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ABSTRACT

Osteoimmunology was coined about twenty years ago to identify a strict cross 

talk between bone niche and immune system both in physiological and pathological 

activities, including cancer. Several molecules are involved in the complex interaction 

between bone niche, immune and cancer cells. The Receptor Activator of NF-kB 

(RANK)/RANK Ligand (RANKL/Osteoprotegerin (OPG) pathway plays a crucial role 

in bone cells/cancer interactions with subsequently immune system control failure, 

bone destruction, inhibition of effect and metastasis outcome. The bidirectional cross 

talk between bone and immune system could became a potential target for anticancer 

drugs. Several studies evidenced a direct anticancer role with improved survival of 

bone-targeted therapies such as bisphosphonates and RANKL antagonist Denosumab. 

Conversely, initial data evidenced a possible anti-bone resorption effect of systemic 

anticancer drugs through and immunomodulation activity, i.e. new generation 

antiandrogens (Abiraterone) in prostate cancer. All data could open a future rationale 

of combined bone, immunologic and targeted therapies in cancer treatment.

BIDIRECTIONAL CROSSTALK BETWEEN 

IMMUNE SYSTEM AND BONE NICHE: 

“OSTEOIMMUNOLOGY” CONCEPT

The “Osteoimmunology” concept was first 

evaluated in 2000 to identify a new interdisciplinary 

field, involving bone and immune system cells both in 

physiological and pathological activities [1]. The real 

news is to consider bone niche as a dynamic and complex 

system: all cells involved in the process interact with each 

other to continuous cycles of remodeling during human 

growth, with consequent and adequate bone growth [2].

Several recent data confirmed that bone cells works 

not alone in the processes of maintenance and accrual 

of bone mass. Specifically, also immune system play a 

crucial role in bone pathophysiology: several immune 

cells and immune-related factors, such as Interleukins 

(i.e., IL-6, -11), Tumor Necrosis Factor (TNF)-a, Nuclear 

Factor of Activated T-cell, cytoplasmatic-1 (NFATc1) 

[3–9] interact with bone cells to the bone “equilibrium”. 

Surprisely, recent data demonstrated a bidirectional cross 

talk between immune system and bone cells, assuming 

a feedback mechanism. For example, Zhu and Miller in 

their works showed a direct activity of osteoblasts to of 

B-lymphocytes differentiation from hematopoietic stem 

cells [10], by an osteoblasts secretion of Interleukin (IL)-

7 and C-X-C motif chemokine Ligand (CXCL)12 [11]. 

On the other hand, many cytokines as IL-1, IL-15 and IL-

17f increase osteoblast activity [7]. In addition, osteoclasts 

regulate immune cells activity also indirectly through 

osteoblasts, by the secretion of cathepsin K and the T Cell, 
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Immune Regulator 1, ATPase, H+ transporting, lysosomal 

V0 protein A3 (Tcirg1) [12, 13].

In addition, several other immune cells and 

factors promote osteoclastogenesis, such as: neutrophils, 

synoviocytes, T-cells, Activated leucocytes, dendritic 

cells, stimulated stromal cells, Macrophage Colony 

Stimulating Factor (M-CSF), Natural Killer (NK)-cells; 

IL-1a, IL-1b, IL-7, IL-17, IL-15, IL-8, TNFa, IL-23, IL-

24, IL-34 [14–22]. The bone niche with immune cells is a 

real “place of call” for tumor and cancer stem cells (CSCs) 

