergic contact
dermatitis, lichen planus, alopecia areata and vitiligo4–10.
The role of immune dysfunction in these conditions is
emphasized by their response to immunosuppressive
therapeutic interventions11–14.

Understanding the mechanisms of immune surveil-
lance in the skin and tissue-specific immune responses
also has important implications for the rational design
of vaccines. To promote protective immunity, an
immunization protocol must elicit not only an antigen-
specific immune response, but also an effective memory
response that will provide long-lived protection at the
most probable sites of invasion. This applies equally to
immunization against infectious organisms, which in
most cases invade through the skin or the epithelia of
the gastrointestinal or respiratory systems, and to the
elicitation of immune responses against tumours. As we
discuss, the route and means of adjuvant stimulation
that is used can affect the effectiveness and utility of
specific vaccine strategies.

In this review, we discuss these issues in the context
of recent advances in our understanding of cutaneous
immune mechanisms, highlighting the interaction of
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cells (DCs) and macrophages, provide an early warning
system by releasing stored and inducible ANTIMICROBIAL

PEPTIDES, chemotactic proteins and cytokines15–19 (FIG. 2).
Keratinocyes are important and often under-appreciated
participants in cutaneous immune responses. They
produce large quantities of interleukin-1α (IL-1α),
tumour-necrosis factor (TNF) and antimicrobial pep-
tides such as β-defensins in response to various stim-
uli, including kinetic and thermal trauma, ultraviolet
radiation, cytokines and neuropeptides15,20–22. IL-1α
(and IL-1β from epidermal Langerhans cells), in turn,
acts as a potent stimulator of local immune function23.
Keratinocytes also produce a large number of
chemokines and other immunoregulatory cytokines in
response to stimulation16,24–27. These products have vari-
ous important effects on resident innate immune cells
in the skin, such as mast cells, DCs and macrophages,
resulting in the upregulation of expression of other
inducible mediators and recruitment of additional
immune cells from the blood28. The induction of local
inflammation through IL-1, however, depends on the
balance of agonists (IL-1α, IL-1β, caspase-1 and IL-1
receptor 1; IL-1R1) and antagonists (IL-1Ra and IL-1R2)
that are active in this pathway15,16,23. Each of these mole-
cules can be produced by keratinocytes under various
conditions, as well as by other cells that are resident in
the skin, making it difficult to predict the effects of
specific interventions. New members of the IL-1 family
continue to be identified, adding to the complexity of
regulation of cutaneous inflammation29.

Both the epithelial barrier cells and resident innate
immune cells in the skin express pattern-recognition
receptors that recognize specific pathogen components
and can trigger downstream activation cascades. An
important subset of these receptors belong to the Toll-
like receptor (TLR) family30–33, which bind pathogen-
associated molecular pattern molecules such as
lipopolysaccharide34, bacterial lipoproteins35,36, flagellin37,
yeast mannans38 and unmethylated CpG DNA
motifs39,40. TLR expression is variable and might identify
subsets of innate immune cells, such as DCs, with spe-
cific functions41–43. DC activation through TLRs results
in increased production of pro-inflammatory cytokines
and antimicrobial peptides, increased nitric oxide syn-
thesis and enhanced bacterial killing, as well as increased
antigen presentation30. The binding of TLR ligands is
associated with the recruitment of intracellular adaptor
proteins similar to those used by IL-1R and subse-
quent activation of the JUN N-terminal kinase (JNK)
and nuclear factor-κB (NF-κB) signalling pathways30.
The NF-κB signalling pathway is seen as a key link
between the innate and adaptive immune systems. In
the skin, NF-κB regulates the expression of numerous
genes that are involved in the initiation of the inflam-
matory response, including adhesion molecules,
chemokines and cytokines (such as IL-1 and TNF),
matrix metalloproteases, nitric oxide synthase and
enzymes that control PROSTANOID synthesis44. Beyond the
direct effects of these compounds on pathogens and
abnormal cells, products of the innate immune response
direct the recruitment of additional leukocytes to the site

innate and adaptive immune systems in the induc-
tion and maintenance of effective cutaneous immune
surveillance.

Innate immune surveillance

Central to our model of cutaneous immune surveil-
lance are the cells resident in the skin, which function
as sentinels for DANGER SIGNALS, including invasion by
microorganisms. Keratinocytes and LANGERHANS CELLS in
the epidermis, as well as dermal mast cells, dendritic
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Figure 1 | Immune-response elements in non-inflamed

skin. Human skin is composed of three distinct

compartments relevant to its immune functions. First, the

epidermis is composed of keratinized epithelial cells and

functions as both a physical barrier and an early warning

system. Immune cells resident in the epidermis include

specialized dendritic cells (DCs) known as Langerhans 

cells and intraepithelial lymphocytes. Second, the dermis is

mainly composed of connective tissue produced by dermal

fibroblasts. Immune system cells resident in non-inflamed

dermis include dermal DCs, mast cells and a small number 

of cutaneous lymphocyte antigen (CLA)-positive memory 

T cells. Third, dermal post-capillary venules constitutively

express low levels of E-selectin, CC-chemokine ligand 17

(CCL17) and intercellular adhesion molecule 1 (ICAM1).

