
Immune System Approaches to  

Intrusion Detection - A Review  

Jungwon Kim§, Peter J. Bentley§, Uwe Aickelin*, Julie Greensmith*, 

Gianni Tedesco†, Jamie Twycross*  

§
Department of Computer Science, University College London, UK 

j.kim,p.bentley@cs.ucl.ac.uk 

*School of Computer Science, University of Nottingham, UK 

uxa,jqg,jpt@cs.nott.ac.uk 

†Firestorm Development Team, Bradford, UK 

gianni@scaramanga.co.uk 

Natural Computing, Springer, in print, doi: 10.1007/s11047-006-9026-4, pp TBA. 

Abstract 

The use of artificial immune systems in intrusion detection is an appealing concept for two reasons. Firstly, 

the human immune system provides the human body with a high level of protection from invading 

pathogens, in a robust, self-organised and distributed manner. Secondly, current techniques used in 

computer security are not able to cope with the dynamic and increasingly complex nature of computer 

systems and their security. It is hoped that biologically inspired approaches in this area, including the use of 

immune-based systems will be able to meet this challenge. Here we review the algorithms used, the 

development of the systems and the outcome of their implementation. We provide an introduction and 

analysis of the key developments within this field, in addition to making suggestions for future research.  
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1  Introduction 

One of the central challenges with computer security is determining the difference between normal and 

potentially harmful activity. For half a century, developers have protected their systems using rules that 

identify and block specific events. However, the nature of current and future threats in conjunction with 

ever larger IT systems urgently requires the development of automated and adaptive defensive tools. A 

promising solution is emerging in the form of biologically inspired computing, and in particular artificial 

immune systems (AIS). The Human Immune System (HIS) can detect and defend against harmful and 

previously unseen invaders, so can a similar system be built for our computers? Perhaps, those systems 

would then have the same beneficial properties as the HIS such as error tolerance, adaptation and self-

monitoring [48].  

 

Alongside other techniques for preventing intrusions such as encryption and firewalls, Intrusion Detection 

Systems (IDS) are another significant method used to help safeguard computer systems. The main goal of 

these systems is to detect unauthorised use, misuse and abuse of computer systems by both system insiders 

and external intruders [88]. IDS can be broadly classified into two approaches: anomaly detection and 

misuse detection.  

 

Considering the above, one can see an analogy between the HIS and IDS. The HIS has both innate and 

adaptive components to its mechanisms. For example, an innate response is inflammation – the attraction of 

lyphocytes to the site of an injury and their automatic consumption of dead cells. An adaptive response is a 

response learned during the lifetime of an organism, such as the production of specific antibodies from 

carefully maintained populations of B cells. The innate part of the HIS is akin to the misuse detector class 

of IDS. Similarities can also be drawn between the adaptive immune system and anomaly based IDS. Both 

the innate HIS and misuse detectors have prior knowledge of attackers and detect them based on this 

knowledge. Similarly, both the adaptive immune system and anomaly detectors generate new detectors to 

find previously unknown attackers.  

 



The objective of this review paper (which is an extension of [7]) is to provide an overview of IDS for AIS 

researchers to identify suitable intrusion detection research problems, and to provide information for IDS 

researchers about current AIS solutions. Such a review is now important, as a sufficiently large body of 

research has been amassed to take stock and consider what further avenues should be explored in the 

future. In the following sections, we briefly introduce the areas of IDS and AIS through the examination of 

core components and basic definition. The research, development and implementation of immune-inspired 

IDS are catalogued, and presented in terms of the history and progression of research in the field. The 

overview of this historical review on this research area shows that it has three major roots, and 

consequently three distinct philosophies. We provide an extensive survey of various AISs for intrusion 

detection based on these major roots, in conjunction with indications for future areas of study.  

 

2  IDS and AIS Background 

This section gives a brief introduction to two distinct fields of study - IDS and AIS, setting the background 

to and defining the terminology used in the sections that follow. For a detailed discussion readers should 

consult  [96] and  [97] for information on IDS,  [48] for information regarding immunology and [32] for 

details specific to AIS. Some of the commonly used terms in this field are given in Appendix 1. 

 

2.1  Intrusion Detection Systems 

2.1.1  Brief Overview of Intrusion Detection Systems 

IDS are software systems designed to identify and prevent the misuse of computer networks and systems. 

There are a number of different ways to classify IDS. Here we focus on two ways: the analysis approach 

and the placement of the IDS, although there have been recent work [35] [10] on alternative taxonomies. 

Regarding the former, there are two classes: misuse detection and anomaly detection [96]. The misuse 

detection approach examines network and system activity for known misuses, usually through some form 

of pattern-matching algorithm. In contrast, an anomaly detection approach bases its decisions on a profile 

of normal network or system behaviour, often constructed using statistical or machine learning techniques. 

Any event that does not conform to this profile is considered anomalous. Many experimental anomaly 



detection systems exist including [69] [108] [34] and a commercial system also adopts the anomaly 

detection approach [4].  

 

Each of these approaches offers its own strengths and weaknesses. Misuse-based systems generally have 

very low false positive rates, which indicate error rates of mistakenly detected non-intrusion cases. For this 

reason, this approach can be seen at work in the majority of commercial systems, which include [2] [5]. 

However, they are unable to identify novel or obfuscated attacks, leading to high false negative rates, which 

represent error rates of missed detection cases. Anomaly-based systems, on the other hand, are able to 

detect novel attacks but currently produce a large number of false positives. This stems from the inability of 

current anomaly-based techniques to cope adequately with the fact that in the real world normal, legitimate 

computer network and system usage changes over time, meaning that any profile of normal behaviour also 

needs to be dynamic [97]. 