[23]. We can find in bone marrow different immune 

cells, such as granulocytes, macrophages, dendritic 

cells (DC), NK cells, T and B lymphocyte subsets, and 

myeloid derived suppressor cells (MDSCs). In spite of 

their great number and variability in bone niche, immune 

cells appear not able to control the processes of cancer 

cells growth and metastatization [23]. Probably, it is due 

to the presence in bone niche of contextual immature 

and suppressor immune cell types, such as T regulatory 

cells and MDSCs. Specifically, Feuerer et al. demonstrate 

that infiltrating T regulatory cells produce RANKL, 

with immune system downregulation and osteoclast 

differentiation. This process lead to osteoclastogenesis 

and bone metastasis [24]. Moreover, NK cells showed 

an ambiguous role in bone niche. In several experiments 

in melanoma, prostate, and breast cancers, they present 

an antitumor activity [25]. On the other hand, several 

data showed that NK cells promote melanoma cells 

proliferation and CSC phenotype conversion into bone 

niche. Furthermore, B and T cells contribute to the 

process of osteoclastogenesis, by the production of 

different factors such as TNFα and RANKL [26].
The turning point was in 1990, when the Receptor 

Activator of NF-kB (RANK)/RANK Ligand (RANKL)/

Osteoprotegerin (OPG) system was discovered with its 

critical role in regulating osteoclastogenesis and bone 

remodeling activity [27]. While the RANK receptor is 

present on the surface of mature osteoclasts, RANKL 

is produced in a soluble form by osteoblasts, stromal 

cells and immune cells. The soluble receptor OPG plays 

an antagonist role against RANK/RANKL interaction, 

blocking the activity and the maturation of osteoclast 

[28, 29]. The equilibrium between RANK and OPG is 

regulated by activity of several cytokines and systems, 

as interleukin (IL)-1, IL-6, TNF alpha, TNF receptor-

associated factors (TRAFs), PI3K, c-Src, Akt/PKB and 

mTOR [30, 31]. Several data evidenced that many of these 

factors are also involved in immune system regulation. 

Moreover, RANK/OPG balance plays a fundamental 

role in immune system activity: it increases lymphocyte 

development in lymph nodes, sustains the activation and 

the maturation of DC, and regulates the immune response 

mediated by T cells [32, 33].

Furthermore, pathological conditions show this 

close interaction between bone and immune system. 

Initial data evidenced that several bone diseases present 

an immunologic origin, such as rheumatoid arthritis, 

osteoarthritis and osteoporosis. There is a rise in the 

existence of these different skeletal diseases, which occur 

because of defective bone remodeling as a consequence 

of skewed immune system because of disruption of the 

homeostatic nexus between immune system and bone 

cells, that enhanced bone loss [34].

In 2014, Krevvata et al. evidenced a correlation 

between bone niche and cancer cells in acute myeloid 

leukemia (AML). In this case, osteoblasts promote the 

progression and transformation of the myeloid cells 

lineage in preneoplastic and neoplastic cells. Specifically, 

authors demonstrated that osteoblasts are able to slow 

down leukemia progression through an unfavorable 

microenvironment for leukemic blast growth. The “bone 

niche” concept becomes a “niche-induced leukemia” 

system: for the first time bone niche is evaluated as a 

dynamic system that include bone, immune and cancer 

cells [35].

ALTERATIONS OF BONE AND IMMUNE 

SYSTEM IN CANCER: PRECLINICAL 

DATA

Several preclinical data in the last years 

demonstrated that cells involved in bone microenvironment 

and immune system can promote tumor growth and 

progression. Bone represents a cancer cells sanctuary 

against anticancer therapies. Many authors suggested 

that the bone niche probably guarantees an evasion of the 

immune system by disseminated tumor cells. Furthermore, 

bone niche preserve cancer cells from anticancer drugs 

[36]. The process of hematopoiesis occurs in skeleton 

and is guaranteed by the bone niche, in which different 

cytokines, growth factors and adhesion molecules play 

a crucial role [37]. The same bone niche, however, with 

the involvement of the near microenvironment, became 

a “soil” for the development of several tumor cells, 

including primitive hematological cancers and metastatic 

solid tumors [38].