These support the margination and baseline emigration of

CLA+ memory T cells into non-inflamed skin. CLA– T cells,

including both naive cells and memory/effector cells that 

are targeted to other tissues, as well as granulocytes and
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non-specific leukocytes, such as neutrophils and natural
killer cells, as well as key components of the adaptive
immune system, such as effector T cells (FIG. 3).

Mast cells are another crucial component of the cuta-
neous immune response apparatus. Mast cells have been
shown to release different patterns of cytokines and
bioactive compounds, including leukotrienes, IL-1β, IL-4,
IL-5, IL-6, IL-13, TNF and granulocyte–macrophage
colony-stimulating factor (GM-CSF), in response to var-
ious TLR ligands47–49. These and other mast-cell products
have an important role in both the initiation and modu-
lation of innate immune responses and the generation of
adaptive immune responses.

Adaptive immune surveillance

The adaptive immune system, based on T cells and B cells
that express antigen-specific receptors, provides verte-
brate organisms with a broader and more flexible
repertoire of responses to pathogens, and a means for
providing memory of past encounters.Adaptive immune
surveillance addresses the logistical challenge faced by the
immune system in getting the right T cell to the right
place at the right time. At the skin interface, this process
can be viewed as operating at three levels, which we term
primary, secondary and tertiary immune surveillance
(FIG. 4). Primary immune surveillance incorporates the
mechanisms for bringing environmental antigens that are
encountered in the skin, professional antigen-presenting
cells (APCs) and naive T cells together in the specialized
microenvironment of skin-draining lymph nodes.
Secondary immune surveillance, in turn, involves the
production and distribution of antigen-specific effector
memory T cells expressing homing receptors that direct
their migration to the tissue where antigen was
encountered. Tertiary immune surveillance encom-
passes the long-term elements of the acquired immune
response, including the production of central memory
and effector cells that are potentially directed to tissues
other than the site of primary exposure. Each of these
modes of immune surveillance is a strategy used by the
immune system to improve the odds that each T cell
will find the antigen for which its T-cell receptor
(TCRs) is specific and develop effective responses: first,
by increasing the efficiency with which naive T cells are
exposed to antigens; second, by targeting the effector
response to the most appropriate tissue site; and third,
by expanding coverage to other tissues.

Primary immune surveillance. Activated DCs,
whether derived from epidermal Langerhans cells or
dermal DCs50,51, are professional APCs with the capac-
ity to present antigens efficiently and to affect the
maturation of naive T cells to a memory/effector phe-
notype52. At sites of injury or pathogen invasion in the
skin, these cells become activated through innate mech-
anisms, including pattern-recognition receptors (such
as TLRs) and exposure to the pro-inflammatory
cytokines (such as IL-1 and TNF) that are released in
response to tissue injury or infection. Activated APCs
rapidly engulf foreign particles and undergo maturation
as they emigrate through the afferent lymphatics to the

of activation. In humans, genes regulated by NF-κB
include the endothelial adhesion molecules E-selectin
and P-selectin, intercellular adhesion molecule 1
(ICAM1), vascular cell-adhesion molecule 1 (VCAM1),
and various chemokines and cytokines45. Collectively,
these molecules are considered to be both necessary
and sufficient for initiation of the leukocyte
adhesion–extravasation cascade that recruits circulating
leukocytes from the periphery46. These include antigen
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Figure 2 | Innate immune mechanisms in the skin.

Epithelial-cell injury or pathogen invasion leads to the release

of primary cytokines and the activation of both skin cells

(keratinocytes and fibroblasts) and resident innate immune

cells (Langerhans cells (LCs), dermal dendritic cells (DCs) and

mast cells), stimulating downstream activation cascades.

Activated Langerhans cells and dermal DCs are stimulated to

mature and emigrate from the tissue to the draining lymph

node, carrying antigen for presentation to naive and memory T

cells. The cytokines and chemokines produced in response to

this activation cascade act on the local endothelia through

nuclear factor-κB (NF-κB)-mediated pathways to upregulate

the expression of adhesion molecules, including E-selectin, 

P-selectin and intercellular adhesion molecule 1 (ICAM1), 

and direct the recruitment of additional innate immune

components according to the specific signals that are

generated — for example, neutrophils, eosinophils and 

natural killer (NK) cells. CCL17, CC-chemokine ligand 17.
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the skin (carried by DCs that have migrated through
afferent lymphatics) and the adaptive immune system
(T cells entering the lymph node through high
endothelial venules). Naive T cells that encounter their
cognate antigen presented by an activated and mature
DC will undergo proliferation and clonal expansion,
produce autocrine growth factors and differentiate
into memory/effector T cells.

Secondary immune surveillance. When an antigen is
encountered in a specific tissue, such as the skin, the
activation of T cells in the local draining lymph nodes
results in the production of antigen-specific effector
cells that express homing receptors for that site. In this
way, the immune response is preferentially targeted
back to the site of the initial infection or stimulation.
T cells recruited to sites of inflammation in the skin
will encounter a range of inflammatory mediators
triggered by innate immune mechanisms, as well as
activated dermal DCs and inflammatory dendritic
epidermal cells (IDECs) that can present antigen and
provide co-stimulatory signals to T cells that express
appropriate counter-receptors55,56.