 

A second distinction can be made in terms of the placement of the IDS. In this respect IDS are usually 

divided into host-based and network-based systems [96]. Host-based systems such as tripwire [79] [120] 

are present on each host that requires monitoring, and collect data concerning the operation of this host, 

usually log files, network traffic to and from the host, or information on processes running on the host. In 

contrast, network-based IDSs monitor the network traffic on the network containing the hosts to be 

protected, and are usually run on a separate machine termed a sensor [99] [91]. Once again, both systems 

offer the advantages and disadvantages. Host-based systems are able to determine if an attempted attack 

was indeed successful, and can detect local attacks, privilege escalation attacks and attacks which are 

encrypted. However, such systems can be difficult to deploy and manage, especially when the number of 

hosts needing protection is large. Furthermore, these systems are unable to detect attacks against multiple 

targets of the network. Network-based systems are able to monitor a large number of hosts with relatively 

low deployment costs, and are able to identify attacks to and from multiple hosts. However, they are unable 

to detect whether an attempted attack was indeed successful, and are unable to deal with local or encrypted 

attacks. Hybrid systems, which incorporate host- and network-based elements can offer the best protective 

capabilities, and systems to protect against attacks from multiple sources are also developed [6] [3].  



 

More advanced systems exist which detect high-level intrusion scenarios through correlation of multiple 

low-level events. Such systems not only allow for the detection of non-trivial or distributed intrusions 

spanning multiple events and sources, they can also combine poor quality detection results from misuse and 

anomaly detectors to produce more reliable results. Approaches have been based on finding statistical 

similarities between alerts [115], fusing alerts into attack scenarios [28], and knowing the prerequisites and 

consequences of certain attacks [1]. In [95] it is stated that approaches like these shared a common 

problem: the IDS can fail to detect an intrusion if the set of reported alerts does not constitute a complete 

intrusion scenario.  

 

2.1.2  IDS Research Problems for AIS 

The main objective of this review paper is to introduce suitable intrusion detection problems to AIS 

researchers. Previously in [88] [81], Kim and Bentley have presented the requirements for an effective 

network-based IDS. These requirements can be applied not only to a network-based IDS, but to any type of 

IDS. These requirements are of particular interest because they could be fulfilled by mechanisms inspired 

by features of the human immune system. Despite research conducted since the original publication of 

these requirements, no existing IDS model yet satisfies these requirements completely. We summarise 

these requirements here in order to analyse whether the existing AIS-based IDSs reviewed in this paper 

have provided some of these functions. The seven requirements reported in [88] are as follows:  

•� Robustness: it should have multiple detection points with low operational failure rates and which 

are resilient to attack 

•� Configurability: it should be able to configure itself easily to the local requirements of each host or 

each network component. Individual hosts in a network environment are heterogeneous. 

•� Extendibility: it should be easy to extend the scope of IDS monitoring by and for new hosts easily 

and simply regardless of operating systems. 

•� Scalability: it is necessary to achieve reliable scalability to gather and analyse the high-volume of 



audit data correctly from distributed hosts. 

•� Adaptability: it should adjust over time in order to detect dynamically changing network 

intrusions. 

•� Global Analysis: in order to detect network intrusions, it should collectively monitor multiple 

events generated on various hosts to integrate sufficient evidence and to identify the correlation 

between multiple events. 

•� Efficiency: it should be simple and lightweight enough to impose a low overhead on the monitored 

host systems and network. 

Readers should note that these are a subset of current IDS requirements. For broader view of IDS research 

problems and their requirements, readers are advised to refer to [92].  

 

2.2  Artificial Immune Systems 

2.2.1  Brief Overview of Intrusion Detection Systems 

The Human Immune System (HIS) protects the body against damage from an extremely large number of 

harmful bacteria, viruses, parasites and fungi, termed pathogens. It does this largely without prior 

knowledge of the structure of these pathogens. This property, along with the distributed, self-organised and 

lightweight nature of the mechanisms by which it achieves this protection [88], has in recent years made it 

the focus of increased interest within the computer science and intrusion detection communities. Seen from 

such a perspective, the HIS can be viewed as a form of anomaly detector with very low false positive and 

false negative rates.  

 

An increasing amount of work is being carried out attempting to understand and extract the key 

mechanisms through which the HIS is able to achieve its detection and protection capabilities. A number of 

AIS have been built for a wide range of applications including document classification, fraud detection, and 

network- and host-based intrusion detection [32]. These AIS have met with some success and in many 

cases have rivalled or bettered existing statistical and machine learning techniques. Two important 



mechanisms dominate AIS research: network-based models and negative selection models, although this 

distinction is somewhat artificial as many hybrid models also exist. The first of these mechanisms refers to 

systems which are largely based on Jerne's idiotypic network theory [70] which recognises that interactions 

occur between antibodies and antibodies as well as between antibodies and antigens. Negative selection 

models use the process of non-self matching selection, as seen with T-lymphocytes in the thymus as a 

method of generating a population of detectors. This latter approach (along with other newer algorithms) 

has been by far the most popular when building IDS, as can be seen from the work described in the next 

section.  

 

2.2.2  AIS features for IDS 

Although not the main objective, we also aim to provide information for IDS researchers about current AIS 

solutions in this article. In this section, we present AIS features that would be advantageous to a novel IDS. 

