
Proc. of the ICONIP Conference (International Conference on Neural Information Processing), Workshop on Artificial Immune Sys-
tems, vol. 3, pp. 1469-1473, Singapura 18-22 November, 2002.

IMMUNE, SWARM, AND EVOLUTIONARY ALGORITHMS
PART II: PHILOSOPHICAL COMPARISONS

Leandro Nunes de Castro {lnunes@dca.fee.unicamp.br}
http://www.dca.fee.unicamp.br/~lnunes

Computer and Electrical Engineering School (FEEC)
State University of Campinas (Unicamp), Brazil

ABSTRACT

In the first part of this paper, the standard evolutionary,
immune, and swarm algorithms were reviewed. This sec-
ond part starts by presenting a philosophical discussion
about some similarities and differences among the various
approaches in terms of their basic components, structure,
knowledge storage, adaptation paradigm, interactions, and
metaphor. Then, the identification of the main features of
each technique is performed in order to shed some light
into how to create hybrid algorithms.

1. SIMILARITIES AND DIFFERENCES

1.1. General Features

All the three approaches under discussion have similar
features. First, they are all composed of a set (or sets) of
individuals that interact with the environment and/or each
other. These individuals are represented using a certain
structure, such as attribute strings, vectors and networks.
All of them present two important and intertwined proper-
ties: self-organization and emergence. There are many
debates within the scientific community regarding a uni-
fied definition of emergence. In evolutionary, swarm and
immune algorithms, it is possible to observe complex be-
haviors emerging out of the interactions of individuals and
the environment, and with each other. The algorithms
only specify how each individual behaves and with whom
it interacts, there is no central control. The result – recog-
nition of a given antigen or optimization of a function – is
an outcome of (emerges from) individual behaviors. In
self-organizing systems, there is no central control; the
‘intention’ of the population is distributed throughout its
members who, by themselves, are unaware of the role
they are playing. Individuals follow simple rules, and a
certain pattern of behavior emerges from the lower-level
behaviors.

1.2. Basic Components

The ‘artificial chromosomes’ in an evolutionary algorithm
can have several types of configuration. The most com-
mon are binary strings used in genetic algorithms. Real-

valued vectors are employed in evolutionary program-
ming and evolution strategies. Genetic programming deals
with evolving computer programs that are represented as
trees.

In particle swarm optimization algorithms, the indi-
viduals of the population (particles) are either binary
strings or real-valued vectors. As ant colony algorithms
are mostly employed to discrete (combinatorial) optimiza-
tion, the individuals of the population (ants) are usually
represented as a string of integer numbers. Another im-
portant component of an ACO algorithm is the pheromone
level of each edge that composes the discrete search prob-
lem.

Artificial immune systems have four main types of
representation: binary, real-valued, integer and symbolic.
However, other structures can be used to represent cells
and molecules in an artificial immune system, such as
DNA sequences.

1.3. Structure

With the exception of network-based artificial immune
systems, in all the other algorithms the components of the
systems are structured around matrices, which represent
populations (of chromosomes), swarms (of particles),
colonies (of ants), or repertoires (of immune cells and
molecules). These matrices can have either fixed or vari-
able sizes. These components are discrete in the sense that
they are not linked to any other element through a connec-
tion. They interact with each other indirectly as will be
discussed later. In PSO algorithms, connections exist be-
tween elements indicating with whom they interact, i.e.,
exchange knowledge. In the case of immune networks, the
components of the system are connected with each other
via a connection link. This link has a strength, similarly to
neural networks, that quantifies the degree of interaction
(similarity or difference) between two elements. Note
however, that the connection strength in neural networks
weights the input signal to the neuron, while the connec-
tion in immune networks quantifies the degree of interac-
tion and thus, they have different meanings and play dif-
ferent roles.