With regard to the recruitment of T cells to the skin,
the earliest step in this process is the tethering and rolling
of T cells on E-selectin and/or P-selectin expressed by
dermal post-capillary venules. Skin-homing T cells can
be identified by expression of the cell-surface carbohy-
drate epitope cutaneous lymphocyte antigen (CLA),
which binds E-selectin. CLA is expressed by ~30% of
circulating memory T cells and is virtually absent on
naive T cells57. T cells found in inflammatory skin lesions
are mainly CD45RO+CLA+, whereas few T cells that
accumulate in inflammatory sites other than the skin
express CLA57,58. CLA is reproducibly found on most
T cells present in cutaneous lymphocytic infiltrates of
almost all skin diseases, including psoriasis, atopic
dermatitis, allergic contact dermatitis, erythema multi-
forme, cutaneous GRAFT-VERSUS-HOST DISEASE (GVHD) and
cutaneous T-cell lymphoma (CTCL)57–64. In biopsies of
CTCL, both malignant T cells and those that respond
to the presence of tumour cells in the skin are CLA+.
CLA also seems to be a good marker of malignant
CTCL cells in the peripheral blood of some patients
with Sezary syndrome65.

The factors that induce CLA expression by T cells are
less well understood, but seem to be related to the spe-
cialized environments present in secondary lymphoid
tissue. That is, the microenvironment in skin-draining
lymph nodes promotes the expression of CLA by newly
activated effector T cells, whereas that of Peyer’s patches,
for example, favours the expression of α

4
β

7
(a gut-

homing receptor) by new effector T cells66–68.A large vol-
ume of circumstantial evidence supports this model. For
example, circulating memory T cells specific for nickel or
house-dust mite in allergic or atopic individuals, respec-
tively, express high levels of CLA62, presumably because
these antigens were encountered through the skin.
Similarly, circulating CD8+ effector T cells specific for
skin-associated viruses express CLA, whereas those
specific for non-cutaneous viruses do not69. By contrast,

local skin-draining lymph nodes52,53. This maturation
process enhances antigen processing and upregulates
the expression of MHC molecules and co-stimulatory
molecules, including CD80 and CD86 (REF. 54).

The function of the local draining lymph nodes is
to promote frequent and supervised contact between
antigens that are derived from a specific segment of
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Figure 3 | Adaptive immune responses in the skin.
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are associated with skin-homing T cells73–75, including
CC-chemokine receptor 4 (CCR4) and its ligands CCL17
(thymus and activation-regulated chemokine, TARC)
and CCL22 (macrophage-derived chemokine, MDC).
Constitutive and inducible expression of CCL17 on the
luminal aspect of post-capillary venules in the skin has
been shown, and CLA+ cells typically co-express CCR4.
CCR4–CCL17 interactions can lead to the arrest of
rolling T cells if they are provided an integrin ligand.
CCL27 (cutaneous T-cell-attracting chemokine,
CTACK) has also been implicated in skin homing.
This chemokine, preferentially produced by epidermal
keratinocytes, binds to CCR10 and is chemotactic for
T cells in vitro76–78. CCR10 is expressed by a subset of
CLA+ T cells only, and its role in inducing the arrest
of T cells on post-capillary venules in the skin has not
been shown. Other work indicates that CCR6 might be

T cells specific for rotavirus are CLA–, but express high
levels of α

4
β

7
(REF. 70) as the immune system encounters

this virus through the gut. More recently, mouse studies
indicate that DCs derived from Peyer’s patches can
preferentially induce the expression of α

4
β

7
by newly

generated effector cells in vitro67,68.
Studies of CLA induction in vitro have indicated that

expression is enhanced by CD3 activation in the pres-
ence of IL-12 and is not restricted to functional and
phenotypic T-cell subsets71,72. However, the factors that
regulate the induction of expression in vivo and the
maintenance of expression by resting circulating cells
have not been determined.

Although CLA and α
4
β

7
mediate specific tethering

and rolling steps in distinct tissue vascular beds, the
activation of these rolling cells also proceeds in a tissue-
specific manner. Several chemokines and their receptors
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(CD62L) and CCR7, and the ability to circulate through
lymph nodes89. These cells can then emigrate from the
lymph node in which they were originally produced to
lymph nodes throughout the body (including those
draining non-cutaneous epithelial-cell interfaces), where
they may encounter DCs expressing the same cognate
antigen. In this way, the immune system hedges its bets,
ensuring a more rapid and effective response even if the
next encounter occurs at a different interface.

Although the original description of central memory
cells suggested that they could home to lymph nodes
only, it has become clear that some T cells can express
both central memory and tissue-homing receptors. For
example, cells that express CLA, L-selectin, CCR4 and
CCR7 are well represented in peripheral blood90. One
interesting question that awaits investigation is whether
central memory T cells that are generated in a skin-
draining lymph node and resident in a different tissue
lymph node (for example, gut or respiratory system
lymph node) will, if exposed to antigen, give rise to new
effectors of a skin-homing phenotype or effectors that
home to the current source tissue, or both.

