
Proc. of the ICONIP Conference (International Conference on Neural Information Processing), Workshop on Artificial Immune
Systems, vol. 3, pp. 1464-1468, Singapura 18-22 November, 2002.

IMMUNE, SWARM, AND EVOLUTIONARY ALGORITHMS
PART I: BASIC MODELS

Leandro Nunes de Castro {lnunes@dca.fee.unicamp.br}

http://www.dca.fee.unicamp.br/~lnunes
Computer and Electrical Engineering School (FEEC)

State University of Campinas (Unicamp), Brazil

ABSTRACT

These two papers have three main aims. First (Part I), to
review the general algorithms of immune, swarm and
evolutionary systems. Second (Part II), to present a
philosophical discussion about the similarities and
differences between these paradigms, in terms of
components, architecture, adaptation, interactions, and
metaphors. Finally (Part II), to highlight the main features
embodied in each approach, such that avenues for the
creation of hybrid models can be suggested.

1. INTRODUCTION

All the algorithms to be discussed have in common a
biological motivation and some application domains. This
paper is divided into two parts – Part I and Part II – that
describe the basic algorithms of each paradigm, and depict
similarities and differences among them.

The algorithms are presented in a descriptive instead
of mathematical form. No effort is made in the direction
of presenting a large bibliographical survey, but (some of)
the main textbooks of each field will be referenced as
appropriate.

The focus of this part of the paper is on the immune
paradigm, which, to date, still lacks a more thorough
presentation.

2. EVOLUTIONARY ALGORITHMS

Evolution can be viewed as a change in the genetic
composition of a population of individuals over time. In a
simplified form, evolution is a result of the successive
processes of reproduction and genetic variation followed
by natural selection, which allows the fittest individuals to
survive and reproduce, thus propagating their genetic
material to future generations.

By mimicking the process of natural evolution,
researchers developed the evolutionary algorithms (EA),
which are based on the collective adaptability within a
population of individuals, each of which represents a
search point in the space of potential solutions to a given
problem. In order for an evolutionary algorithm to work, a

population of candidate solutions is initialized, and it
evolves towards increasingly better regions of the search
space by means of selection, reproduction and genetic
variation mechanisms. The environment in which the
population evolves is defined by the aim of the search,
and delivers an information, termed fitness, that quantifies
how good is an individual. The selection process favors
the reproduction of individuals of higher fitness, and a
recombination mechanism allows the mixing of parental
information while passing it to their descendants. Finally,
mutation introduces novelties in the population.

There are three main types of evolutionary algorithms
[1], [2]: 1) evolution strategies; 2) genetic algorithms, and
3) evolutionary programming. Note that some authors
consider genetic programming and classifier systems as
other branches of the evolutionary algorithms; a
discussion that will not be pursued here.

From a practical perspective, evolutionary algorithms
are aimed at performing a search to identify an
approximation of an (global) optimum of an objective
function. The search is performed by evolving a
population of individuals represented, in most cases,
according to the application domain and type of
evolutionary algorithm. The individuals of the population
correspond to chromosomes that during the evolutionary
process are allowed to suffer genetic variation and/or
exchange genetic material. Most EAs follow the same
standard sequence of steps, as described in Algo 1.

1. Initialization: randomly initialize a population of
individuals.

2. Generation loop: apply the following evolutionary
procedures of adaptation,

2.1 Selection: individuals are selected for survival and
reproduction according to their fitness.

2.2 Reproduction and genetic variation: new
individuals are created by recombining and/or
introducing genetic variation into the selected
individuals.

2.3 Fitness evaluation: evaluate the fitness of each new
individual in the population.

3. Cycle: repeat Step 2 until a given convergence criterion
is met.

Algo 1: Standard evolutionary algorithm.

After Step 2 has been completed, a generation is said to
have occurred, i.e., individuals reproduced giving rise to a
new generation of individuals (offspring), and the process
cycles.

3. SWARM ALGORITHMS

The expression “swarm intelligence” was coined in the
late 1980’s to refer to cellular robotic systems in which a
collection of simple agents in an environment interact
according to local rules. Several other authors have
proposed and used similar definitions for swarm
intelligence, such as:

“Swarm intelligence is a property of systems of
unintelligent agents of limited individual
capabilities exhibiting collectively intelligent
behaviors”. [8]
“[Swarm intelligence is] any attempt to design
algorithms or distributed problem-solving devices
inspired by the collective behavior of social insect
colonies and other animal societies.” ([3]; p. 7).
In [7], the authors use the concept of a swarm in an

even less restrictive form as a general expression that
refers to any loosely structured collection of interacting
elements.