1.4. Knowledge Storage

Knowledge here corresponds to the information carried by
each individual of the population, and that is a result of
their interaction with the environment and each other (ad-
aptation). Therefore, knowledge in all cases is stored in
the basic components of the system, i.e., in individual
chromosomes, in a particle, in an ‘artificial ant’ and the
pheromone level of each edge, and in an attribute string of
an AIS. In the case of immune networks, the connection
strengths among individuals also carry information.

1.5. Adaptation

Adaptation is certainly the most distinct feature of all
paradigms. It corresponds to how the components of the
system vary over time, i.e., how the dynamics (behavior)
of the system changes along the iterative procedures of
adaptation. Two main types of adaptation procedures can
be identified: evolution and learning.

Evolution can be defined as a change in the genetic
composition of a population of individuals during succes-
sive generations, as a result of natural selection acting on
the genetic variation among individuals, and resulting in
the development of new species. From a computational
perspective, an evolutionary algorithm is a population-
based search technique that incorporates reproduction,
genetic variation and selection processes. Learning by
contrast, can be understood as a change in behavior as a
result of previous experience, and interaction with the
environment and other individuals.

As evolutionary algorithms were developed taking in-
spiration from natural evolution, their procedures of adap-
tation are evolutionary in nature. In the case of swarm
algorithms however, the type of adaptive procedure incor-
porated is controversial. For instance, in a comparative
paper [7] between genetic algorithms and particle swarm
optimization, the authors start their work with the follow-
ing sentence: “This paper compares two evolutionary
computation paradigms: genetic algorithms and particle
swarm optimization.” My view is that PSO algorithms do
not belong to the evolutionary paradigm, but to the learn-
ing paradigm.

To give some support to my claim, let us take a look at
equation (1) in Part I of this paper. This general equation
describes how a particle varies (moves around the space)
over the iterative procedure of adaptation. The first impor-
tant aspect to be noticed is that the current coordinate of a
particle is a result of its past coordinate values plus an-
other vector that indicates in which direction and at what
distance the particle is going to move. The vector to be
added to the particle is a function of the previous move of
the particle, the influence of its previous position, the po-

sition of a number of neighbors, its position which led to
the best performance so far, and the position that led to
the best performance so far in the neighborhood, as de-
scribed by equation (3) in Part I. In PSO, particles do not
reproduce; the population of particles does not change in
size even temporarily, and there is also no selection.
Therefore, PSO algorithms cannot belong to the evolu-
tionary paradigm. There cannot be evolution without re-
production and selection (cf [3]).

If one takes a closer look at artificial neural networks,
ANN, (not discussed in these two papers, but another very
important biologically motivated paradigm), it is possible
to notice some similarities between these two approaches:
PSO and ANN. The most remarkable one being the way
particles and connection strengths are updated. In ANN,
the weight vector wi of a given neuron i is updated ac-
cording to the following rule:

wi(t) = wi(t−1) + ∆wi(t) (7)
where ∆wi is the adjustment vector to be added to the neu-
ron weight vector.

The similarities between PSO and ANN can also be
found in the definition of a neighborhood function be-
tween the elements of the system. Alike PSO, in neural
networks the elements of the system are connected to a
number of other elements. There is a remarkable distinc-
tion however, in the sense that the connections in neural
networks can usually assume a number of values, while in
PSO algorithms the connections are either zero or one,
meaning that two individuals interact or not with a given
neighbor. Distinction also exists in the fact that ‘artificial
neurons’ are information-processing elements, while par-
ticles are basically information-storage elements. Con-
cerning neighborhood, some neural network models, such
as Kohonen’s self-organizing maps [12], also take into
account the neighborhood of individual neurons to define
the influence a neuron is going to exert in its neighbors,
similarly to the approach adopted in PSO.