Two previous papers [88] [106] have already covered this topic and here we summarise that work. Kim and 

Bentley presented three properties of IDSs that satisfy the seven requirements stated above [88] [81]. 

Another piece of work by Somayaji et al. [106] also identifies twelve immune features that are desirable for 

an effective IDS.  

 

We summarise these AIS features together after eliminating redundant properties:  

•� Distributed: a distributed IDS supports roubustness, configurability, extendibility and scalability. 

It is robust since the failure of one local intrusion detection process does not cripple the overall 

IDS. It is also easy to configure a system since each intrusion detection process can be simply 

tailored for the local requirements of a specific host. The addition of new intrusion detection 

processes running on different operating systems does not require modification of existing 

processes and hence it is extensible. It can also scale better, since the high volume of audit data is 

distributed amongst many local hosts and is analysed by those hosts.  

•� Self-Organised: a self-organising IDS provides adaptability and global analysis. Without external 

management or maintenance, a self-organising IDS automatically detects intrusion signatures 



which are previously unknown and/or distributed, and eliminates and/or repairs compromised 

components. Such a system is highly adaptive because there is no need for manual updates of its 

intrusion signatures as network environments change. Global analysis emerges from the 

interactions among a large number of varied intrusion detection processes. 

•� Lightweight: a lightweight IDS supports efficiency and dynamic features. A lightweight IDS does 

not impose a large overhead on a system or place a heavy burden on CPU and I/O. It places 

minimal work on each component of the IDS. The primary functions of hosts and networks are not 

adversely affected by the monitoring. It also dynamically covers intrusion and non-intrusion 

pattern spaces at any given time rather than maintaining entire intrusion and non-intrusion 

patterns. 

•� Multi-Layered: a multi-layered IDS increases robustness. The failure of one layer defence does not 

necessarily allow an entire system to be compromised. While a distributed IDS allocates intrusion 

detection processes across several hosts, a multi-layered IDS places different levels of sensors at 

one monitoring place. 

•� Diverse: a diverse IDS provides robustness. A variety of different intrusion detection processes 

spread across hosts will slow an attack that has successfully compromised one or more hosts. This 

is because an understanding of the intrusion process at one site provides limited or no information 

on intrusion processes at other sites. 

•� Disposable: a disposable IDS increases robustness, extendibility and configurablity. A disposable 

IDS does not depend on any single component. Any component can be easily and automatically 

replaced with other components. 

These properties are important in an effective IDS, as well as being established properties of the HIS. The 

individual immune mechanisms that allow each AIS to have these properties are presented in the next 

section 3.  Later in section 4, we summarise whether AISs introduced in section 3 have indeed these 

properties and which immune algorithms employed by AISs contribute to obtaining these properties.  This 

leads to an analysis of how such features support the IDS requirements presented in section 2.1. The 



remainder of this paper reviews various systems that provide some of these properties, by adopting 

artificial components inspired by their biological counterparts in the immune system.  

 

3  Immune System Approaches to IDS 

In this section, we begin the in-depth review of work relating to the application of AIS to the problem of 

intrusion detection. The work reviewed in this section is organized by the history and progression of 

research in the field, see the phylogenetic tree of papers given in figure 1. 

 

The figure shows that work in this area has three major roots, and consequently three distinct philosophies: 

1.� methods inspired by the immune system that employ conventional algorithms, for example, IBM’s 

virus detector [76] 

2.� the negative selection paradigm as introduced by Forrest [106][45] 

3.� approaches that exploit the Danger Theory [93] 

 

In addition, there are several younger methods such as AINET [27] and immunocomputing [94] that 

continue to grow in popularity. The following subsections explore all the philosophies behind AIS for 

intrusion detection and analyse their successes and capabilities to date. 

 



 
 

F
ig

u
re

 1
 P

h
y
lo

g
en

et
ic

 t
re

e 
o
f 

A
IS

 a
p

p
r
o
a
ch

es
 t

o
 I

D
S

. 
D

et
a
il

ed
 o

r
g
a
n

iz
a
ti

o
n

 a
r
ra

n
g
ed

 b
y
 d

a
te

 a
n

d
 c

o
n

te
n

t 
(t

o
p

).
 K

e
y
 s

u
m

m
a
ri

zi
n

g
 m

a
jo

r 
p

a
p

e
rs

 (
b

o
tt

o
m

).



3.1 Exploitation of Conventional Algorithms in AIS 

As will be described in subsequent sections, most AIS research focuses on the development of specialised 

AIS algorithms inspired by specific theories of the HIS such as negative selection or the danger theory. But 

before these fields of research had begun, a virus detection system had been developed by Kephart et al. at 

the IBM research centre [76] [77] [78] following an alternative approach (see figure 1). Kephart et al. 

identified some traits of the HIS that make it attractive for virus detection purposes and implemented them 

using established algorithms. They designed their AIS with five major stages, each inspired by the HIS. 

Taking one of these five stages as an example, authors claimed that the first stage of their AIS, which 

detected a previously unknown virus on a user's computer, is a useful trait of the innate human immune 

system. Since the innate HIS provides a non-specific immune response, Kephart et al. viewed the detection 

of previously unknown viruses in a generic way as an equivalent task in their artificial system. The actual 

implementation of this innate immune response was carried out by two established algorithms: generic 

disinfection techniques and neural networks, which were used to build a generic classifier. Similarly, the 

other four stages of their AIS were also understood to be functionally comparable with some sub-

procedures of the HIS, but their implementation was completed using other more conventional algorithms.  

