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ABSTRACT 

 
In the first part of this paper, the standard evolutionary, 
immune, and swarm algorithms were reviewed. This sec-
ond part starts by presenting a philosophical discussion 
about some similarities and differences among the various 
approaches in terms of their basic components, structure, 
knowledge storage, adaptation paradigm, interactions, and 
metaphor. Then, the identification of the main features of 
each technique is performed in order to shed some light 
into how to create hybrid algorithms. 
 

1.  SIMILARITIES AND DIFFERENCES 
 
1.1.  General Features 
 
All the three approaches under discussion have similar 
features. First, they are all composed of a set (or sets) of 
individuals that interact with the environment and/or each 
other. These individuals are represented using a certain 
structure, such as attribute strings, vectors and networks. 
All of them present two important and intertwined proper-
ties: self-organization and emergence. There are many 
debates within the scientific community regarding a uni-
fied definition of emergence. In evolutionary, swarm and 
immune algorithms, it is possible to observe complex be-
haviors emerging out of the interactions of individuals and 
the environment, and with each other. The algorithms 
only specify how each individual behaves and with whom 
it interacts, there is no central control. The result – recog-
nition of a given antigen or optimization of a function – is 
an outcome of (emerges from) individual behaviors. In 
self-organizing systems, there is no central control; the 
‘intention’ of the population is distributed throughout its 
members who, by themselves, are unaware of the role 
they are playing. Individuals follow simple rules, and a 
certain pattern of behavior emerges from the lower-level 
behaviors.   
 
1.2.  Basic Components 
 
The ‘artificial chromosomes’ in an evolutionary algorithm 
can have several types of configuration. The most com-
mon are binary strings used in genetic algorithms. Real-

valued vectors are employed in evolutionary program-
ming and evolution strategies. Genetic programming deals 
with evolving computer programs that are represented as 
trees.  

In particle swarm optimization algorithms, the indi-
viduals of the population (particles) are either binary 
strings or real-valued vectors. As ant colony algorithms 
are mostly employed to discrete (combinatorial) optimiza-
tion, the individuals of the population (ants) are usually 
represented as a string of integer numbers. Another im-
portant component of an ACO algorithm is the pheromone 
level of each edge that composes the discrete search prob-
lem. 

Artificial immune systems have four main types of 
representation: binary, real-valued, integer and symbolic. 
However, other structures can be used to represent cells 
and molecules in an artificial immune system, such as 
DNA sequences. 
 
1.3.  Structure 
 
With the exception of network-based artificial immune 
systems, in all the other algorithms the components of the 
systems are structured around matrices, which represent 
populations (of chromosomes), swarms (of particles), 
colonies (of ants), or repertoires (of immune cells and 
molecules). These matrices can have either fixed or vari-
able sizes. These components are discrete in the sense that 
they are not linked to any other element through a connec-
tion. They interact with each other indirectly as will be 
discussed later. In PSO algorithms, connections exist be-
tween elements indicating with whom they interact, i.e., 
exchange knowledge. In the case of immune networks, the 
components of the system are connected with each other 
via a connection link. This link has a strength, similarly to 
neural networks, that quantifies the degree of interaction 
(similarity or difference) between two elements. Note 
however, that the connection strength in neural networks 
weights the input signal to the neuron, while the connec-
tion in immune networks quantifies the degree of interac-
tion and thus, they have different meanings and play dif-
ferent roles. 



 

 
 
1.4.  Knowledge Storage 
 
Knowledge here corresponds to the information carried by 
each individual of the population, and that is a result of 
their interaction with the environment and each other (ad-
aptation). Therefore, knowledge in all cases is stored in 
the basic components of the system, i.e., in individual 
chromosomes, in a particle, in an ‘artificial ant’ and the 
pheromone level of each edge, and in an attribute string of 
an AIS. In the case of immune networks, the connection 
strengths among individuals also carry information. 
 
1.5.  Adaptation 
 
Adaptation is certainly the most distinct feature of all 
paradigms. It corresponds to how the components of the 
system vary over time, i.e., how the dynamics (behavior) 
of the system changes along the iterative procedures of 
adaptation. Two main types of adaptation procedures can 
be identified: evolution and learning.  