In addition, tumor cells are able indirectly to reduce 

their immunogenicity by bypassing tumor immune 

surveillance mechanism. Although we know little about 

the immune system remodeling by bone homeostasis, 

some possible mechanisms begin to be demonstrated. In 

the bone niche, cancer cells are able to overbalance the 

RANKL/OPG ratio to osteoclastogenesis, favoring bone 

resorption and metastases implant. The osteoclastogenesis 

process leads bone niche to down regulation of immune 

system pathway, in a vicious circle that enhances 

tumor bone spread. Several works demonstrated these 

processes: i) RANK-expressing tumor cells/RANKL 

activation determines tumor metastatization; ii) T-cell 

suppression in bone-tumor niche helps bone lysis and 

tumor cells implantation; iii) T-cell suppression reduces 

osteoblastogenesis and bone stabilization; iv) Osteoclast 
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factors enhance tumor spread through the inhibition of 

the T cells proliferation; v) Bone niche immune cells, as 

macrophages, can participate in antitumor responses after 

anticancer therapy, with elimination of circulating tumor 

cells and reduction of bone cancer cells implantation; 

vi) RANKL/RANK/OPG pathway actually represents a 

negative prognostic factor in cancer development [39–43] 

(Figure 1).

Prostate cancer is one of tumors that has been 

analyzed more frequently as regards bone, cancer and 

immune cell activity. Tumor cells increase the RANKL/

OPG ratio indirectly in the bone with the release of different 

factors such as PTHrP, IL-1, IL-6 (osteoclast differentiation 

and survival activity) and directly with osteoclast precursors 

interaction and co-activation. In addition, cancer cells 

produce osteoblast differentiation inhibitors such as 

dickkopf-1 (DKK-1) and activin A [44, 45].

Recently, other molecules, such as PGE2, have 

been identified as possible “actors” in the processes of 

bone resorption and cancer metastatization, especially 

in patients with prostate cancer. Probably, tumor cells 

wedged in bone niche deregulates bone remodeling and 

manifests as osteolytic lesions that may cause skeletal 

related events (SREs). According these data, PGE2 could 

became a possible future therapeutic target in the treatment 

of prostate cancer [45].

In addition, multiple myeloma (MM) is a 

hematologic malignance that depend from the clonal 

expansion of malignant plasma cells within the bone 

marrow. This disease is often associated with adverse 

SREs. The bone lesions in MM are always lytic and 

it depends their ability to promote the processes of 

bone resorption. The principal mechanism is the 

displacement of the RANKL/OPG ratio to the process 

of osteoclastogenesis [46]. For example, Schramek et 

al. recently demonstrated that aberrant RANK/RANKL 

signaling in mammalian tissues promote bone resorption 

and the rapid development of progestin-mediated breast 

cancer. This process is amplified by a synergistic immune 

cells deregulation, mediated by cytokines such as TNF-

alpha and IL-6 [47]. The aberrant activity RANK/RANKL 

pathway promotes the bone niche invasion by the RANK-

expressing mammary epithelial cells. Moreover, the 

RANK/RANKL upregulation promotes antiapoptotic 

processes in response to DNA damage. The blockade of 

RANK/RANKL signaling in mice experiments (using 

genetic ablation of Rank or RANKL-Fc) inhibits the 

development of mammary tumors [48].

Figure 1: An example of interaction between bone, immune and cancer cells: osteoclastogenesis, mechanism of bone 

resorption and potential targets of biphosphonates and denosumab. The complex process of osteoclastogenesis in cancer is 

regulated by an interaction between bone, immune and cancer cells. Cancer cells promote this process in two ways: 1) indirectly, stimulating 

osteoblast to activate the RankL/Rank pathway (bone osteoclastogenesis) and deregulating immune cells activity against osteoclasts; 2) 

directly, stimulating osteoclastsogenesis by upregulation of IL-1, IL-6, PTHrP, GM-CSF. After cancer cells signals, immune system cells 

activate osteoclastogenesis by upregulation of TNFa, IL-1a, IL-1b, IL-7, IL-8, IL-23. Once activated, osteoclasts protect their growth 