 

The AIS described by Kephart [76] [77] [78] was one of the earliest attempts of applying HIS mechanisms 

to intrusion detection. It focused on the automatic detection of computer viruses and worms. As 

interconnectivity of computer systems increases, computer viruses are able to spread more quickly and 

traditional signature-based approaches, which involve the manual creation and distribution of signatures, 

become less effective. Hence the authors were interested in creating a system which was able to 

automatically detect and respond to viruses. Their proposed system first detected viruses using either fuzzy 

matching from a pre-existing signature of viruses, or through the use of integrity monitors which monitored 

key system binaries and data files for changes. In order to decrease the potential for false positives in the 

system, if a suspected virus was detected it was enticed by the system to infect a set of decoy programs 

whose sole function was to become infected. If such a decoy was infected then it was almost certain that 

the detected program was a virus. In this case, a proprietary algorithm, not described in the paper, was used 

to automatically extract a signature for the program, and infected binaries were cleaned, once again using a 



proprietary algorithm not described in the paper. In order to reduce the rapid spread of viruses across 

networks, systems found to be infected contacted neighbouring systems and transfered their signature 

databases to these systems. No details of testing and performance were given by the authors, who claimed 

that some of the mechanisms were already employed in a commercial product [116]. It seems likely that the 

only feature of immune systems exploited significantly was self-organisation. 

 

Dasgupta et al. [29] also proposed an alternative immunity-based IDS framework that applied a multi-agent 

architecture (see figure 1). This immunity-based IDS framework followed the multi-level detection feature 

of the HIS. The multi-agents residing within this model monitored systems at various levels in a 

hierarchical manner, activated warning signals, communicated their local warning signals and made 

decisions based on collected local warning signals. In order for the proposed IDS to reduce false warnings, 

this model emphasised the importance of collective decisions. The ART-2 NN was employed to detect 

anomalies of all monitoring levels and fuzzy logic was proposed to combine four different levels of 

warnings into a final threat warning [30]. Hence, like Kephart’s system, the AIS framework proposed 

in [29] used existing algorithms organized in a manner inspired by the multi-level detection features of the 

HIS. 

 

The recent work by de Paula et al. [33] proposed another AIS based IDS called ADENOIDS. This novel 

AIS conforms to the philosophy taken by Dasgupta et al. [29] and Kephart et al. [76] [77] [78]. de Paula et 

al. introduced eight different components taken from the innate and the adaptive immune system. From the 

innate immune system, the evidence-based detector is responsible for detecting intrusions based on clear 

evidence such as a security policy violation. The innate response agent reacts to attacks detected by the 

evidence-based detector. Their responses, such as limiting bandwidth or disk access, are limited and 

general like the reactions of the innate immune system. The behaviour-based detector, which is an anomaly 

detector, is initiated only when it receives co-stimulation signals, which are the detection restuls of the 

evidence-based detector. Like the adaptive immune system, the signature extractor extracts signatures of 

detected attacks and has a learning mechanism which allows attack signatures to mature. Some of the 

matured attack signatures are kept at the knowledge-based detector which corresponds to the adaptive 



immune memory. The signature extractor activates the response generator and the adaptive response 

agent. The response generator decides the types of responses and the adaptive response agent performs the 

selected responses. Altogether, de Paula et al. attempted to identify and understand useful processes of the 

HIS, and to see how these can help with devising new IDS architectures. However, they did not attempt to 

implement the processes using the mechanism of the HIS, only to mimic it at a high level of abstraction. 

 

While the use of existing algorithms modified in some way to resemble an immune mechanism may 

improve reliability in some cases, it could be argued that they do not allow all of the possible features of 

immune systems to be exploited. Some methods were certainly multi-layered and diverse, but the systems 

often did not have disposable elements or significant properties of self-organisation or being distributed. 

 

3.2  Negative Selection Approaches 

3.2.1  Negative Selection algorithm overview 

While some success has been made using conventional algorithms in a manner inspired by the human 

immune system, IDS researchers were quickly attracted to one specific aspect of the immune system: 

negative selection in the T-cell maturation process [45]. Negative selection eliminates inappropriate and 

immature T-cells that bind to self antigens. This allows the HIS to detect non-self antigens without 

mistakenly detecting self-antigens.  

 

Forrest et al. [104][45] [106] were the first to propose a novel negative selection algorithm mimicking this 

process (see figure 1). They considered the negative selection process of the HIS to be a sophisticated 

anomaly detection method. This process does not define specific harmful cells to be detected and thus 

allows the HIS to be able to detect previously unseen harmful cells. The algorithm consists of three phases: 

defining self, generating detectors and monitoring the occurrence of anomalies. In the first phase, it defines 

`self' in the same way that other anomaly detection approaches establish the normal behaviour patterns of a 

monitored system. It regards the profiled normal patterns as `self' patterns. In the second phase, it generates 

a number of random patterns that are compared to each self-pattern defined in the first phase. If any 

randomly generated pattern matches a self-pattern, this pattern fails to become a detector and thus it is 



removed. Otherwise, it becomes a detector pattern and monitors subsequent profiled patterns of the 

monitored system. During the monitoring stage, if a detector pattern matches any newly profiled pattern, it 

is then considered that new anomaly must have occurred in the monitored system.  

 

In [36], D'haeseleer et al. highlight a number of the NS algorithm features that distinguish it from other 

intrusion detection approaches. They are as follows:  

•� No prior knowledge of intrusions is required: this permits the NS algorithm to detect previously 

unknown intrusions. 

