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ABSTRACT 
 
These two papers have three main aims. First (Part I), to 
review the general algorithms of immune, swarm and 
evolutionary systems. Second (Part II), to present a 
philosophical discussion about the similarities and 
differences between these paradigms, in terms of 
components, architecture, adaptation, interactions, and 
metaphors. Finally (Part II), to highlight the main features 
embodied in each approach, such that avenues for the 
creation of hybrid models can be suggested. 
 

1.  INTRODUCTION 
 
All the algorithms to be discussed have in common a 
biological motivation and some application domains. This 
paper is divided into two parts – Part I and Part II – that 
describe the basic algorithms of each paradigm, and depict 
similarities and differences among them.  

The algorithms are presented in a descriptive instead 
of mathematical form. No effort is made in the direction 
of presenting a large bibliographical survey, but (some of) 
the main textbooks of each field will be referenced as 
appropriate. 

The focus of this part of the paper is on the immune 
paradigm, which, to date, still lacks a more thorough 
presentation.  
 

2.  EVOLUTIONARY ALGORITHMS 
 
Evolution can be viewed as a change in the genetic 
composition of a population of individuals over time. In a 
simplified form, evolution is a result of the successive 
processes of reproduction and genetic variation followed 
by natural selection, which allows the fittest individuals to 
survive and reproduce, thus propagating their genetic 
material to future generations.  

By mimicking the process of natural evolution, 
researchers developed the evolutionary algorithms (EA), 
which are based on the collective adaptability within a 
population of individuals, each of which represents a 
search point in the space of potential solutions to a given 
problem. In order for an evolutionary algorithm to work, a 

population of candidate solutions is initialized, and it 
evolves towards increasingly better regions of the search 
space by means of selection, reproduction and genetic 
variation mechanisms. The environment in which the 
population evolves is defined by the aim of the search, 
and delivers an information, termed fitness, that quantifies 
how good is an individual. The selection process favors 
the reproduction of individuals of higher fitness, and a 
recombination mechanism allows the mixing of parental 
information while passing it to their descendants. Finally, 
mutation introduces novelties in the population.  

There are three main types of evolutionary algorithms 
[1], [2]: 1) evolution strategies; 2) genetic algorithms, and 
3) evolutionary programming. Note that some authors 
consider genetic programming and classifier systems as 
other branches of the evolutionary algorithms; a 
discussion that will not be pursued here.  

From a practical perspective, evolutionary algorithms 
are aimed at performing a search to identify an 
approximation of an (global) optimum of an objective 
function. The search is performed by evolving a 
population of individuals represented, in most cases, 
according to the application domain and type of 
evolutionary algorithm. The individuals of the population 
correspond to chromosomes that during the evolutionary 
process are allowed to suffer genetic variation and/or 
exchange genetic material. Most EAs follow the same 
standard sequence of steps, as described in Algo 1. 

1. Initialization: randomly initialize a population of 
individuals. 

2. Generation loop: apply the following evolutionary 
procedures of adaptation, 

2.1 Selection: individuals are selected for survival and 
reproduction according to their fitness. 

2.2 Reproduction and genetic variation: new 
individuals are created by recombining and/or 
introducing genetic variation into the selected 
individuals. 

2.3 Fitness evaluation: evaluate the fitness of each new 
individual in the population. 

3. Cycle: repeat Step 2 until a given convergence criterion 
is met. 

Algo 1: Standard evolutionary algorithm.



 

After Step 2 has been completed, a generation is said to 
have occurred, i.e., individuals reproduced giving rise to a 
new generation of individuals (offspring), and the process 
cycles.  
 

3.  SWARM ALGORITHMS 
 
The expression “swarm intelligence” was coined in the 
late 1980’s to refer to cellular robotic systems in which a 
collection of simple agents in an environment interact 
according to local rules. Several other authors have 
proposed and used similar definitions for swarm 
intelligence, such as: 

“Swarm intelligence is a property of systems of 
unintelligent agents of limited individual 
capabilities exhibiting collectively intelligent 
behaviors”. [8] 
“[Swarm intelligence is] any attempt to design 
algorithms or distributed problem-solving devices 
inspired by the collective behavior of social insect 
colonies and other animal societies.” ([3]; p. 7).  
In [7], the authors use the concept of a swarm in an 

even less restrictive form as a general expression that 
refers to any loosely structured collection of interacting 
elements.  