In [2], the authors liken ant colonies to connectionist
systems, supported by the fact that individual ants interact
with each other (indirectly) via pheromone trails. The net-
work in this case, is a network of communication in which
individual elements are not truly, but virtually, connected
with each other. This view is not unique to them; other
authors (e.g., [15]) also defend the viewpoint that ant
colonies can be compared with biological neural
networks. In the comparison made by [2], the authors
liken pheromone trails to synaptic strengths and phero-
mone updating to weight updating. Pheromones are up-
dated by reinforcing paths that lead to good solutions and
iteratively evaporating the trails (Step 1.3 of Algo 3).
Again, there is no reproduction and no selection, thus
ACO algorithms cannot be classified as a type of evolu-
tionary algorithm as well. They belong indeed to the
learning paradigm.

Before turning the discussion to artificial immune sys-
tems, I would like to conclude by saying that I believe
some researchers have been arguing PSO and ACO algo-
rithms are types of evolutionary algorithms because EAs
are population-based strategies used mainly for search
(optimization) purposes. PSO and ACO algorithms share
these same features and main application domain with
EAs, but these are not sufficient to qualify them as evolu-
tionary algorithms. As ACO and PSO do not usually use
any information about desired goals, they belong to the
self-organized learning paradigm.

The case of immune algorithms though, is slightly dif-
ferent. For instance, the negative selection algorithm in-
volves affinity (fitness) evaluation and selection, but does
not involve either reproduction or genetic variation. Is
‘natural selection’ (the main step of negative selection)
sufficient to qualify evolution? My viewpoint is again
‘no’. If the population of individuals does not actually
change (variate), then evolution cannot occur. However,
the negative selection algorithm is also not part of the
learning paradigm, because no adaptation takes place. It is
basically a selection strategy responsible for building a set
of detectors that do not recognize any self individual.

The clonal selection algorithm, in contrast to PSO,
ACO and negative selection, has all the steps involved in
an evolutionary algorithm: reproduction and genetic varia-
tion, affinity (fitness) evaluation, and selection. The ques-
tion remains thus in regards to what is the difference be-
tween a CLONALG and an EA. The differences are sub-
tle. Clonal selection algorithms are primarily based upon
affinity-proportionate reproduction, mutation and selec-
tion. But indeed CLONALG is a type of evolutionary al-
gorithm inspired by the immune system. Due to a lack of
space, I am not going into details as to the differences
between a particular CLONALG implementation and spe-
cific EAs, but a discussion can be found in [6].

The last immune algorithm described is an immune
network model. It is important to note that the algorithm
presented in Algo 6 is generic. There are many variations
of it that use some of the steps described and that incorpo-
rate other steps as well. This is true for all the algorithms
discussed, but for the particular case of immune networks
there seems to be an even greater variety of algorithms.
Without knowing how some of the steps performed by an
immune network are accomplished, it is hard to discuss
which kind of adaptation is involved in immune networks.
However, it is possible to say that immune networks adapt
basically by altering the number and attributes of individ-
ual cells (Steps 1.3 and 1.5 of Algo 6). Some immune
network models present evolutionary procedures of adap-
tation, while others present an adaptation more akin to
learning. Algorithms incorporating a hybrid between
learning and evolution can also be found (e.g., [5]).

It is appropriate to highlight some remarkable differ-
ences between immune and neural networks as well. The

cells in immune networks are information-processing and
storage elements. The computation they perform is by
determining their stimulation level (Equation (6)), which
takes into account the influences exerted by other cells in
the network and by antigens (external stimuli). By con-
trast, artificial neurons perform a linear combination of
the neuron inputs and its weight vectors. The neuron out-
put is the result of the application of an activation function
to this linear combination. In addition, connections in an
immune network correspond to the degree of interaction
between two cells, while in neural networks they quantify
the input stimuli to the neuron. Immune cells are usually
distributed over the space in a way that tends to follow
(mimic) the spatial distribution of the universe of anti-
gens. Artificial neurons are usually connected in a pre-
defined structure (single- and multi-layer feedforward or
recurrent networks). Despite being completely different
types of networks, composed of different units and archi-
tectures, they often share domains of application, such as
pattern recognition and classification. Comparisons be-
tween immune and neural networks can be found in [5].