with the inactivation of immune system by TGF-beta production. Bisphosphonates (i.e. Zoledronic Acid) inhibit osteoclast formation, 

recruitment and adhesion to bone shift the balance towards OPG production by osteoblasts and induce osteoclasts apoptosis. Denosumab is 

a fully human monoclonal antibody with anti-RANKL activity, thus inhibiting osteoclast activation by Rank receptor. Initial data evidenced 

a possible role in immune system preservation by B cell/T cell differentiation and dendritic cell survival.
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For this reason, RANK/RANKL/OPG system 

became a future therapeutic target, with possible 

prevention of bone resorption and decreasing of the 

number of SREs. Interestingly, direct antitumor effect 

through reactivating immune system cells. For the first 

time we can consider a bone target therapy as a possible 

systemic anticancer effect.

BONE TARGETED DRUGS HAVE A 

ROLE IN ANTICANCER SYSTEMIC 

THERAPY THROUGH IMMUNE SYSTEM 

ACTIVATION

Bisphosphonates were the first drug class that 

demonstrates the ability to inhibit osteoclast formation, 

recruitment and adhesion to bone shift the balance towards 

OPG production by osteoblasts and induce osteoclasts 

apoptosis (Table 1). The first effect was to prevent 

pathological bone resorption with a dramatic SREs 

reduction [49].

Clezardin et al. in a recent study also demonstrated 

the existence of direct and indirect antitumor activity. 

Bisphosphonates counteract the tumor proliferation in 

bone niche reducing the release of bone-derived growth 

factors and cytokines. In addition, other mechanism could 

be the inhibition of tumor cell adhesion and invasion, and 

the apoptosis of cancer cells (bidirectional bone/cancer 

cells interaction) [50]. The latest data regarding third 

generation bisphosphonates evidenced also an indirect 

antitumor effect via immune system regulation. zoledronic 

acid and pamidronate activate T cells surveillance in 

bone niche and blood, with antiangiogenic and immune-

modulatory mechanism [51]. Fournier et al. showed that 

zoledronic acid at therapeutic dose promotes the activity 

of T cells and the blockade of osteoclast-mediated bone 

resorption (“dual inhibition”) [52].

Breast cancer, MM and prostate cancer are the tumors 

with zoledronic acid activity which have been studied more 

[53]. Several data confirmed that zoledronic acid in advanced 

breast cancer patients prevents the bone loss induced 

by aromatase inhibitor use, bone metastases, SREs and 

reduced survival [54]. Recent data also evidenced a possible 

synergistic effect of zoledronic acid with chemotherapy 

(such as cisplatin) in metastatic triple negative breast cancer, 

with results in the prolongation of progression free survival 

(PFS) and overall survival (OS). Specifically, zoledronic acid 

stimulates the number of T cells and monocytes, and inhibits 

the process of osteoclast-mediated bone resorption (bone/

cancer/immune cells interaction) [55]. Recent data suggest 

that bisphosphonates could exert a protective activity to bone 

reducing the bone niche invasion and metastatization by cancer 

cells. It represent a clear anticancer activity in postmenopausal 

breast cancer women treated with adjuvant hormonal therapy, 

hypothesizing that an early use in adjuvant setting could 

provide the greatest benefits [56]. In addition, in renal cell 

cancer, lung cancer and hepatocellular carcinoma recent data 

evidence a systemic activity of bisphosphonates to prolong 

patient survival and increase quality of life [57–59, 64].

Recently, a new drug blocking RANK/RANKL/

OPG pathway exerts bone control with the prevention 

of bone resorption and destruction: denosumab, a fully 

human monoclonal antibody (anti-RANKL), authorized 

for the treatment/prevention of SREs in bone metastases 

from MM, breast, prostate cancer and Ewing Sarcoma. 