•� Detection is probabilistic, but tunable: the NS algorithm allows a user to tune an expected 

detection rate by setting the number of generated detectors, which is appropriate in terms of 

generation, storage and monitoring costs. 

•� Detection is inherently distributable: each detector can detect an anomaly independently without 

communication between detectors. 

•� Detection is local: each detector can detect any change on small sections of data. This contrasts 

with the other classical change detection approaches, such as checksum methods, which need an 

entire data set for detection. In addition, the detection of an individual detector can pinpoint where 

a change arises. 

•� The detector set at each site can be unique: this increases the robustness of IDS. When one host is 

compromised, this does not offer an intruder an easier opportunity to compromise the other hosts. 

This is because the disclosure of detectors at one site provides no information of detectors at 

different sites. 

•� The self set and the detector set are mutually protective: detectors can monitor self data as well as 

themselves for change. 

 

The negative selection (NS) based AIS for detecting computer viruses was the first successful piece of 

work using the immunity concept for detecting harmful autonomous agents in the computing 

environment [105]. Since this first success, the Adaptive Computation Group at the University of New 



Mexico, headed by Stephanie Forrest, has been instrumental in the development of IDS, employing 

concepts and algorithms from the field of AIS. Not limiting the potential strengths of AIS on a simple virus 

detection problem, the following work [106] drew on many principles of the HIS that would guide the 

design of future AIS for IDS (see figure 1).  

 

In [106], Forrest et al.'s work identified the features of the HIS desirable for imperfect, uncontrolled and 

open environments, which reflected the current computer security environment. The HIS features identified 

by this work were distributability, multi-layeredness, diversity, disposability, autonomy, adaptability, 

dynamic coverage, anomaly detection, identity via behaviour, no trusted components and imperfect 

detection [106]. The authors underlined the key advantageous trait of the HIS as its unique capability to 

incorporate these properties all together. They pointed out that there was no single computer security 

system that was equipped with more then a few of these properties despite some of the properties being 

already adopted by current computer systems in isolation. It was then shown that four possible AIS 

architectures exist where the desirable properties could be implemented within. They were protecting static 

data (A1), protecting active process on a single host (A2), protecting a network of mutually trusting 

computers (A3), and protecting a network of mutually trusting disposable computers (A4). 

 

The attractive features of negative selection have led a number of researches to employ the NS algorithm 

for the study of IDS (the major branches for NS shown in figure 1 illustrates how widespread such research 

has become). In the following sections, we present promising results of the NS algorithm shown in 

applications within security. We will also focus on how researchers have tried to resolve the two notable 

but intrinsic problems of the NS algorithm - scalability and coverage.  

 

3.2.2  Negative Selection anomaly detection for security 

Early work by the Adaptive Computation Group at the University of New Mexico [45] viewed virus 

detection as a self-nonself discrimination problem within a computer. They regarded monitoring targets 

(such as legal user activities, legal application usage activities, uncorrupted data, etc.) as self and expected 

the NS algorithm to discriminate them from others (such as illegal user activities, illegal application usage 



activities, virus infected data, etc.). In this work, Forrest et al. randomly generated binary string detectors 

and selected the subset which did not match to self strings from a standard binary executable .com file. The 

experimental results showed that the NS algorithm obtained a 100% detection rate under a relatively small 

scale problem: with 125 detectors when an infected file was encoded by 655 binary strings each string 

having 32 bits.  

 

More recent work by Hofmeyr and Forrest [62] [64] involved the development of an AIS for network 

intrusion detection, called LYSIS. LYSIS implements the AIS architecture called `ARTIS' described 

in [65]. It employs the NS algorithm for binary detector generation and various features of the HIS such as 

activation threshold, life span, memory detectors, costimulation, tolerisation period and a decay rate, in 

order for it to monitor dynamic self and non-self behaviours. LYSIS is network-based and examines TCP 

connections, classifying normal connections as self, and everything else as non-self. In order to perform 

this, LYSIS extracts a datapath triple, which is a source host IP address, a destination host IP address and a 

TCP service (port) number from TCIP/IP packet headers. This datapath is used as input data to build self-

profiles. Detectors in the form of binary strings which do not match to self-profiles for a tolerisation period 

are generated using NS. They are subsequently matched against sniffed triplets from the network using an 

r-contiguous bit matching scheme
1
. If a detector matches a number of strings above an activation threshold, 

an alarm is raised. Detectors that produce many alarms are promoted to memory cells with a lower 

activation threshold to form a secondary response system. Generated detectors monitor a network for their 

life span periods. Co-stimulation is provided by a user confirming if an alert is genuine, which reinforces 

true positives. The activation threshold is set according to an adaptive mechanism involving many local 

activation thresholds, based on match counts of detectors.  

 

LYSIS was tested by using it to monitor 50 hosts in a local area network (LAN), where each host in the 

                                                           

1
 R-contiguous matching measures the similarity between two binary strings by counting contiguously 

matching bits. Together with Hamming distance, r-continuous matching is initially suggested for detector 

matching methods of the NS algorithm [45][62].  



LAN independently generated detectors and monitored new traffic. LYSIS was tested on seven intrusions 

and showed promising results. However, the limited input data suggests that future research may be 

necessary to evaluate whether LYSIS is able to detect more diverse intrusions then those used in [62] [64].  

 

Balthrop et al. [14] [47] provided an in-depth analysis of the LISYS immune-based IDS [62]. In this 

analysis, the adaptive mechanisms of the LISYS immune-based IDS were examined with respect to 

machine-learning (ML) counterparts, and the contribution of an each individual component was quantified. 