Two main types of swarm intelligence algorithms can
be found in the literature, namely ant colony optimization
(ACO) [3], and particle swarm optimization (PSO) [7]. In
the ACO paradigm, the authors showed how the very
simple processes of foraging for food in ants could be
used to solve combinatorial optimization problems. In
contrast, the PSO algorithm simulates the ability of human
societies to process knowledge. PSO algorithms also
demonstrated to be powerful tools to solve optimization
problems.

3.1. Particle Swarm Optimization

The particle swarm optimization algorithm was introduced
to study social and cognitive behavior, but it has been
largely applied as a problem-solving technique in
engineering and computer science. There are two main
versions of the PSO algorithm: a binary and a real-valued
version. With the exception of the representation, the two
versions of the algorithm are very much the same, thus
only the real-valued (most popular) version will be
discussed here.

The particle swarm approach assumes a population of
individuals represented as binary strings or real-valued
vectors – particles, which suffer an iterative procedure of
adaptation to their environment. It also assumes that these
individuals are social, what implies that they are capable
of interacting with other individuals within a given

neighborhood. The description given in this section
follows that of [7].

There are two main types of information available to
each individual of the population. The first is their own
past experiences, and the second is the knowledge about
how individuals around them have performed. The
authors likened these two types of information to the
individual learning and cultural transmission.

Individuals tend to be influenced by its success along
its past history and also by the success of any individual
in its neighborhood, i.e., with which it interacts. To these
‘schemes of interactions’ between individuals, the authors
termed sociometric principles. Individuals can interact
with each other in a number of ways. The simplest form is
a binary interaction, where the individual interacts with its
two nearest neighbors. Any number k of nearest neighbors
can be used. If the number of nearest neighbors is less
than the total number of individuals in the population,
then this sociometric principle is called lbest, else (if
k = N) it is called gbest. Conceptually, gbest connects all
the individuals together, what means that its social
interaction is maximal. In contrast, lbest results in a local
neighborhood for the individual.

The authors claim that the binary particle swarm
algorithm can be interpreted as a qualitative or
quantitative social optimization algorithm, while the real-
valued (continuous) version of PSO is a truly numeric
optimization algorithm. In the latter version, the PSO
searches for optima in Rn, where n is the dimension of the
search space.

The continuous version of PSO assumes individuals as
points in a space, and the change over time is represented
as movements of the points, now defined as particles. A
psychological system is viewed as an information
processing function, and each coordinate of a particle in
the search space corresponds to a psychological measure.
Forgetting and learning are viewed respectively, as an
increase or a decrease in the value of a given coordinate.

Assume that the position of a particle i is given by xi
and its velocity by vi. The velocity is a vector of numbers
that are added to the position coordinates of the particle in
order to move it throughout the search space along the
iterations (t is the time index):

xi(t) = xi(t−1) + vi(t) (1)
The social-psychological theory used as inspiration to

develop the PSO algorithm suggests that individuals
moving along a sociocognitive space should be influenced
by their own previous behavior and by the successes of its
neighbors. It is important to note that neighborhood is
related to the topologic space that defines the sociometric
structure of the population, not to the distance between
individuals in the parameter space. In both versions
(binary and continuous) of the algorithm, a neighborhood
is defined for each individual based on its position in the

topological population array. The population array is
usually implemented as a ring structure, with the last
member being a neighbor of the first one.

As the particles are moving in the space, the direction
of movement is a function of its current position and
velocity, the location of the individual’s current best
success pi, and the best position found by any member of
the neighborhood pg:

xi(t) = f(xi(t−1), vi(t−1), pi, pg) (2)
The change vi in the trajectory of a particle is a

function of the difference between the individual’s
previous best and current positions, and the difference
between the neighborhood’s best and the current
individual’s position. The formula for changing the
velocity assumes continuous variables:
 vi(t) = vi(t−1) + ϕ1(pi − xi(t−1)) + ϕ2(pg − xi(t−1)) (3)
 In order to avoid that this system explodes when the
particles’ oscillations become too large, the velocity of the
particles is damped by a factor Vmax:

if vid > Vmax, then vid = Vmax. (4)
if vid < −Vmax, then vid = −Vmax. (5)

The general PSO algorithm is summarized in Algo 2.