Two main types of swarm intelligence algorithms can 
be found in the literature, namely ant colony optimization 
(ACO) [3], and particle swarm optimization (PSO) [7]. In 
the ACO paradigm, the authors showed how the very 
simple processes of foraging for food in ants could be 
used to solve combinatorial optimization problems. In 
contrast, the PSO algorithm simulates the ability of human 
societies to process knowledge. PSO algorithms also 
demonstrated to be powerful tools to solve optimization 
problems. 
 
3.1.  Particle Swarm Optimization 
 
The particle swarm optimization algorithm was introduced 
to study social and cognitive behavior, but it has been 
largely applied as a problem-solving technique in 
engineering and computer science. There are two main 
versions of the PSO algorithm: a binary and a real-valued 
version. With the exception of the representation, the two 
versions of the algorithm are very much the same, thus 
only the real-valued (most popular) version will be 
discussed here. 

The particle swarm approach assumes a population of 
individuals represented as binary strings or real-valued 
vectors – particles, which suffer an iterative procedure of 
adaptation to their environment. It also assumes that these 
individuals are social, what implies that they are capable 
of interacting with other individuals within a given 

neighborhood. The description given in this section 
follows that of [7]. 

There are two main types of information available to 
each individual of the population. The first is their own 
past experiences, and the second is the knowledge about 
how individuals around them have performed. The 
authors likened these two types of information to the 
individual learning and cultural transmission.  

Individuals tend to be influenced by its success along 
its past history and also by the success of any individual 
in its neighborhood, i.e., with which it interacts. To these 
‘schemes of interactions’ between individuals, the authors 
termed sociometric principles. Individuals can interact 
with each other in a number of ways. The simplest form is 
a binary interaction, where the individual interacts with its 
two nearest neighbors. Any number k of nearest neighbors 
can be used. If the number of nearest neighbors is less 
than the total number of individuals in the population, 
then this sociometric principle is called lbest, else (if 
k = N) it is called gbest. Conceptually, gbest connects all 
the individuals together, what means that its social 
interaction is maximal. In contrast, lbest results in a local 
neighborhood for the individual.  

The authors claim that the binary particle swarm 
algorithm can be interpreted as a qualitative or 
quantitative social optimization algorithm, while the real-
valued (continuous) version of PSO is a truly numeric 
optimization algorithm. In the latter version, the PSO 
searches for optima in Rn, where n is the dimension of the 
search space.  

The continuous version of PSO assumes individuals as 
points in a space, and the change over time is represented 
as movements of the points, now defined as particles. A 
psychological system is viewed as an information 
processing function, and each coordinate of a particle in 
the search space corresponds to a psychological measure. 
Forgetting and learning are viewed respectively, as an 
increase or a decrease in the value of a given coordinate.  

Assume that the position of a particle i is given by xi 
and its velocity by vi. The velocity is a vector of numbers 
that are added to the position coordinates of the particle in 
order to move it throughout the search space along the 
iterations (t is the time index): 

xi(t) = xi(t−1) + vi(t)       (1) 
The social-psychological theory used as inspiration to 

develop the PSO algorithm suggests that individuals 
moving along a sociocognitive space should be influenced 
by their own previous behavior and by the successes of its 
neighbors. It is important to note that neighborhood is 
related to the topologic space that defines the sociometric 
structure of the population, not to the distance between 
individuals in the parameter space. In both versions 
(binary and continuous) of the algorithm, a neighborhood 
is defined for each individual based on its position in the 



 

topological population array. The population array is 
usually implemented as a ring structure, with the last 
member being a neighbor of the first one. 