As seen from this discussion, innate immune-
surveillance mechanisms drive the development of
adaptive immune responses — that is, injury, inflam-
mation and other danger signals facilitate T-cell devel-
opment and entry into tissues. Memory T cells and
innate immune effector cells can be thought to enter tis-
sues not because they ‘see’ antigen, but because the local
endothelium expresses appropriate counter-receptors
and chemoattractants. Only after they have exited the
blood can they respond to their antigen that is produc-
tively presented. This has important implications for the
aetiopathology of inflammatory skin diseases.

Regulatory T cells. Although the mechanisms described
earlier highlight the activation and recruitment of effector
T cells, it is clear that REGULATORY T CELLS also have an
important, though less well characterized, role in damp-
ening exaggerated cutaneous immune responses, as well
as in the maintenance of immune tolerance to innocu-
ous self or exogenous antigens91,92. Recent reports have
indicated that regulatory T-cell subsets might traffic to
the skin using pathways that are similar to those used by
effector cells73.An imbalance in effector/regulatory T-cell
recruitment or functions might be a crucial factor in the
development of inflammatory skin lesions. Conversely,
for those conditions in which the antigen (self or
exogenous) can be identified, induction of regulatory
T cells to specific antigens could provide a powerful
mechanism for inducing specific tolerance93.

Clinical implications

T-cell-mediated inflammatory skin diseases are extra-
ordinarily common. Also, new therapies for disease have
led to new T-cell-mediated skin diseases, notably
GVHD after therapeutic allogeneic bone-marrow trans-
plantation. If these diseases are viewed from our current
perspective of cutaneous immune surveillance, insights
emerge that are useful to understanding their clinical
and biological behaviour.

important for skin homing79, though the expression of
this chemokine receptor is more variable. In most situa-
tions, it seems that skin-homing memory cells that
express CLA, CCR4 and leukocyte function-associated
antigen 1 (LFA1) accumulate in the skin, where 
E-selectin, CCL17 and ICAM1 are constitutively and
inducibly expressed on post-capillary venules.What role
other receptor–ligand pairs will have in specific condi-
tions remains to be determined. Cytokines produced by
T cells that are recruited to sites of inflammation can
influence the content of the ongoing infiltrate by modi-
fying the balance of chemokines produced. For example,
interferon-γ (IFN-γ) can induce keratinocytes to pro-
duce a range of products, including CXCL10 (IFN-
inducible protein 10, IP-10), CXCL9 (monokine induced
by IFN-γ, MIG) and CXCL11 (IFN-inducible T-cell 
α-chemoattractant, ITAC), which act to recruit T cells
that express the chemokine receptor CXCR3 (REF. 80).

Many pathogens have evolved to use tissue-specific
routes of entry. The persistence of memory T cells with
both antigen and tissue specificity in the peripheral cir-
culation prepares the immune system for possible future
interaction with the same pathogen, by providing a pop-
ulation of antigen-specific effector cells pre-targeted to
the site where exposure to that pathogen would be most
likely to recur.

Although skin-homing T cells are a kind of rapid
deployment corps that can be called up to inflamed tis-
sues, there is also evidence for constitutive homing of
such T cells to the skin. T cells recovered from non-
inflamed skin express high levels of CLA and CCR4 as
well as other chemokine receptors81,82. Even in the absence
of inflammation, leukocytes are observed to tether and
roll constitutively on low levels of selectin expressed in
dermal post-capillary venules83,84. These cells can be
thought of as continuously scanning the endothelial-cell
surfaces of their target tissue for activation signals and are
poised to respond to the slightest hint of danger.
Constitutive expression of E-selectin on cutaneous
microvessels has been described in both humans and
mice, as has expression of CCL17 and ICAM1 (REFS 85–87).
Using these sequential interactions, an indeterminate
fraction of these T cells continuously enter the skin and
traffic through it, seeking antigen-dependent activation.
Antigen-specific T cells can also be detected in the unin-
flamed skin of patients with atopic dermatitis88. It is
unclear whether T cells that home constitutively to the
skin are responding to subclinical levels of inflammation
or if alternative mechanisms exist that support constitu-
tive expression of endothelial homing components. It is
important to note that while they are in the skin, these
cells can be thought of as ‘resident’T cells; how long they
reside in the skin is unknown at present.