1. Initialization: randomly initialize a population of
particles.

2. Population loop: for each particle, do:
2.1 Goodness evaluation and update: evaluate the

‘goodness’ of the particle. If its goodness is
greater than its best goodness so far, then this
particle becomes the best particle found so far.

2.2 Neighborhood evaluation: if the goodness of this
particle is the best among all its neighbors, then
this particle becomes the best particle of the
whole neighborhood.

2.3 Determine vi: apply equation (3).
2.4 Particle update: apply the updating rule given by

equation (1).
3. Cycle: repeat Step 2 until a given convergence criterion

is met.

Algo 2: Standard PSO algorithm.

3.2. Ant Colony Optimization

The other branch of swarm intelligence to be studied in
this paper is composed of the so-called ant algorithms.
Ant algorithms are multi-agent systems in which the
behavior of each single agent, called artificial ant or
simply ant, is inspired by the behavior of real ants [5].
The focus here will be on the ant colony optimization
(ACO) algorithm, which by itself is a sub-branch of ant
systems.

ACO algorithms take into account the fact that many
ant species have trail-laying trail-following behavior when
foraging. Individual ants deposit a chemical substance

called pheromone as they move from a food source to
their nest, and foragers follow the pheromone trail. An
important aspect of the foraging strategies of ant colonies
is that the collective action of many ants results in the
location of the shortest path between a food source and a
nest [3]. The basic idea underlying the ACO algorithms is
that good ‘solutions’ (usually corresponding to paths from
the nest to the food source) are reinforced by a virtual
pheromone trail laid by individual ants. In addition,
pheromones evaporate allowing the exploration of other
food sources.

ACO algorithms are usually applied to discrete
(combinatorial) optimization problems. Assuming that the
problem to be optimized can be represented by a graph,
the general ACO algorithm can be described as in Algo 3.

1. Initialization: assign the same initial pheromone value
to each edge of the graph, and randomly place an ant in
a location of the search space.

2. Population loop: for each ant, do:
2.1 Probabilistic transition rule: according to a given

probabilistic transition rule, move an ant over the
space so that a solution to the problem is built.

2.2 Goodness evaluation: evaluate the goodness of
the solution obtained by this ant.

2.3 Pheromone updating: update the pheromone
level of each edge by reinforcing good solutions.
Reduce the pheromone level of each edge
(evaporation).

3. Cycle: repeat Step 2 until a given convergence criterion
is met.

Algo 3: Standard ACO algorithm.

4. ARTIFICIAL IMMUNE SYSTEMS

Artificial immune systems (AIS) have been defined as
adaptive systems inspired by the immune system and
applied to problem solving [4].

In a simplified form, to design an AIS it is necessary
to choose an appropriate shape-space for the components
of the system, one or more affinity measure(s), and an
immune algorithm.

The shape-space is a formalism used to create abstract
(‘artificial’) representations for the components of the
immune system. The ‘shape’ of an immune cell or
molecule corresponds to all the features required to
quantify interactions between the cell or molecule and the
environment, and also with other elements of the system.
There are four main types of shape-spaces: Euclidean or
real-valued, Hamming, Integer, and Symbolic. In
Euclidean shape-spaces the elements of the system are
represented as real-valued vectors. In Hamming shape-
spaces the elements of the system are attribute strings
built out of a finite alphabet. In Integer shape-spaces, cells
and molecules are represented as integer values. (Note
that Integer shape-spaces are a particular case of

Hamming shape-spaces.) Symbolic shape-spaces use
different types of attributes to represent a single element,
for example, an integer value and a string such as ‘color’.

There are two main types of interactions that can be
performed by an element of an artificial immune system.
One is the interaction with the environment. For example,
an AIS can be used as a pattern recognition tool, thus the
‘artificial immune cells’ are used to recognize a set (or
sets) of ‘artificial antigens’ (patterns). In this case, the
degree of recognition, known as the affinity between the
immune cell and the antigen, is measured via a function
that quantifies the strength of the match between the two.
If we assume that two cells interact to the extent their
‘shapes’ are similar, then a similarity measure can be used
according to the shape-space adopted. As an example,
assume an immune cell with the following shape
Ab = [1,0,0,0,1] in a binary Hamming shape-space, and an
antigen with the following shape Ag = [0,1,1,1,1]. If
affinity is directly proportional to their similarity, then the
expression L − Hamming distance is a suitable measure to
quantify immune recognition, where L is the length of the
string. Their affinity in this case is Aff = 5 − 4 = 1. There
are several types of affinity measures, which usually vary
according to the shape-space adopted, which by itself is
usually defined by the problem in hand.