As the particles are moving in the space, the direction 
of movement is a function of its current position and 
velocity, the location of the individual’s current best 
success pi, and the best position found by any member of 
the neighborhood pg: 

xi(t) = f(xi(t−1), vi(t−1), pi, pg)      (2) 
The change vi in the trajectory of a particle is a 

function of the difference between the individual’s 
previous best and current positions, and the difference 
between the neighborhood’s best and the current 
individual’s position. The formula for changing the 
velocity assumes continuous variables: 
  vi(t) = vi(t−1) + ϕ1(pi − xi(t−1)) + ϕ2(pg − xi(t−1))        (3) 
 In order to avoid that this system explodes when the 
particles’ oscillations become too large, the velocity of the 
particles is damped by a factor Vmax: 

if vid > Vmax, then vid = Vmax.      (4) 
if vid < −Vmax, then vid = −Vmax.      (5) 

The general PSO algorithm is summarized in Algo 2. 

1. Initialization: randomly initialize a population of 
particles. 

2. Population loop: for each particle, do: 
2.1 Goodness evaluation and update: evaluate the 

‘goodness’ of the particle. If its goodness is 
greater than its best goodness so far, then this 
particle becomes the best particle found so far. 

2.2 Neighborhood evaluation: if the goodness of this 
particle is the best among all its neighbors, then 
this particle becomes the best particle of the 
whole neighborhood. 

2.3 Determine vi: apply equation (3). 
2.4 Particle update: apply the updating rule given by 

equation (1). 
3. Cycle: repeat Step 2 until a given convergence criterion 

is met. 

Algo 2: Standard PSO algorithm. 

 
3.2.  Ant Colony Optimization 
 
The other branch of swarm intelligence to be studied in 
this paper is composed of the so-called ant algorithms. 
Ant algorithms are multi-agent systems in which the 
behavior of each single agent, called artificial ant or 
simply ant, is inspired by the behavior of real ants [5]. 
The focus here will be on the ant colony optimization 
(ACO) algorithm, which by itself is a sub-branch of ant 
systems. 

ACO algorithms take into account the fact that many 
ant species have trail-laying trail-following behavior when 
foraging. Individual ants deposit a chemical substance 

called pheromone as they move from a food source to 
their nest, and foragers follow the pheromone trail. An 
important aspect of the foraging strategies of ant colonies 
is that the collective action of many ants results in the 
location of the shortest path between a food source and a 
nest [3]. The basic idea underlying the ACO algorithms is 
that good ‘solutions’ (usually corresponding to paths from 
the nest to the food source) are reinforced by a virtual 
pheromone trail laid by individual ants. In addition, 
pheromones evaporate allowing the exploration of other 
food sources. 

ACO algorithms are usually applied to discrete 
(combinatorial) optimization problems. Assuming that the 
problem to be optimized can be represented by a graph, 
the general ACO algorithm can be described as in Algo 3. 

1. Initialization: assign the same initial pheromone value 
to each edge of the graph, and randomly place an ant in 
a location of the search space. 

2. Population loop: for each ant, do: 
2.1 Probabilistic transition rule: according to a given 

probabilistic transition rule, move an ant over the 
space so that a solution to the problem is built. 

2.2 Goodness evaluation: evaluate the goodness of 
the solution obtained by this ant. 

2.3 Pheromone updating: update the pheromone 
level of each edge by reinforcing good solutions. 
Reduce the pheromone level of each edge 
(evaporation). 

3. Cycle: repeat Step 2 until a given convergence criterion 
is met. 

Algo 3: Standard ACO algorithm. 

 
4.  ARTIFICIAL IMMUNE SYSTEMS 

 
Artificial immune systems (AIS) have been defined as 
adaptive systems inspired by the immune system and 
applied to problem solving [4].  

In a simplified form, to design an AIS it is necessary 
to choose an appropriate shape-space for the components 
of the system, one or more affinity measure(s), and an 
immune algorithm.  

The shape-space is a formalism used to create abstract 
(‘artificial’) representations for the components of the 
immune system. The ‘shape’ of an immune cell or 
molecule corresponds to all the features required to 
quantify interactions between the cell or molecule and the 
environment, and also with other elements of the system. 
There are four main types of shape-spaces: Euclidean or 
real-valued, Hamming, Integer, and Symbolic. In 
Euclidean shape-spaces the elements of the system are 
represented as real-valued vectors. In Hamming shape-
spaces the elements of the system are attribute strings 
built out of a finite alphabet. In Integer shape-spaces, cells 
and molecules are represented as integer values. (Note 
that Integer shape-spaces are a particular case of 



 

Hamming shape-spaces.) Symbolic shape-spaces use 
different types of attributes to represent a single element, 
for example, an integer value and a string such as ‘color’. 