Immune networks and clonal selection algorithms,
though described to perform pattern recognition in Algos
5 and 6, have also been used in function optimization.

1.6. Interaction with Other Components

In evolutionary algorithms, individual chromosomes in-
teract with each other in an indirect fashion, via crossover
operators and a fitness function. As the fitness function
evaluates the quality of each individual, it serves as a
measure for selecting the individuals that will survive in
detriment of those that will die off.

In PSO algorithms, the particle-updating rule updates
the set of coordinates of a given particle based upon its
coordinates that led to its best performance so far. It also
takes into account a number of structural neighbors of the
particle. This way, there is an exchange of information
among particles in a neighborhood. The goodness func-
tion in PSO algorithms is a bit more restrictive than the
fitness function in EAs. For goodness refers to a compari-
son of the current particle with its previous best set of
coordinates, and with a set of neighbors, while fitness in
EAs is a relative measure usually used to compare an in-
dividual with the whole population.

In ACO algorithms, individual ants interact with each
other to the extent that they leave a virtual pheromone
trail along the path they visited. This trail serves as a sort
of positive feedback (reinforcement) mechanism that
stimulates other ants to follow this path. The goodness of
each ant is evaluated to decide which ant presented the
best performance among all the ants in the colony.

The interaction that exists between the elements of a
negative selection algorithm involves the comparison be-
tween the elements of a set of candidate detectors and the

elements of the self-set. If they match, the candidate de-
tector is eliminated; else it is kept in a set of detectors. In
the monitoring part of Algo 4, detectors are matched
against other elements to monitor for nonself.

Clonal selection algorithms, as inspired by the clonal
expansion of immune cells followed by affinity matura-
tion, do not involve the crossing over of genetic material
between members of the repertoire. Individual cells re-
produce under a cloning procedure, subjected to a high
error, namely somatic hypermutation. Similarly to EAs,
immune cells interact indirectly through their affinity
measures, that quantify how good they are in recognizing
an invading antigen, and only the better ones survive.

Immune networks are composed of a set or sets of in-
terconnected elements, which, as such, interact directly
with each other. A high connection strength value be-
tween two cells means that they have a strong interaction,
and vice-versa. This interaction is embodied in equation
(6) – Step 1.4 of Algo 6.

1.7. Interaction with the Environment

In all algorithms, the interaction of individual elements
with the environment is clear. In evolutionary algorithms,
there is a fitness function that evaluates how good each
individual is regarding the search it is performing. In
swarm algorithms (PSO and ACO) there is a goodness
function that quantifies the quality of the solution ob-
tained by each particle or ant. Immune algorithms have an
affinity measure that indicates how good each immune
cell is at recognizing a given antigen. When these algo-
rithms are used to perform search and optimization, the
affinity function is usually termed fitness function as in
EAs. This is mainly because clonal selection algorithms
and some immune networks are evolutionary in nature,
thus fitness is a suitable name to indicate the quality
measure of individuals. It is also the case to find immune
algorithms that have affinity and fitness measures: affinity
quantifying interactions within the system itself, and fit-
ness quantifying interactions with the environment.

1.8. The Metaphor

What all these algorithms have in common is a develop-
ment inspired by nature. They are all part of a computa-
tional intelligence paradigm broadly referred to as com-
puting with biological metaphors [14].

Computing with biological metaphors can be a result
of two front lines of research. One is by observing how
nature deals with problems and trying to mimic these
problem-solving techniques (inspiration). The other is by
the realization that some models developed by theoretical
biologists and naturalists can be used to solve problems in
many domains (use of models), mainly computer science
and engineering.