The last ‘building block’ of artificial immune systems
corresponds to the immune algorithms. There are a
number of different algorithms that can be applied to
many domains, from data analysis to autonomous
navigation. These immune algorithms were inspired by
works on theoretical immunology and several processes
that occur within the immune system. They can be
classified as population-based and network-based immune
algorithms. In population-based algorithms, the elements
of the system are not connected with each other, meaning
that they only interact directly with the environment.
Interactions with other elements of the system can only be
performed indirectly, via, for example, a reproductive
operator. In network-based AIS by contrast, some (or all)
elements of the system are interconnected. This way, there
are two levels of interaction within this system: with the
environment and with other elements in the system.

4.1. Immune Algorithms

In order not to overload the text with descriptions of
several immune algorithms, the focus will be given to two
population-based AIS (negative and clonal selection
algorithms), and to two types of network-based AIS
(continuous and discrete immune networks).

The main role played by the immune system is to
protect our organisms against infectious diseases (caused
by viruses, bacteria, etc.), and to eliminate debris and mal-
functioning cells. To perform these functions, the immune
system has to be able to distinguish between our own cells

(known as self) and those elements that do not belong to
the organism itself (known as nonself). One of the
processes by which the immune system differentiates self
from nonself (self/nonself discrimination) is termed
negative selection. This gave rise to the negative selection
algorithm. After distinguishing between self and nonself,
the immune system has to perform an immune response in
order to eliminate the nonself substances. Clonal selection
is the name given to a theory that explains how the
immune cells and molecules cope with invading nonself
elements, known as antigens.

Assuming that the set of self elements is known, the
standard negative selection algorithm aims at generating
another set of immune cells, known as detectors, that
recognizes any cell (pattern) but those belonging to the
self set. The algorithm is summarized in Algo 4.

1. Initialization: randomly generate a number of candidate
detectors (attribute strings).

2. Censoring: while a set of detectors of a given size has
not yet been produced, do:
2.1 Affinity evaluation: determine the affinity

between every self and a candidate detector.
2.2 Selection: if the candidate detector recognizes

any element of the self this candidate is
eliminated. Else, place this candidate detector in
the detector set.

3. Monitoring: after the set of detectors has been
generated, monitor a new set of self for any variation. It
means that if any element of the detector set matches
an element of the new self-set, then a nonself element
was detected.

Algo 4: Standard negative selection algorithm.

The theory known as clonal selection is used to
explain how the immune system ‘fights’ against an
antigen. When a bacterium invades our organism, it starts
multiplying and damaging our cells. One form the
immune system found to cope with this replicating antigen
was by replicating the immune cells successful in
recognizing and fighting against this disease-causing
element. Those cells capable of recognizing the antigen
reproduce themselves asexually in a way proportional to
their degree of recognition: the better the antigenic
recognition, the higher the number of offspring (clones)
generated. During the process of cell division
(reproduction), individual cells suffer a mutation that
allows them to become more adapted to (increase affinity
with) the antigen recognized: the higher the affinity of the
parent cell, the lower the mutation they suffer. Assuming
in this case a set of antigens to be recognized, a basic
clonal selection algorithm, named CLONALG, works as
in Algo 5.

The other class of immune algorithms is composed of
the so-called immune networks. In the year 1974, N. Jerne
[6] hypothesized that the immune cells and molecules are
capable of recognizing each other in addition to

recognizing invading antigens. This idea had a great
impact on immunology at that time because as a result of
this internal recognition process the immune system
would present a dynamic behavior even if it is not being
stimulated by an external invader (antigen).

1. Initialization: randomly initialize a repertoire
(population) of attribute strings (immune cells).

2. Population loop: for each antigen, do:
2.1 Selection: select those cells whose affinities with

the antigen are greater.
2.2 Reproduction and genetic variation: generate

copies of the immune cells: the better each cell
recognizes the antigen, the more copies are
produced. Mutate (perform variations) in each
cell inversely proportional to their affinity: the
higher the affinity, the smaller the mutation rate.