There are two main types of interactions that can be 
performed by an element of an artificial immune system. 
One is the interaction with the environment. For example, 
an AIS can be used as a pattern recognition tool, thus the 
‘artificial immune cells’ are used to recognize a set (or 
sets) of ‘artificial antigens’ (patterns). In this case, the 
degree of recognition, known as the affinity between the 
immune cell and the antigen, is measured via a function 
that quantifies the strength of the match between the two. 
If we assume that two cells interact to the extent their 
‘shapes’ are similar, then a similarity measure can be used 
according to the shape-space adopted. As an example, 
assume an immune cell with the following shape 
Ab = [1,0,0,0,1] in a binary Hamming shape-space, and an 
antigen with the following shape Ag = [0,1,1,1,1]. If 
affinity is directly proportional to their similarity, then the 
expression L − Hamming distance is a suitable measure to 
quantify immune recognition, where L is the length of the 
string. Their affinity in this case is Aff = 5 − 4 = 1. There 
are several types of affinity measures, which usually vary 
according to the shape-space adopted, which by itself is 
usually defined by the problem in hand. 

The last ‘building block’ of artificial immune systems 
corresponds to the immune algorithms. There are a 
number of different algorithms that can be applied to 
many domains, from data analysis to autonomous 
navigation. These immune algorithms were inspired by 
works on theoretical immunology and several processes 
that occur within the immune system. They can be 
classified as population-based and network-based immune 
algorithms. In population-based algorithms, the elements 
of the system are not connected with each other, meaning 
that they only interact directly with the environment. 
Interactions with other elements of the system can only be 
performed indirectly, via, for example, a reproductive 
operator. In network-based AIS by contrast, some (or all) 
elements of the system are interconnected. This way, there 
are two levels of interaction within this system: with the 
environment and with other elements in the system.  
 
4.1.  Immune Algorithms 
 
In order not to overload the text with descriptions of 
several immune algorithms, the focus will be given to two 
population-based AIS (negative and clonal selection 
algorithms), and to two types of network-based AIS 
(continuous and discrete immune networks). 

The main role played by the immune system is to 
protect our organisms against infectious diseases (caused 
by viruses, bacteria, etc.), and to eliminate debris and mal-
functioning cells. To perform these functions, the immune 
system has to be able to distinguish between our own cells 

(known as self) and those elements that do not belong to 
the organism itself (known as nonself). One of the 
processes by which the immune system differentiates self 
from nonself (self/nonself discrimination) is termed 
negative selection. This gave rise to the negative selection 
algorithm. After distinguishing between self and nonself, 
the immune system has to perform an immune response in 
order to eliminate the nonself substances. Clonal selection 
is the name given to a theory that explains how the 
immune cells and molecules cope with invading nonself 
elements, known as antigens. 

Assuming that the set of self elements is known, the 
standard negative selection algorithm aims at generating 
another set of immune cells, known as detectors, that 
recognizes any cell (pattern) but those belonging to the 
self set. The algorithm is summarized in Algo 4. 

1. Initialization: randomly generate a number of candidate 
detectors (attribute strings). 

2. Censoring: while a set of detectors of a given size has 
not yet been produced, do: 
2.1 Affinity evaluation: determine the affinity 

between every self and a candidate detector. 
2.2 Selection: if the candidate detector recognizes 

any element of the self this candidate is 
eliminated. Else, place this candidate detector in 
the detector set. 

3. Monitoring: after the set of detectors has been 
generated, monitor a new set of self for any variation. It 
means that if any element of the detector set matches 
an element of the new self-set, then a nonself element 
was detected. 

Algo 4: Standard negative selection algorithm. 