For this analysis, the authors collected new data from an internal restricted network of computers that the 

authors themselves controlled. A total of six internal hosts were connected to the Internet through a single 

Linux box, where firewall, router and masquerading server ran. After the week-long normal period ended, 

several attacks were performed through the use of Nessus [98] for two days. This study aimed to show how 

LISYS accomplished its success as an effective IDS and how individual mechanisms of the LISYS could 

be combined to other ML mechanisms. The results of this work showed that many individual components 

of the LISYS could valuable in other challenging ML problems such as one-class learning, concept drift 

and on-line learning. Specifically, co-stimulation together with memory detectors provided the LISYS with 

the extended on-line and one-class learning mechanisms, and rolling-coverage handled the concept-drift.  

In addition, activation thresholds and sensitivity levels contributed to reduce false positives, and the 

incorporation of r-chunks and permutation masking also reduced false positives and increased true 

positives [13]. Together these mechanisms provided an impressive array of immune features (not beaten by 

any other approach to date): distributed, self-organised, lightweight, diverse and disposable. 

 

Another approach, called Computer Virus Immune System (CVIS) [90] [61] by the US AFIT team, was 

developed as a part of Computer Defence Immune System (CDIS). CVIS has features including detected 

virus analysis, repair of infected files and dissemination of analysis results to other local systems. In 

addition, CVIS was designed to operate under a distributed environment using autonomous agents but the 

reported test results of CVIS [90] [61] were limited to evaluation focused on a local host based 

implementation. The viruses tested were the TIMID virus, which infects .com files only within a local 

directory. The test reports showed the sensitivity of detection and error results depending on different 



matching thresholds. By setting appropriate parameters, this system was able to show a detection rate of up 

to 89%. One serious problem found from these tests was scalability. Notably CVIS required approximately 

1.05 years for generated antibodies to scan an 8GB hard disk drive. 

  

Harmer et al. extended CVIS further to detect network intrusions [90] [61]. The extended system, named 

CDIS, also used the NS algorithm with some novel ideas that had been introduced in LYSIS such as life 

span, activation threshold and co-stimulation. In contrast to LYSIS, CDIS chooses 28 features of TCP 

packet headers and 16 features of UDP and ICMP packet headers as its input self data. For detector string 

generation, CDIS randomly selects the network protocol and chooses between two and seven features of 

that selected protocol. For the selected protocol features, CDIS generates the values of these features 

randomly. As a new way of reducing the computing time to generate antibody strings, CDIS adopts an 

affinity maturation process. This process aims to optimise each detector to cover the non-self space as 

much as possible without matching any self string. In order to perform this, CDIS uses a genetic algorithm 

and its fitness function is defined as the growth rate of non-self space coverage by each antibody. The test 

results showed that CDIS was able to detect simulated intrusions without serious self detection errors. The 

results also verified that the co-stimulation and affinity maturation help CDIS to reduce both FP and FN 

error rates. However, it was found that the affinity maturation required far too much computation time to be 

applied to the second, larger, data set. In addition, the authors also pointed out that the high detection rates 

with low error rates might have been obtained because the simulated intrusions were limited. As with a 

number of IDS more extensive tests with more varied intrusions are required in order to fully validate these 

techniques.  

 

In more recent work, Le Boudec and Sarafijanovic [18], [19] [100] built an immune-based system to detect 

misbehaving nodes in a mobile ad-hoc network. (These are wireless networks in which each end-user 

system, termed a node, acts as both a client and router. As nodes act as routers, their proper functioning is 

essential for the transmission of information across the network.) The authors considered a node to be 

functioning correctly if it adhered to the rules laid down by the common protocol used to route information, 

in their case the Dynamic Source Routing (DSR) protocol. Each node in the network monitored its 



neighbouring nodes and collected one DSR protocol trace per monitored neighbour. Four sequences of 

DSR protocol events were sampled over fixed, discrete time intervals to create a series of data sets. This 

created a binary antigenic representation in which each of the four genes recorded the frequency of their 

four sequences of protocol events. The NS algorithm was then used with the generated antigens and a set of 

uniformly randomly-generated antibodies to eliminate any antibodies which matched, using an exact 

matching function. Once a mature set of detectors had been generated, these antibodies were used to 

monitor further traffic from the node and, if they matched antigens from the node, classify it as suspicious. 

While more work needs to be performed before this approach can be implemented on a real ad-hoc 

network, it has the potential to be distributed, self-organised, disposable and must be light-weight or the 

nodes would not be able to operate effectively. This is also one of the first attempts to explore the use of 

immune algorithms in the rapidly-growing area of ubiquitous computing – an area that may be highly 

appropriate for immune algorithms, given the dynamic, distributed nature of such networks. 

 

3.2.3  Scalability of the NS algorithm 

In their 1996 work, D'haeseleer et al. [37] developed binary detector generation algorithms using a linear-

time algorithm that guaranteed a linear time of detector generation, and a greedy algorithm that generated 

non-redundant detectors in linear time. Later, Singh [103] extended the greedy algorithm that was able to 

handle strings with a large alphabet cardinality, and Wierzchon [118] introduced the binary template that 

helps the NS algorithm to generate non-redundant detectors more efficiently. However, these algorithms 

require the use of a contiguous bit matching method and they trade space complexity for time complexity. 

For these reasons, Hofmeyr's LYSIS (see pp32 in [62]), the network-based IDS operating on a real 

environment, and Kim and Bentley's work [82] [88] used the original negative selection algorithm [45] for 

binary detector generation. 