Evolution can be defined as a change in the genetic 
composition of a population of individuals during succes-
sive generations, as a result of natural selection acting on 
the genetic variation among individuals, and resulting in 
the development of new species. From a computational 
perspective, an evolutionary algorithm is a population-
based search technique that incorporates reproduction, 
genetic variation and selection processes. Learning by 
contrast, can be understood as a change in behavior as a 
result of previous experience, and interaction with the 
environment and other individuals.  

As evolutionary algorithms were developed taking in-
spiration from natural evolution, their procedures of adap-
tation are evolutionary in nature. In the case of swarm 
algorithms however, the type of adaptive procedure incor-
porated is controversial. For instance, in a comparative 
paper [7] between genetic algorithms and particle swarm 
optimization, the authors start their work with the follow-
ing sentence: “This paper compares two evolutionary 
computation paradigms: genetic algorithms and particle 
swarm optimization.” My view is that PSO algorithms do 
not belong to the evolutionary paradigm, but to the learn-
ing paradigm.  

To give some support to my claim, let us take a look at 
equation (1) in Part I of this paper. This general equation 
describes how a particle varies (moves around the space) 
over the iterative procedure of adaptation. The first impor-
tant aspect to be noticed is that the current coordinate of a 
particle is a result of its past coordinate values plus an-
other vector that indicates in which direction and at what 
distance the particle is going to move. The vector to be 
added to the particle is a function of the previous move of 
the particle, the influence of its previous position, the po-

sition of a number of neighbors, its position which led to 
the best performance so far, and the position that led to 
the best performance so far in the neighborhood, as de-
scribed by equation (3) in Part I. In PSO, particles do not 
reproduce; the population of particles does not change in 
size even temporarily, and there is also no selection. 
Therefore, PSO algorithms cannot belong to the evolu-
tionary paradigm. There cannot be evolution without re-
production and selection (cf [3]). 

If one takes a closer look at artificial neural networks, 
ANN, (not discussed in these two papers, but another very 
important biologically motivated paradigm), it is possible 
to notice some similarities between these two approaches: 
PSO and ANN. The most remarkable one being the way 
particles and connection strengths are updated. In ANN, 
the weight vector wi of a given neuron i is updated ac-
cording to the following rule: 

wi(t) = wi(t−1) + ∆wi(t)                    (7) 
where ∆wi is the adjustment vector to be added to the neu-
ron weight vector. 

The similarities between PSO and ANN can also be 
found in the definition of a neighborhood function be-
tween the elements of the system. Alike PSO, in neural 
networks the elements of the system are connected to a 
number of other elements. There is a remarkable distinc-
tion however, in the sense that the connections in neural 
networks can usually assume a number of values, while in 
PSO algorithms the connections are either zero or one, 
meaning that two individuals interact or not with a given 
neighbor. Distinction also exists in the fact that ‘artificial 
neurons’ are information-processing elements, while par-
ticles are basically information-storage elements. Con-
cerning neighborhood, some neural network models, such 
as Kohonen’s self-organizing maps [12], also take into 
account the neighborhood of individual neurons to define 
the influence a neuron is going to exert in its neighbors, 
similarly to the approach adopted in PSO.  

In [2], the authors liken ant colonies to connectionist 
systems, supported by the fact that individual ants interact 
with each other (indirectly) via pheromone trails. The net-
work in this case, is a network of communication in which 
individual elements are not truly, but virtually, connected 
with each other. This view is not unique to them; other 
authors (e.g., [15]) also defend the viewpoint that ant 
colonies can be compared with biological neural 
networks. In the comparison made by [2], the authors 
liken pheromone trails to synaptic strengths and phero-
mone updating to weight updating. Pheromones are up-
dated by reinforcing paths that lead to good solutions and 
iteratively evaporating the trails (Step 1.3 of Algo 3). 
Again, there is no reproduction and no selection, thus 
ACO algorithms cannot be classified as a type of evolu-
tionary algorithm as well. They belong indeed to the 
learning paradigm.  



 

Before turning the discussion to artificial immune sys-
tems, I would like to conclude by saying that I believe 
some researchers have been arguing PSO and ACO algo-
rithms are types of evolutionary algorithms because EAs 
are population-based strategies used mainly for search 
(optimization) purposes. PSO and ACO algorithms share 
these same features and main application domain with 
EAs, but these are not sufficient to qualify them as evolu-
tionary algorithms. As ACO and PSO do not usually use 
any information about desired goals, they belong to the 
self-organized learning paradigm. 