Tertiary immune surveillance. Although a given
pathogen is most likely to be re-encountered at the same
epithelial-cell interface as it was originally engaged, this
cannot be guaranteed.Among the T-cell subpopulations
produced after an initial antigen encounter are a popula-
tion of antigen-specific memory cells, known as central
memory T cells, that retain expression of CD62 ligand

REGULATORY T CELL
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light (with or without the photosensitizer 8-methoxy
psoralens)96. More recently, immunobiological ther-
apy has come to the forefront in this disease, with
reports of polarizing therapies such as IL-4, IL-10
and IL-11, which inhibit T HELPER 1 (TH1) CELLS and/or
enhance TH2-CELL functions, showing promise97–99.
Other biological agents that inhibit T-cell recruit-
ment or activation, including alefacept (an LFA3–
immunoglobulin fusion protein), efalizumab (a
humanized antibody specific for CD11a) and cyto-
toxic T lymphocyte antigen 4 (CTLA4)–immuno-
globulin fusion protein have shown efficacy in 
clinical trials; with alefacept and efalizumab recently
winning FDA approval100. Biological agents that
inhibit TNF are also quite effective — etanercept is a
p75 TNF receptor–IgG Fc fusion protein and inflix-
imab is a humanized monoclonal antibody specific
for TNF. Both of these compounds have been shown
to be effective in the treatment of psoriasis101.
Interestingly, short-term treatment with an antibody
specific for E-selectin was recently shown to be inef-
fective in psoriasis, indicating that once lesions are
established, blocking T-cell rolling on E-selectin is
insufficient to block disease activity102. By contrast,
Efomycin M —  a small molecule inhibitor of selectin
binding —  has recently been shown to be effective in
animal models of psoriasis and might indicate a fur-
ther role for inhibition of selectins in the treatment of
human psoriasis103.

The interplay of innate and adaptive immune
responses in psoriasis is seen in the Koebner phenome-
non, in which physical trauma provokes the develop-
ment of a psoriatic lesion. As discussed earlier, skin
trauma leads to the release of innate immune activa-
tors, such as IL-1 and TNF, and results in the upregu-
lation of E-selectin and ICAM1 expression on local
dermal post-capillary venules. This leads to the activa-
tion of resident T cells and the recruitment of CLA+

T cells from the blood, including the presumed sub-
population that is specific for psoriatic autoantigens.
Innate immune activators also induce the maturation of
DCs in the dermis and epidermis, enhancing their activ-
ity as APCs, and encouraging the activation and prolif-
eration of the recruited T cells and the development of a
psoriatic plaque.

The evidence described earlier indicates that the
cutaneous immune-surveillance system responds to
any cutaneous injury that produces danger signals as if
it was potentially infectious. Both innate and adaptive
immunity are mobilized, and their activities are syner-
gistic. Inappropriate adaptive immunity can be driven
by non-specific activation of innate immune pathways,
for example, chronic trauma due to scratching of the
skin. This in turn can lead to autoinflammatory feed-
back loops through the recruitment and activation of
leukocytes independent of antigen-specific help.
Different populations of cells accumulate in specific
disease states, reflecting the patterns of expression of
vascular adhesion molecules and chemoattractant
cytokines induced by the balance of stimuli in that tar-
get organ (TABLE 1). This has potential significance for
the immunopathology of diseases in organs other than
the skin. Our continued understanding of mechanisms
of cutaneous immune surveillance will almost certainly
provide important insights into immune surveillance
and diseases at other environmental epithelial-cell
interfaces, including the gut, lungs, oropharyngeal and
genital mucosa.

Psoriasis. Psoriasis, which affects ~1–2% of adults
worldwide, is characterized by the formation of ery-
thematous cutaneous plaques covered with scale.
Histologically, psoriatic plaques show keratinocyte
hyperproliferation and both neutrophil infiltra-
tion of the upper epidermis and an infiltrate in the
dermis and epidermis replete with T cells, DCs and
macrophages.

Psoriasis has an obligate immunological component;
therapies directed against T-cell activation and function
are highly effective in this disease, and the disease can be
initiated in xenograft models by activated T cells94.
Increasingly, it is being understood as an autoimmune
disease, although the autoantigen(s) has not been identi-
fied95. The T cells in psoriatic lesions are CLA+ and pro-
duce a type 1 cytokine profile. CD8+ T cells in particular
have been identified in the epidermis and are thought to
have a key role in disease expression.

So far, nearly all successful therapeutic interven-
tions for psoriasis target T cells. These include corti-
costeroids, methotrexate, cyclosporine and ultraviolet

T HELPER 1 CELL

(T
H

1). A type of T cell that,

through the production of

interferon-γ, interleukin-10

and other cytokines, can

stimulate cellular immunity

against viral and bacterial

pathogens.

T HELPER 2 CELL

(T
H

2). A type of T cell that,

through the production of

interleukin-4 (IL-4), IL-13 

and other cytokines, can help 

B cells to produce IgE and

other antibodies and, through

the secretion of IL-5, IL-3 and

others, can promote increased

numbers of eosinophils,

basophils and mast cells.

Table 1 | T cells in inflammatory skin disease

Skin disease T-cell subtype Antigenic target Cytokine profile

Psoriasis Epidermal: CD8+ N.D. (autoantigens?) T
H
1

Dermal: CD4+

Atopic dermatitis CD4+ Extrinsic: allergens Acute: T
H
2

(for example, D. pterynossinus) Chronic: T
H
1

Intrinsic: N.D. (autoantigens?)

Allergic contact CD4+ and CD8+ Haptens (small molecules that T
H
1 > T

H
2

dermatitis (contact elicit a type IV hypersensitivity
hypersensitivity) reaction)

Vitiligo CD8+ Melanocyte autoantigens N.D.