 

In order to investigate the feasibility of the NS algorithm in a real network environment, Kim and 

Bentley [82] [88] studied the problem of scalability of the NS algorithm. For this study, they used TCP 

packet headers covering around 20 minutes and containing five specified attacks. A total of 33 different 

attributes were extracted describing a specific network connection. These attributes contained the following 
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information: connection identifier, known port vulnerabilities, 3-way handshake details and traffic 

intensity. To encode this data into self strings, the alphabet cardinality used was 10, which is significantly 

larger than the binary encoding that is usually employed by other NS algorithms [45][62] [61]. For detector 

matching, the r-contiguous matching method was used. Non-self detection rates for the various attacks 

were recorded as less than 16% so the detector coverage in this case was not sufficient. It was estimated 

that for an 80% detection rate it would take 1,429 years to produce a detector set large enough to achieve 

this kind of accuracy, using just 20 minutes worth of data, and 6*108 detectors would be needed. From 

these results, the authors concluded that the NS algorithm produced poor performance due to scaling issues 

on real-world problems. 

 

The following work by Kim and Bentley [88] [83] introduced a dynamic clonal selection algorithm 

(DynamiCS) that controlled the proliferation and extinction of detectors within IDS. DynamiCS was an 

integrated model that combined negative selection, clonal selection and gene library evolution. It built on a 

simplified version of LISYS [62] and hence employed tolerisation periods, costimulation, affinity 

maturation, life span and memory detectors. The authors showed that DynamiCS was able to incrementally 

learn globally converged normal behaviours by being exposed to only a small subset of self antigens at one 

time. In [88] [84], the extended DynamiCS eliminated memory detectors when they showed poor self-

tolerance to new antigens. The experimental results showed that deletion of memory detectors based on 

their self-antigen detection dramatically decreased high false positive rates. In order to reduce the large 

amount of costimulation (confirmation to be performed by a human security officer), DynamiCS employed 

a "virtual gene library", made from mutations of deleted memory detectors [88] [84]. The new extension 

was tested to determine whether it gained high true positive detection rates without increasing the amount 

of costimulation as the result of gene library evolution. With gene library evolution, DynamiCS showed a 

smaller true positive rate drop when antigens were presented from the same antigen cluster. This was 

because the mutants of previously deleted memory detectors, having survived the negative selection stage, 

were likely to have some non-self antigen information without patterns matching self antigens. DynamiCS 

exploited several immune features such as being self-organised and diverse. However, the aforementioned 

research by Kim and Bentley [85] [83] [84] was tested only on a small size of data sets selected from the 



UCI repository machine learning database [17]. 

 

Following the criticism by Kim and Bentley in [82] regarding scaling and false positives, Balthrop et 

al. [14] provided some explanation of the results reported in [82]. In particular, they criticised the choice of 

the matching threshold for r-contiguous matching function and the cardinality of alphabet used for the 

detector genotype. Balthrop et al. suggested that jumping from a value of 4 to 9 for the matching threshold 

value is not an ideal approach to tune the performance sensitive parameter. However, Kim and Bentley [82] 

clarified that the matching threshold value of 4 was tried and then, in a series of experiments, the value was 

gradually increased until it finally generated a single valid detector in a reasonable time, (approximately 70 

seconds CPU time). They also explained that the choice of large alphabet cardinality for the experiments 

performed in [82] was necessary because of the much larger number of fields and their possible values to 

be presented then ones used in [62] and [14]. Nevertheless, Balthrop et al. make a strong point in [14] that 

the problem could lie in the representation and the r-continuous match rule, not in the negative selection 

process itself.  

 

Balthrop et al. [14] also introduced an improvement to r-contiguous matching called an r-chunk scheme. In 

this scheme, only r contiguous bits of the whole detector are specified (known as the window), with the 

remaining becoming wild-cards and thus the partial matching is performed. Subsequent work by Esponda 

et al. [42] reported that the r-chunk matching requires O(t |S|) time and O(t2
r
) space where t is the number 

of windows in a given string, S is a collected self set, and r is the length of the matching chunk. In other 

words, r-chunk matching shows linear-time complexity against the number of self-patterns and windows 

but requires more space compared to the original NS algorithm. Recent work by Stibor et al. [109] 

employed a hashtable data structure for generating r-chunk matching detectors. The elements in the 

hashtable are a composite of a r-bit chunk string and a position of the r-chunk within a given detector 

string. The hashtable key returns the element as a boolean value indicating whether the corresponding r-

chunk matches any self string or not. Thus, valid detectors are simply returned elements of the hashtable 

when the key value is true. However, this modification still shows the time complexity exponential to r 

which is O(|Σ|r) when Σ is the alphabet cardinality of a detector string.  



 

More recently, Stibor [110] [112] et al has shown that the generated detector set underfits exponentially for 

small value r. Underfitting behaviour leads a user to set the matching threshold value r near l. However, 

this verifies that the detector generation using the negative selection with r-chunk matching infeasible since 

all the proposed variants of the negative selection algorithm have a runtime complexity which is 

exponential in r. 