2.3 Affinity evaluation: evaluate the affinity of each
mutated cell with the antigen.

3. Cycle: repeat Step 2 until a given convergence criterion
is met.

Algo 5: Standard clonal selection algorithm.

According to the immune network theory, immune
cells have portions of their receptor molecules that can be
recognized by other immune cells in a way similar to the
recognition of an invading antigen. This results in a
network of communication (recognition) between immune
cells. When an immune cell recognizes an antigen or
another immune cell, it is stimulated. On the other hand,
when an immune cell is recognized by another immune
cell, it is suppressed. The sum of the stimulation and
suppression received by the network cells, plus the
stimulation by the recognition of an antigen corresponds
to the stimulation level S of a cell, as described by
Equation 6:

S = Nst − Nsup + As, (6)
where Nst corresponds to the network stimulation, Nsup is
the network suppression, and As corresponds to the
antigenic stimulation.

1. Initialization: initialize a network of immune cells.
2. Population loop: for each antigen, do:

2.1 Antigenic recognition: match network cells
against the antigen.

2.2 Network interactions: match network cells
against network cells.

2.3 Metadynamics: introduce new cells into the
network and eliminate useless ones (based on a
certain criterion).

2.4 Stimulation level: evaluate the stimulation level
of each network cell taking into account the
results of the previous steps (Equation (6)).

2.5 Network dynamics: update the network’s
structure and free parameters according to the
stimulation level of individual cells.

3. Cycle: repeat Step 2 until a given convergence
criterion is met.

Algo 6: General immune network algorithm.

The stimulation level of an immune cell is going to
determine its probability of reproduction and genetic
variation. There are two main types of immune network
models: continuous and discrete. Continuous immune
networks have their repertoires of cells governed by one
or more sets of ordinary differential equations (ODE),
each of which corresponds to the variation in number and
affinity of a given immune cell. Discrete immune
networks are governed by a difference equation that is
used in an iterative procedure of adaptation controlling the
number and affinities of individual cells. A general
immune network algorithm can be proposed as in Algo 6.

5. SUMMARY

This first part of the paper provided a descriptive review
of evolutionary, swarm and immune approaches, focusing
on the main algorithms and ideas of each paradigm. The
algorithms were standardized (portions of the algorithms
are usually modified, skipped, and added in particular
studies) so as to make it possible a general discussion
about the similarities and differences of the approaches, to
be presented in the next part (Part II) of this work.

ACKNOWLEDGMENTS

The author thanks CNPq (Profix, Proc. n. 540396/01-0)
for the financial support.

 6. REFERENCES

[1] Bäck, T., Fogel, D. B. & Michalewicz, Z. (2000a),

Evolutionary Computation 1 Basic Algorithms and
Operators, Institute of Physics Publishing (IOP), Bristol
and Philadelphia.

[2] Bäck, T., Fogel, D. B. & Michalewicz, Z. (2000b),
Evolutionary Computation 2 Advanced Algorithms and
Operators, Institute of Physics Publishing (IOP), Bristol
and Philadelphia.

[3] Bonabeau, E., Dorigo, M. & Theraulaz, G. (1999), Swarm
Intelligence From Natural to Artificial Systems, Oxford
University Press.

[4] de Castro, L. N. & Timmis, J. (2002), Artificial Immune
Systems: A New Computational Intelligence Approach,
Springer-Verlag, London.

[5] Dorigo, M. & Di Caro, G. (1999), “The Ant Colony
Optimization Meta-Heuristic”, In New Ideas in
Optimization, D. Corne, M. Dorigo & F. Glover (eds.),
McGraw-Hill, pp. 11-32.

[6] Jerne, N. K. (1974), “Towards a Network Theory of the
Immune System”, Ann. Immunol. (Inst. Pasteur) 125C, pp.
373-389.

[7] Kennedy, J., Eberhart, R. & Shi, Y. (2001), Swarm
Intelligence, Morgan Kaufmann.

[8] White T. & Pagurek B. (1998), “Towards Multi-Swarm
Problem Solving in Networks”, Proc. of the Third
International Conference on Multi-Agent Systems (ICMAS
'98), pp 333-340.