Cutaneous T-cell CD8+ Antigen independent T
H
2

lymphoma

D. pterynossinus, Dermatophagoides pterynossinus; N.D., not determined; T
H
, T helper cell.
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reaction to specific environmental antigens and is
manifested by varying degrees of erythema, spongiosis
(epidermal oedema) and vesiculation. Most contact
allergens are themselves irritants (for example, uroshiol
or poison ivy), and they therefore provide both antigen
and danger signals when they contact skin. The patho-
physiology of this disorder is multifactorial, but is
characterized by the infiltration and activation of both
CD4+ and CD8+ T cells91,116. A general model in
which allergen-specific type 1 CD4+ and CD8+ T cells
act as effectors and type 2 CD4+ T cells act as regula-
tory elements is supported by investigations in animal
models117. Accumulation of eosinophils and enhanced
production of IgE can also be seen118. ACD requires a
sensitization phase of 1–2 weeks after exposure, in which
small molecule components of the active agent bind to
endogenous proteins and act as haptens to induce the
activation and proliferation of antigen-specific T cells,
which then mature into skin-homing effector memory
cells. Subsequent epicutaneous exposures result in symp-
toms that progress over hours to days and reflect activa-
tion of resident antigen-specific effector T cells as well as
their further local accumulation from the blood. This is
followed by accumulation of CD4+ T cells that produce
T

H
2-type cytokines (for example, IL-5 and IL-13) in

chronic and resolving lesions. Recent studies have impli-
cated IL-10, produced by CD4+CD25+ regulatory T cells,
as a key factor in the down-modulation of allergic
responses in the skin92,119.

Cutaneous graft-versus-host disease. Acute cutaneous
GVHD describes a distinctive syndrome of dermatitis,
developing within 100 days of allogeneic haematopoietic-
cell transplantation120. Chronic cutaneous GVHD
describes a more indolent syndrome that develops after
day 100. Development of GVHD depends on the trans-
fer of immunologically competent cells, such as mature
T cells included in bone-marrow transplants or resident
in solid organ transplants, the presence of alloantigens
on host tissues that can stimulate the graft cells and the
lack of an effective host immunological response to the
graft. Acute cutaneous GVHD is characterized initially
by a rash or by a generalized redness of the skin and
desquamation. Chronic cutaneous GVHD can lead to
areas of thickened skin or sclerodermatous changes that
sometimes cause contractures and limitation of joint
mobility. The predilection of GVHD for the skin and
the gastrointestinal tract has led to speculation that it is
mediated in these respective tissues by antigen-specific
T cells with distinct skin- or gut-homing properties1,64.
This hypothesis has not been formally tested.

Cutaneous T-cell lymphoma. We and others have pro-
posed that CTCLs are malignancies of skin-homing
T cells1,121. The most common form of this uncom-
mon disease — mycosis fungoides — is characterized
by patches and plaques on the skin, often in non-
sun-exposed areas, which can resemble eczematous
dermatitis. Histopathological features of CTCL include
the clustering of malignant T cells in the epidermis,
often around Langerhans cells. There is evidence that

Atopic dermatitis. Atopic dermatitis is a common disease
that affects people of all age groups worldwide104,105. The
prevalence has been reported to vary between 
7% and 17% for children, and in 60% or more of these
individuals the disease can persist into adulthood104,106–109.

Atopy is the hereditary predisposition to allergy or
hypersensitivity, with the term atopic dermatitis used to
describe a group of skin diseases associated with atopic
conditions (allergic rhinitis, allergic keratoconjunctivi-
tis, asthma and eczema) that might be seen in all age
groups. Clinically, atopic dermatitis is characterized by
the development of erythematous, exudative lesions in
skin folds that are associated with intense itching.
Histopathological sections show perivascular infiltra-
tion of the dermis and epidermis by lymphocytes,
monocytes and macrophages.

Acute atopic dermatitis is mediated by T cells specific
for environmental antigens, although there are sub-
groups of atopic dermatitis that might have different
mechanisms of triggering and maintaining inflamma-
tion (for example, extrinsic/allergic atopic dermatitis
versus intrinsic/non-allergic atopic dermatitis)6,110,111.
The house-dust mite Dermatophagoides pterynossinus is
a common source of extrinsic antigen, and T cells spe-
cific for this antigen can be identified in lesional and
non-lesional skin of selected individuals112. Antigen
presentation is enhanced by the presence of high-
affinity IgE receptors on Langerhans cells, which
internalize antibody–antigen complexes, process anti-
gen and present it to T cells within evolving lesions.
Interestingly, as atopic dermatitis lesions become
more chronic, the cytokine profile they exhibit shifts
from T

H
2 to T

H
1 type113. The mechanism behind this

switch is incompletely understood.
The interplay between innate and acquired immu-

nity emerges in this disease also. It is well established
that scratching of pruritic non-lesional skin can lead to
the emergence of new lesions. Presumably this occurs
by the trauma of scratching, as in the Koebner response
described earlier.A second link comes at the level of bac-
terial colonization and superinfection. Staphylococcus

aureus is readily cultured from atopic skin, particularly
lesional skin, and it might be that stimulation by bacte-
rial superantigens or the activation of TLRs on resident
skin cells leads to chronic release of primary cytokines.
Recent studies have shown that atopic epidermis,
unlike psoriatic epidermis, does not produce the
antibacterial peptides β-defensin and cathelicidin in
response to such infection114, and that IL-4 blocks the
induction of these antimicrobial peptides from ker-
atinocytes115. So, a product of T

H
2 cells blocks one path-

way of innate immune activation, leading to bacterial
overgrowth and the induction of another innate
immune pathway. This, in turn, facilitates the continued
activation of the adaptive immune system, including 
the recruitment and activation of atopic T

H
2 cells, and

perpetuation of the lesion.