The case of immune algorithms though, is slightly dif-
ferent. For instance, the negative selection algorithm in-
volves affinity (fitness) evaluation and selection, but does 
not involve either reproduction or genetic variation. Is 
‘natural selection’ (the main step of negative selection) 
sufficient to qualify evolution? My viewpoint is again 
‘no’. If the population of individuals does not actually 
change (variate), then evolution cannot occur. However, 
the negative selection algorithm is also not part of the 
learning paradigm, because no adaptation takes place. It is 
basically a selection strategy responsible for building a set 
of detectors that do not recognize any self individual.  

The clonal selection algorithm, in contrast to PSO, 
ACO and negative selection, has all the steps involved in 
an evolutionary algorithm: reproduction and genetic varia-
tion, affinity (fitness) evaluation, and selection. The ques-
tion remains thus in regards to what is the difference be-
tween a CLONALG and an EA. The differences are sub-
tle. Clonal selection algorithms are primarily based upon 
affinity-proportionate reproduction, mutation and selec-
tion. But indeed CLONALG is a type of evolutionary al-
gorithm inspired by the immune system. Due to a lack of 
space, I am not going into details as to the differences 
between a particular CLONALG implementation and spe-
cific EAs, but a discussion can be found in [6].  

The last immune algorithm described is an immune 
network model. It is important to note that the algorithm 
presented in Algo 6 is generic. There are many variations 
of it that use some of the steps described and that incorpo-
rate other steps as well. This is true for all the algorithms 
discussed, but for the particular case of immune networks 
there seems to be an even greater variety of algorithms. 
Without knowing how some of the steps performed by an 
immune network are accomplished, it is hard to discuss 
which kind of adaptation is involved in immune networks. 
However, it is possible to say that immune networks adapt 
basically by altering the number and attributes of individ-
ual cells (Steps 1.3 and 1.5 of Algo 6). Some immune 
network models present evolutionary procedures of adap-
tation, while others present an adaptation more akin to 
learning. Algorithms incorporating a hybrid between 
learning and evolution can also be found (e.g., [5]).  

It is appropriate to highlight some remarkable differ-
ences between immune and neural networks as well. The 

cells in immune networks are information-processing and 
storage elements. The computation they perform is by 
determining their stimulation level (Equation (6)), which 
takes into account the influences exerted by other cells in 
the network and by antigens (external stimuli). By con-
trast, artificial neurons perform a linear combination of 
the neuron inputs and its weight vectors. The neuron out-
put is the result of the application of an activation function 
to this linear combination. In addition, connections in an 
immune network correspond to the degree of interaction 
between two cells, while in neural networks they quantify 
the input stimuli to the neuron. Immune cells are usually 
distributed over the space in a way that tends to follow 
(mimic) the spatial distribution of the universe of anti-
gens. Artificial neurons are usually connected in a pre-
defined structure (single- and multi-layer feedforward or 
recurrent networks). Despite being completely different 
types of networks, composed of different units and archi-
tectures, they often share domains of application, such as 
pattern recognition and classification. Comparisons be-
tween immune and neural networks can be found in [5]. 

Immune networks and clonal selection algorithms, 
though described to perform pattern recognition in Algos 
5 and 6, have also been used in function optimization. 
 
1.6.  Interaction with Other Components 
 
In evolutionary algorithms, individual chromosomes in-
teract with each other in an indirect fashion, via crossover 
operators and a fitness function. As the fitness function 
evaluates the quality of each individual, it serves as a 
measure for selecting the individuals that will survive in 
detriment of those that will die off.  

In PSO algorithms, the particle-updating rule updates 
the set of coordinates of a given particle based upon its 
coordinates that led to its best performance so far. It also 
takes into account a number of structural neighbors of the 
particle. This way, there is an exchange of information 
among particles in a neighborhood. The goodness func-
tion in PSO algorithms is a bit more restrictive than the 
fitness function in EAs. For goodness refers to a compari-
son of the current particle with its previous best set of 
coordinates, and with a set of neighbors, while fitness in 
EAs is a relative measure usually used to compare an in-
dividual with the whole population. 