Genetic algorithms were developed as a result of the
study of adaptation in natural systems [9]. In [1], the au-
thor theorized that similarity between pairs of individuals
can result in the spread of culture, a model that led to the
proposal of an algorithm to solve optimization problems
[10]. Ant colony optimization algorithms have been in-
spired by the experiments of [8] about the self-organizing
behavior of the Argentine ants while foraging for food.
The inspiration of immune algorithms range from the ap-
plication of theoretical models to computational problems,
to the development of algorithms by studying how the
immune system behaves in some situations [4]. Another
classical example is that of artificial neural networks. By
studying the activity of individual neurons in the nervous
system of human beings, [13] came to develop what is to
date known as the first model of an ‘artificial neuron’.
This model has been widely used and adapted by the
ANN community. As a last example of the use of meta-
phors for computing, there is the case of the simulated
annealing algorithm [11]. Annealing corresponds to a
physical process where a crystal is cooled down from the
liquid phase to the solid phase on a heat bath. If the cool-
ing is done carefully enough, the energy state of the solid
at the end of the cooling stage is at its minimum. The
simulated annealing algorithm is a process analogous and
inspired by the annealing of a crystal.

Despite having been developed using very different
sources of inspiration, the discussion presented about the
algorithms demonstrate some similarities in scientific
thinking. An important issue to be raised is concerned
with the accuracy of the metaphor and its importance for
the understanding of how to implement and study the be-
havior of a particular algorithm. All the approaches re-
viewed (evolutionary, swarm, and immune), have algo-
rithms that can be written in abstract algebraic symbols,
similarly to any other algorithmic process, without requir-
ing a great knowledge of its biological motivation. How-
ever, it was the metaphor that enabled researchers to con-
ceptualize and create a computational tool in the first
place, and it is the metaphor that helps (allows) people to
understand how the algorithms behave. It would be much
more difficult to understand how all the different ap-
proaches work if we disregarded the metaphors that led to
their development.

2. ON THE DESIGN OF HYBRIDS

As one last issue I would like to discuss in this paper,
there is the possibility of integrating one or more of these
strategies in order to create useful hybrids. To do so, it is
important to first remark what are the main features of
each approach.

The idea of using specific mechanisms of one tech-
nique into the other is much more straightforward than the
suggestion of a high-level abstraction of how to hybridize

these techniques. For example, in [7] the authors have
already conceived the use of an elitist strategy, common in
GA applications, to PSO algorithms. But that is not the
line I am going to pursue here. The aim is to identify the
remarkable features of each paradigm and to instigate the
reader about the possibility and benefits of incorporating
the features of one approach into another.

The processes of reproduction with inheritance, ge-
netic variation and selection allow evolutionary algo-
rithms to generate increasingly fitter individuals in an
unknown environment. Particle swarm algorithms are
rooted in the idea that the exchange of information (learn-
ing from previous experience and interactions with
neighbors) is important for the creation of subpopulations
of individuals that share some ‘knowledge’. The process
of sharing information also allows these individuals to
become increasingly fitter to the environment. Ant colony
algorithms are based on the concept of indirect communi-
cation via a positive feedback mechanism, i.e., while ants
explore the environment they release a ‘chemical’ indicat-
ing good paths to find a solution. Some immune algo-
rithms use selective strategies to define ‘apt’ individuals
to compose a population, others use evolutionary proce-
dures of adaptation in which individuals of the population
suffer variation inversely proportional to their perform-
ance. In addition, immune algorithms also present indi-
viduals interconnected in a network fashion.

All these features suggest a few avenues for the crea-
tion of hybrid algorithms. For instance, PSO algorithms
suggest that the exploration of a given neighborhood is
interesting for the location and maintenance of groups of
individuals sharing similar features. Actually, similar
ideas have already been incorporated in models such as
evolutionary algorithms through the use of speciation
methods, in which an individual is only allowed to repro-
duce with those on its immediate neighborhood, given a
certain neighborhood criterion. Nevertheless, an important
feature of the PSO algorithm is that neighborhood is de-
fined by the structure of the population of particles, not by
their spatial location as in speciation methods for EAs.
The question still remain thus, as if it would be useful to
employ these ideas of structural neighborhood in EAs;
and also in the other approaches as well, such as ACO and
immune algorithms.