Allergic contact dermatitis. Allergic contact dermatitis
(ACD), also referred to as contact hypersensitivity, is a
T-cell-mediated type IV DELAYED-TYPE HYPERSENSITIVITY

DELAYED-TYPE

HYPERSENSITIVITY

A cellular immune response to

antigen that develops over 24−72

hours with the infiltration of

T cells and monocytes, and

depends on the production of

T helper-1-specific cytokines.
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that vitiligo is a T-cell-mediated autoimmune disorder125.
Interestingly, vitiligo is most prominent in areas that are
subject to minor trauma, providing another disease-
related link between innate and acquired immunity in
inflammatory skin diseases.

Other inflammatory skin disorders might also be
mediated or modulated by these mechanisms. Although
there are few data present in the literature, further inves-
tigations might identify a role for dysregulation of leuko-
cyte homing in the pathogenesis of these and other skin
conditions. It is not possible to discuss the full range of
implications in this review.

Vaccine development

The concepts of immune surveillance and tissue-specific
homing have important implications for the rational
design of vaccines, as highlighted by the example of
smallpox (BOX 1). Not only must the antigen be adminis-
tered in a manner that leads to DC maturation and
migration to lymph nodes (danger signals or adjuvant
effects), but also the route of administration might have
marked qualitative and quantitative effects on the
desired protective immune response. Such considera-
tions are taking on a broader scope and purpose, with
interest in the development of vaccines against tumours,
HIV and emerging infectious agents responsible for dis-
eases such as Lyme disease, West Nile virus disease and
severe acute respiratory syndrome (SARS). Even long-
standing immunization protocols, such as those estab-
lished more than 40 years ago for smallpox, are under
active investigation for improvements that might
reduce complications while maintaining effectiveness.
The findings outlined earlier indicate that vaccination
through the skin (intradermal) will be most efficient at
stimulating skin-homing effector cells, whereas alterna-
tive routes (for example, oral and intramuscular) will
most efficiently generate effector memory T cells that
are directed towards other sites.

Although aggressive stimulation with adjuvants
might bypass the anatomically specific elements of the
immune response by driving broad production of cen-
tral memory cells, it might be preferable in some cases
to limit responses to a desired site to avoid potential
complications in other tissues.

Tumour vaccines. Our knowledge of leukocyte homing
and immune-surveillance mechanisms also has impli-
cations for the field of antitumour vaccines. Despite
considerable work in this area, the clinical success of
antitumor vaccinations has been limited so far. One
reason for this could be that the methods chosen for
immunization are insufficient or inappropriate for the
tumour of interest. Malignant melanoma is a cancer of
melanocytes, or pigment cells, that reside in the epider-
mis and hair follicles and produce melanin. There is
convincing evidence that malignant melanoma can
evoke humoral and cellular immune responses in
some patients. The radial growth phase of primary
melanoma, associated with slow and superficial
growth without prominent dermal invasion, is regu-
larly associated with a marked dermal lymphocytic

expression of homing molecules determines the
anatomic localization of these cells81. Tumour cells
that are CLA and CCR4 positive but lack expression
of either L-selectin or CCR7 can be found in the skin,
whereas cells that express both L-selectin and CCR7
are associated with lymph-node involvement. The
CTCL cells almost invariably produce T

H
2-type

cytokines122. Recently, evidence has emerged that
CTCL is associated with marked disruption of the 
T-cell repertoire, indicating that it might be a sys-
temic disease rather than simply a clonal malignancy
of skin-homing T cells123.

Vitiligo. Vitiligo is characterized by complete or partial
depigmentation of the epidermis. It is an acquired 
progressive disorder in which some or all of the
melanocytes that reside in the interfollicular epidermis
and, occasionally, in the hair follicles are selectively
destroyed124. Vitiligo is relatively frequent, occurring in
1–2% of the population. CD8+ T cells specific for anti-
gens that are uniquely expressed by melanocytes are fre-
quently seen in these patients, leading to the suggestion

Box 1 | Vaccinating against smallpox in atopic patients

Smallpox (variola major) typically enters the host through the oropharynx, invades 

the mucosal epithelium, and migrates to regional lymph nodes, and then to the spleen,

the bone marrow and other lymph nodes, where viral replication occurs151. After an

incubation period of 12–14 days, virus enters the blood within leukocytes, which seed

the skin and produce the characteristic skin lesions (pox), whereas most other tissues 

are spared. The fact that virus seems to travel in leukocytes that specifically exit blood

vessels in the papillary dermis indicates that variola virus preferentially associates with

leukocytes that can home to skin; alternatively, it might be that only skin tissues can

support the subsequent replication steps that are required for lesion formation.