In ACO algorithms, individual ants interact with each 
other to the extent that they leave a virtual pheromone 
trail along the path they visited. This trail serves as a sort 
of positive feedback (reinforcement) mechanism that 
stimulates other ants to follow this path. The goodness of 
each ant is evaluated to decide which ant presented the 
best performance among all the ants in the colony. 

The interaction that exists between the elements of a 
negative selection algorithm involves the comparison be-
tween the elements of a set of candidate detectors and the 



 

elements of the self-set. If they match, the candidate de-
tector is eliminated; else it is kept in a set of detectors. In 
the monitoring part of Algo 4, detectors are matched 
against other elements to monitor for nonself. 

Clonal selection algorithms, as inspired by the clonal 
expansion of immune cells followed by affinity matura-
tion, do not involve the crossing over of genetic material 
between members of the repertoire. Individual cells re-
produce under a cloning procedure, subjected to a high 
error, namely somatic hypermutation. Similarly to EAs, 
immune cells interact indirectly through their affinity 
measures, that quantify how good they are in recognizing 
an invading antigen, and only the better ones survive. 

Immune networks are composed of a set or sets of in-
terconnected elements, which, as such, interact directly 
with each other. A high connection strength value be-
tween two cells means that they have a strong interaction, 
and vice-versa. This interaction is embodied in equation 
(6) – Step 1.4 of Algo 6.  
 
1.7.  Interaction with the Environment 
 
In all algorithms, the interaction of individual elements 
with the environment is clear. In evolutionary algorithms, 
there is a fitness function that evaluates how good each 
individual is regarding the search it is performing. In 
swarm algorithms (PSO and ACO) there is a goodness 
function that quantifies the quality of the solution ob-
tained by each particle or ant. Immune algorithms have an 
affinity measure that indicates how good each immune 
cell is at recognizing a given antigen. When these algo-
rithms are used to perform search and optimization, the 
affinity function is usually termed fitness function as in 
EAs. This is mainly because clonal selection algorithms 
and some immune networks are evolutionary in nature, 
thus fitness is a suitable name to indicate the quality 
measure of individuals. It is also the case to find immune 
algorithms that have affinity and fitness measures: affinity 
quantifying interactions within the system itself, and fit-
ness quantifying interactions with the environment. 
 
1.8.  The Metaphor 
 
What all these algorithms have in common is a develop-
ment inspired by nature. They are all part of a computa-
tional intelligence paradigm broadly referred to as com-
puting with biological metaphors [14].  

Computing with biological metaphors can be a result 
of two front lines of research. One is by observing how 
nature deals with problems and trying to mimic these 
problem-solving techniques (inspiration). The other is by 
the realization that some models developed by theoretical 
biologists and naturalists can be used to solve problems in 
many domains (use of models), mainly computer science 
and engineering.  

Genetic algorithms were developed as a result of the 
study of adaptation in natural systems [9]. In [1], the au-
thor theorized that similarity between pairs of individuals 
can result in the spread of culture, a model that led to the 
proposal of an algorithm to solve optimization problems 
[10]. Ant colony optimization algorithms have been in-
spired by the experiments of [8] about the self-organizing 
behavior of the Argentine ants while foraging for food. 
The inspiration of immune algorithms range from the ap-
plication of theoretical models to computational problems, 
to the development of algorithms by studying how the 
immune system behaves in some situations [4]. Another 
classical example is that of artificial neural networks. By 
studying the activity of individual neurons in the nervous 
system of human beings, [13] came to develop what is to 
date known as the first model of an ‘artificial neuron’. 
This model has been widely used and adapted by the 
ANN community. As a last example of the use of meta-
phors for computing, there is the case of the simulated 
annealing algorithm [11]. Annealing corresponds to a 
physical process where a crystal is cooled down from the 
liquid phase to the solid phase on a heat bath. If the cool-
ing is done carefully enough, the energy state of the solid 
at the end of the cooling stage is at its minimum. The 
simulated annealing algorithm is a process analogous and 
inspired by the annealing of a crystal.  