The theory known as clonal selection is used to 
explain how the immune system ‘fights’ against an 
antigen. When a bacterium invades our organism, it starts 
multiplying and damaging our cells. One form the 
immune system found to cope with this replicating antigen 
was by replicating the immune cells successful in 
recognizing and fighting against this disease-causing 
element. Those cells capable of recognizing the antigen 
reproduce themselves asexually in a way proportional to 
their degree of recognition: the better the antigenic 
recognition, the higher the number of offspring (clones) 
generated. During the process of cell division 
(reproduction), individual cells suffer a mutation that 
allows them to become more adapted to (increase affinity 
with) the antigen recognized: the higher the affinity of the 
parent cell, the lower the mutation they suffer. Assuming 
in this case a set of antigens to be recognized, a basic 
clonal selection algorithm, named CLONALG, works as 
in Algo 5. 

The other class of immune algorithms is composed of 
the so-called immune networks. In the year 1974, N. Jerne 
[6] hypothesized that the immune cells and molecules are 
capable of recognizing each other in addition to 



 

recognizing invading antigens. This idea had a great 
impact on immunology at that time because as a result of 
this internal recognition process the immune system 
would present a dynamic behavior even if it is not being 
stimulated by an external invader (antigen).  

1. Initialization: randomly initialize a repertoire 
(population) of attribute strings (immune cells). 

2. Population loop: for each antigen, do: 
2.1 Selection: select those cells whose affinities with 

the antigen are greater. 
2.2 Reproduction and genetic variation: generate 

copies of the immune cells: the better each cell 
recognizes the antigen, the more copies are 
produced. Mutate (perform variations) in each 
cell inversely proportional to their affinity: the 
higher the affinity, the smaller the mutation rate. 

2.3 Affinity evaluation: evaluate the affinity of each 
mutated cell with the antigen. 

3. Cycle: repeat Step 2 until a given convergence criterion 
is met. 

Algo 5: Standard clonal selection algorithm. 

According to the immune network theory, immune 
cells have portions of their receptor molecules that can be 
recognized by other immune cells in a way similar to the 
recognition of an invading antigen. This results in a 
network of communication (recognition) between immune 
cells. When an immune cell recognizes an antigen or 
another immune cell, it is stimulated. On the other hand, 
when an immune cell is recognized by another immune 
cell, it is suppressed. The sum of the stimulation and 
suppression received by the network cells, plus the 
stimulation by the recognition of an antigen corresponds 
to the stimulation level S of a cell, as described by 
Equation 6: 

S = Nst − Nsup + As,          (6) 
where Nst corresponds to the network stimulation, Nsup is 
the network suppression, and As corresponds to the 
antigenic stimulation. 

1. Initialization: initialize a network of immune cells. 
2. Population loop: for each antigen, do: 

2.1 Antigenic recognition: match network cells 
against the antigen. 

2.2 Network interactions: match network cells 
against network cells. 

2.3 Metadynamics: introduce new cells into the 
network and eliminate useless ones (based on a 
certain criterion). 

2.4 Stimulation level: evaluate the stimulation level 
of each network cell taking into account the 
results of the previous steps (Equation (6)). 

2.5 Network dynamics: update the network’s 
structure and free parameters according to the 
stimulation level of individual cells. 

3. Cycle: repeat Step 2 until a given convergence 
criterion is met. 

Algo 6: General immune network algorithm. 

The stimulation level of an immune cell is going to 
determine its probability of reproduction and genetic 
variation. There are two main types of immune network 
models: continuous and discrete. Continuous immune 
networks have their repertoires of cells governed by one 
or more sets of ordinary differential equations (ODE), 
each of which corresponds to the variation in number and 
affinity of a given immune cell. Discrete immune 
networks are governed by a difference equation that is 
used in an iterative procedure of adaptation controlling the 
number and affinities of individual cells. A general 
immune network algorithm can be proposed as in Algo 6. 

 
5.  SUMMARY 

 
This first part of the paper provided a descriptive review 
of evolutionary, swarm and immune approaches, focusing 
on the main algorithms and ideas of each paradigm. The 
algorithms were standardized (portions of the algorithms 
are usually modified, skipped, and added in particular 
studies) so as to make it possible a general discussion 
about the similarities and differences of the approaches, to 
be presented in the next part (Part II) of this work.  
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