Protective vaccination with vaccinia virus depends on delivery of the virus to the

epidermis by a technique known as scarification, leading to an epidermal ‘pox’ reaction

— a cutaneous T-cell-mediated delayed-type hypersensitivity reaction presumably

involving vaccinia-virus-specific skin-homing T cells. Both subcutaneous and

intramuscular vaccinations fail to provoke a pox reaction and do not effectively 

incite neutralizing antibodies or vaccinia-virus-specific cytotoxic T cells152.

Patients with either active or quiescent atopic dermatitis are at risk after

immunization for the development of eczema vaccinatum, which results from an

inability of the host to control the spread of virus from the inoculation site, and is

associated with substantial morbidity and mortality107,153. We hypothesize that

atopic individuals have defects in both innate and acquired immune responses 

to vaccinia virus. Atopic patients preferentially generate T helper 2 (T
H

2)-cell

responses to antigens encountered through the skin, and increased levels of the

T
H

2-type cytokine interleukin-4 (IL-4) can be detected in both affected and

unaffected skin154. Ectromelia (mousepox) virus genetically engineered to produce

IL-4 results in a lethal disease in mice that are normally resistant to unmodified

ectromelia, indicating a role for this cytokine in restricting immune responses 

to pox viruses155. Production of T
H

1-type cytokines, such as interferon-γ, and

cytotoxic T-cell functions are also impaired in patients with atopic dermatitis91,156.

T-cell homing might be dysfunctional in these patients as well. In mice, the

generation of T
H

1-type, but not T
H

2-type, cytokines, is associated with 

a skin-homing phenotype157. The presence of skin-homing T
H

2 cells in atopic

patients might represent an uncoupling of this association158. Surprisingly, even

innate immunity might be impaired in these patients114. The production of IL-18 

is increased in atopic dermatitis159, and keratinocytes from patients with atopic

dermatitis produce a different array of cytokines and chemokines than do

keratinocytes from non-atopic individuals160–162.
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Protocols to enhance DC migration to peripheral lymph
nodes are under investigation149. It is also important to
consider the effects of vaccination strategies on DC acti-
vation, as antigen presentation by immature DCs has
been shown to stimulate antigen-specific inhibition of
effector T-cell functions93,150.

Conclusions

Investigation of leukocyte trafficking to the skin has
provided insight into the role of primary, secondary
and tertiary immune surveillance in normal cuta-
neous immune function and in the development of
inflammatory skin diseases. The few disorders that
we have discussed in detail are only a subset of clini-
cally important T-cell-mediated skin diseases, which
also include drug eruptions, alopecia areata, lichen
planus and many others. The number and diversity of
these diseases are testament to how many things can
potentially go wrong in a complex system such as
cutaneous immune surveillance. At the same time, it
is extraordinary that the cutaneous immune system
works as well as it does most of the time. The concept
that exaggerated or inappropriate activity of an
important immune-surveillance mechanism can
cause organ-specific diseases might extend to inflam-
matory bowel disease and asthma, which occur at two
other epithelial-cell interfaces with the environment.
The challenge will be to design therapies that target
the elements of cutaneous immune surveillance that
are overactive in specific diseases of the skin or other
organs, while leaving intact those functions that are
central to survival in a hostile world filled with
opportunistic pathogens.

reaction, sometimes resulting in partial tumour
destruction126–128. Clonal expansion of T cells occurs in
regressing primary melanoma, and lymphocytes
explanted from such lesions are cytotoxic in vitro to
autologous melanoma cells129–132. Although a rapid
lymphocytic infiltrate in the vertical growth phase
(where rapid growth and prominent dermal invasion
occur) of primary melanoma occurs less frequently,
this response is correlated with prolonged survival and
a reduced incidence of metastatic disease133–135.

Many strategies to enhance antimelanoma immu-
nity are under investigation at present, based on whole
tumour cells or defined tumour antigens136–144. In the
development of such protocols, relatively little atten-
tion has been paid to the route of vaccination
used145–147. We would predict that immunization
through the skin would generate a skin-homing effec-
tor T-cell response, but might not be expected to target
metastatic tumours in the lungs or gastrointestinal
tract efficiently. Under normal circumstances, antime-
lanoma T-cell responses might first be expected to
develop in the local skin-draining lymph nodes and
should lead to the generation of skin-homing memory
effector cells. Indeed, IL-2 therapy (which expands and
activates pre-existing memory effector cell populations)
and DC vaccine therapies result in more rapid responses
to the cutaneous metastases of melanoma than to
metastases elsewhere148. For immunization with
melanoma-antigen-pulsed DCs, if they are injected into
the skin, they could traffic through afferent lymphatics
to draining lymph nodes, generating skin-homing
memory effector cells. Injected intravenously, however,
their migration patterns remain largely unknown.
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