Despite having been developed using very different 
sources of inspiration, the discussion presented about the 
algorithms demonstrate some similarities in scientific 
thinking. An important issue to be raised is concerned 
with the accuracy of the metaphor and its importance for 
the understanding of how to implement and study the be-
havior of a particular algorithm. All the approaches re-
viewed (evolutionary, swarm, and immune), have algo-
rithms that can be written in abstract algebraic symbols, 
similarly to any other algorithmic process, without requir-
ing a great knowledge of its biological motivation. How-
ever, it was the metaphor that enabled researchers to con-
ceptualize and create a computational tool in the first 
place, and it is the metaphor that helps (allows) people to 
understand how the algorithms behave. It would be much 
more difficult to understand how all the different ap-
proaches work if we disregarded the metaphors that led to 
their development.  
 

2.  ON THE DESIGN OF HYBRIDS 
 
As one last issue I would like to discuss in this paper, 
there is the possibility of integrating one or more of these 
strategies in order to create useful hybrids. To do so, it is 
important to first remark what are the main features of 
each approach.  

The idea of using specific mechanisms of one tech-
nique into the other is much more straightforward than the 
suggestion of a high-level abstraction of how to hybridize 



 

these techniques. For example, in [7] the authors have 
already conceived the use of an elitist strategy, common in 
GA applications, to PSO algorithms. But that is not the 
line I am going to pursue here. The aim is to identify the 
remarkable features of each paradigm and to instigate the 
reader about the possibility and benefits of incorporating 
the features of one approach into another.  

The processes of reproduction with inheritance, ge-
netic variation and selection allow evolutionary algo-
rithms to generate increasingly fitter individuals in an 
unknown environment. Particle swarm algorithms are 
rooted in the idea that the exchange of information (learn-
ing from previous experience and interactions with 
neighbors) is important for the creation of subpopulations 
of individuals that share some ‘knowledge’. The process 
of sharing information also allows these individuals to 
become increasingly fitter to the environment. Ant colony 
algorithms are based on the concept of indirect communi-
cation via a positive feedback mechanism, i.e., while ants 
explore the environment they release a ‘chemical’ indicat-
ing good paths to find a solution. Some immune algo-
rithms use selective strategies to define ‘apt’ individuals 
to compose a population, others use evolutionary proce-
dures of adaptation in which individuals of the population 
suffer variation inversely proportional to their perform-
ance. In addition, immune algorithms also present indi-
viduals interconnected in a network fashion. 

All these features suggest a few avenues for the crea-
tion of hybrid algorithms. For instance, PSO algorithms 
suggest that the exploration of a given neighborhood is 
interesting for the location and maintenance of groups of 
individuals sharing similar features. Actually, similar 
ideas have already been incorporated in models such as 
evolutionary algorithms through the use of speciation 
methods, in which an individual is only allowed to repro-
duce with those on its immediate neighborhood, given a 
certain neighborhood criterion. Nevertheless, an important 
feature of the PSO algorithm is that neighborhood is de-
fined by the structure of the population of particles, not by 
their spatial location as in speciation methods for EAs. 
The question still remain thus, as if it would be useful to 
employ these ideas of structural neighborhood in EAs; 
and also in the other approaches as well, such as ACO and 
immune algorithms. 

In ant algorithms, a virtual pheromone trail is attrib-
uted to each traversed by an ant. This way, the knowledge 
is distributed between the environment and the actual 
elements that are performing the search. Can we actually 
incorporate this idea of a pheromone trail in the other al-
gorithms so that the environment can provide some hints 
about its portions that are being explored? 

An evolutionary equivalent to this discussion would 
be concerning the possibility of incorporating reproduc-
tion with inheritance and selection in PSO and ACO. In 

the case of immune and evolutionary algorithms, could we 
use fitness proportionate mutation in EAs? 
 

3.  FINAL REMARKS 
 

This part of the paper classified the approaches reviewed 
into a learning (swarm, immune) and/or evolutionary 
paradigm (evolutionary, immune), and presented a num-
ber of similarities and differences among the many ap-
proaches discussed. It also discussed the relevance of the 
metaphor for the development and understanding of a 
biologically motivated paradigm. This part also high-
lighted some of the main features of each technique that 
could be beneficially used for the creation of hybrid algo-
rithms. 
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