In ant algorithms, a virtual pheromone trail is attrib-
uted to each traversed by an ant. This way, the knowledge
is distributed between the environment and the actual
elements that are performing the search. Can we actually
incorporate this idea of a pheromone trail in the other al-
gorithms so that the environment can provide some hints
about its portions that are being explored?

An evolutionary equivalent to this discussion would
be concerning the possibility of incorporating reproduc-
tion with inheritance and selection in PSO and ACO. In

the case of immune and evolutionary algorithms, could we
use fitness proportionate mutation in EAs?

3. FINAL REMARKS

This part of the paper classified the approaches reviewed
into a learning (swarm, immune) and/or evolutionary
paradigm (evolutionary, immune), and presented a num-
ber of similarities and differences among the many ap-
proaches discussed. It also discussed the relevance of the
metaphor for the development and understanding of a
biologically motivated paradigm. This part also high-
lighted some of the main features of each technique that
could be beneficially used for the creation of hybrid algo-
rithms.

ACKNOWLEDGMENTS

The author thanks CNPq (Profix, Proc. n. 540396/01-0)
for the financial support.

 4. REFERENCES

[1] Axelrod, R. (1997), “The Dissemination of Culture: A

Model with Local Convergence and Global Polarization”,
Journal of Conflict Resolution, 41, pp. 203-226.

[2] Bonabeau, E., Dorigo, M. & Theraulaz, G. (1999), Swarm
Intelligence From Natural to Artificial Systems, Oxford
University Press.

[3] Darwin, C. R. (1959), The Origin of Species, Wordsworth
Editions Limited (1998).

[4] de Castro, L. N. & Timmis, J. (2002), Artificial Immune
Systems: A New Computational Intelligence Approach,
Springer-Verlag.

[5] de Castro, L. N. & Von Zuben, F. J. (2001), “Immune and
Neural Network Models: Theoretical and Empirical Com-
parisons”, International Journal of Computational Intelli-
gence and Applications, 1(3), pp. 1-19.

[6] de Castro, L. N. & Von Zuben, F. J. (2002), “Learning and
Optimization Using the Clonal Selection Principle”, IEEE
Transaction on Evolutionary Computation, Special Issue on
AIS (in print).

[7] Eberhart, R. C. & Shi, Y. (1998), “Comparison Between
Genetic Algorithms and Particle Swarm Optimization”,
Lecture Notes in Computer Science, 1447, pp. 611-616.

[8] Goss, S., Aron, S., Denebourg, J. –L., & Pasteels, J. M.
(1989), “Self-Organized Shortcuts in the Argentine Ant”,
Naturwisschaften, 76, pp. 579-581.

[9] Holland, J. H. (1992), Adaptation in Natural and Artificial
Systems, 2nd Ed., MIT Press.

[10] Kennedy, J. (1998), “Thinking is Social: Experiments with
the Adaptive Culture Model”, Journal of Conflict Resolu-
tion, 42, pp. 56-76.

[11] Kirkpatrick, S., Gelatt Jr., C. D. & Vecchi, M. P. (1987),
“Optimization by Simulated Annealing”, Science,
220(4598), pp. 671-680.

[12] Kohonen T. (1982), “Self-Organized Formation of Topo-
logically Correct Feature Maps”, Biological Cybernetics,
43, pp. 59-69.

[13] McCulloch W. & Pitts W. (1943), “A Logical Calculus of
the Ideas Immanent in Nervous Activity”, Bulletin of
Mathematical Biophysics, 5, pp. 115-133.

[14] Paton, R. (ed.) (1994), Computing with Biological Meta-
phors, Chapman & Hall.

[15] Solé, R. & Goodwin, B. (2002), Signs of Life: How Com-
plexity Pervades Biology, Basic Books.