Better than zoledronic acid, denosumab decreases the 

number of SREs, delays SREs onset, reduces bone 

pain and prevents immune system preservation by the 

differentiation and survival of B cell, T cell and DCs 

(both in bone niche and blood) [60, 65]. Initial preclinical 

data evidenced a possible role in systemic tumor control 

with better progression and overall survival, but strongly 

results are warranted. In addition, in this case the 

systemic anti-cancer effect seems due to a better immune 

system regulation, T-cell activation and immunogenic 

chemokine’s increase [61]. Current clinical studies are 

evaluating to a greater extent the effect of denosumab on 

survival and other biomarkers.

Table 1: Bisphosphonates (zoledronic acid) and denosumab in patients with bone metastases: 

current demonstrated efficacy in different cancer types

Zoledronic acid Multiple myeloma [48, 49]

Breast cancer [48, 49, 50]

Lung cancer [64]

Renal cell carcinoma [53]

Prostate cancer [49]

Denosumab Multiple myeloma [58]

Breast cancer [59, 60]

Prostate cancer [59, 60, 62, 63]

Hepatocellular carcinoma [55]

Ewing Sarcoma [65]
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ANTICANCER DRUGS PLAY EFFECT 

AGAINST BONE DISRUPTION THROUGH 

IMMUNOMODULATION: FIRST SMALL 

STEPS

On the other hand, considering the bone/cancer cells 

interaction as a bidirectional process, some authors first 

evaluated a possible converse scenario: a bone disease 

control using the systemic anticancer drugs. Certainly, a 

better control of systemic cancer disease delays metastases 

onset, including bone. Recently authors evidenced 

an indirect bone disease control by new generation 

antiandrogens, such as the CYP17 inhibitor Abiraterone 

in prostate cancer [62]. In all clinical studies, Abiraterone 

demonstrates a better control of systemic disease also 

thanks to bone resorption control (prolonged radiographic 

progression free survival), SREs reduction (time to first 

SRE), better quality of life with reduced bone pain. 

Laboratory data evidenced a possible bone niche control 

by immune system activation, such as T-cells increase, 

DCs control and immune-stimulatory cytokines. Detti et 

al. recently also evidenced a possible synergistic activity of 

abiraterone with radiotherapy in bone metastases control 

in patients with advanced prostate cancer. Radiotherapy in 

bone niche activates immune system control and exposes 

immune cells to abiraterone activity. The result is the block 

of the bone/cancer cells pathway, with osteoclastogenesis 

reduction and bone stabilization [63]. We are only at 

the beginning of this new aspect of osteoimmunology 

and further data are necessary to better clarify this bone 

disease control through immunomodulation.

CONCLUSIONS

Osteoimmunology is a new field in the last years, 

with a great relevance to the control of bone homeostasis. 

Its discovery has changed the therapeutic scenario in 

cancer bone disease. Until the 2000s, bone niche has been 

evaluated as an “impenetrable sanctuary” for anti-cancer 

drugs. Its infiltration by cancer cells has represented a 

defeat for oncologic treatments, an early progression 

signal with poor prognosis. After a correct knowledge 

of the dynamic system of bone niche and bone/immune 

cells pathways, the osteoimmunology concept has allowed 

to develop different potential mechanisms involved 

in pathologic operation of bone remodeling system. 

Actually, the effects on bone of several immune cells 

(such as macrophages, granulocytes and innate immune 

pathways) remain unclear. A better understanding of 

the molecular interaction between the three actors of 

this dynamic system (bone, immune and cancer cells) is 

almost necessary. A bidirectional process between cancer 

cells and bone niche components could explain a possible 

both locoregional (bone) and systemic cancer control. We 

could hypothesize that the immune system represents a 

“bond”, a bridge between bone niche cells and cancer 

cells. An adequate knowledge of this complex equilibrium 

can represent a potential therapeutic target to control not 

only bone metastases, but also systemic cancer pathology. 

Moreover, after the recent advent of immunotherapy in 

anticancer drugs scenario, all data could open a future 

rationale of combined bone, immunologic and targeted 

therapies in cancer treatment.
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