 

While the above work attempted to reduce detector generation time using different matching methods, 

Ayara et al. [11] proposed a modification of the original NS algorithm, which used somatic hypermutation
2
 

(The original NS algorithm was termed the exhaustive NS algorithm in their paper). This new algorithm 

was called negative selection mutation (NSM) and performed a guided mutation on the detector which 

matched self data during the detector generation process. The specific parts of a detector used to match the 

bits to a self-string were targeted for mutation. The mutation rate was dynamically set according to the 

affinity between a detector and a self string: the greater the affinity, the higher the mutation rate. The 

number of mutations performed on the same candidate detector were restricted. The authors compared the 

NSM with the exhaustive NS through the tests performed on randomly generated 8-bit self data. The results 

illustrated that the two algorithms showed similar time complexity and detection rates with no statistical 

significant differences. However, the authors argued that these results were likely to be caused by the 

nature of randomly generated self data. This was because the executed mutations resulted in the detectors 

being pushed towards or away from a self-string with an equal probability. They also added that in 

unpublished following work which tested the NSM on structured self-data they showed better performance 

in terms of time complexity.  

 

In recent work by Gonzalez and Cannady [57], the authors improved the NSM algorithm by adopting the 

self-adaptive strategy of evolutionary algorithms to control the mutation rate [40]. This strategy determines 

                                                           

2
 Somatic hypermutation is the occurrence of a high level of mutation in the variable regions of B-
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a mutation rate at every generation by selecting the standard deviation from the fittest detectors selected via 

a tournament selection, multiplied by Gaussian noise. A comparison with the NSM algorithm showed that 

the new algorithm performed better with respect to higher detection rates, lower false detection rates, and 

computation time taken. Other work by Hang and Dai [59] used common schemata of self data in order to 

reduce the non-self search space. The authors let the co-evolutionary algorithm run to find common schema 

that exist among self-patterns. Then, randomly generated binary detectors were matched against the 

common schema of self data only, instead of entire self strings. The motivation behind this work was that it 

could reduce the number of self strings, which would save computation time and still find a reasonable 

quality of detectors. However, the algorithm was only tested on the well-known Iris data set and no 

investigation on the time complexity compared to the exhaustive NS algorithm was reported. Moreover, the 

authors did not discuss newly arising problems such as the escalation of false positive error rates possibly 

caused by simplification of the self space.  

 

After observing the scaling problem of the NS algorithm in [82] [88], Kim and Bentley [85] suggested the 

need to re-define the role of the NS stage within a network-based IDS, and to design a more applicable NS 

algorithm according to that new role. The new algorithm, called the static clonal selection algorithm 

(StatiCS) used the clonal selection process of the HIS with a NS operator. It let detectors evolve towards 

the non-self patterns hidden in the collected non-self data and the NS operator acted as a filter for invalid 

detectors, not the generation of competent detectors. This algorithm was developed especially for the 

purpose of building a misuse detector in a more efficient way. StatiCS was an enhancement to the clonal 

selection algorithm introduced in [104]. In order for StatiCS to be applied to the network intrusion 

detection problem, a modified representation of detectors and a matching function were introduced. A 

binary string was used as detector genotype and a conjunctive rule was employed as detector phenotype. 

The new phenotype representation removed the matching threshold parameter by allowing an "OR" 

operator in a genotype-phenotype mapping. The modified phenotype representation no longer required the 

arbitrary choice of a parameter value that significantly affected the detection rate. In addition, this 

phenotype allowed a detector to match more then one specific antigen and thus it still had the lightweight 

feature, originating from approximate binding. Furthermore, the detector phenotypes used in this work had 



a larger degree of intelligibility. Nevertheless, StatiCS remains unproven for large-scale network intrusion 

detection. 

 

3.2.4  Coverage of the NS algorithm 

With the initial success of the NS algorithm in virus detection, the researchers at the University of New 

Mexico studied the theoretical aspects of the NS algorithm [37] [36]. In this work, the authors explained the 

concept of holes existing in the NS algorithm. Depending on matching methods and strings used in the NS 

algorithm, there exist non-self strings called holes that are not covered by a complete detector repertoire. 

Figure 2 illustrates the existence of holes in a self and a non-self space comprised by self and detector 

strings. 

  

 

Figure 2: The existence of holes. Each dark circle represents a detector and a gray shape in the 

middle is self-antigen data. The size of the dark circles reflects the generality of detectors. Since all 

the detectors have an identical radii, and the detectors are too general to match some non-self 

subspaces without matching self antigen data, there inevitably exist holes [62]. 

 

As illustrated in Figure 2, this problem arises from the adoption of symmetrical string matching and its 

generality. The existence of holes determines a lower bound on a false negative error rate. In order to 

remedy this problem, Hofmeyr [62] [64] introduced the permutation mask, inspired by the function of the 

important MHC (Major Histocompatibility Complex) class of molecules.  

 

In the HIS, there are a number of classes of MHC, most noteworthy being class I and II. The presentation 

of peptides in combination is vital for the presentation of antigens to lymphocytes. It has been shown that 



MHC molecules are highly polymorphic and in many cases are unique for individuals. Therefore, the 

diversity of MHC classes provides a better chance for the successful detection of different types of 

antigens. Inspired by this insight, the permutation mask lets the NS algorithm randomly permutate the 

binary bits of generated detectors. As a consequence, it has an additional set of detectors with different 

representations reflecting an identical non-self space. Different representations would have different holes 

in a non-self space and hence the union of non-self space coverages by multiple sets of detectors are likely 

to result in reducing the number of holes.  

 

By introducing the permutation mask, Hofmeyr [62] [64] demonstrated improved detection results by up to 

a factor of 3, especially when LISYS attempted to detect a non-self string close to a self-string in a search 

space. Kaers et al. [75] applied the permutation mask on their fuzzy rule detectors and tested it on three 

data sets from the UCI repository machine learning databases [17]. Their test results also produced 

improved detection rates. Balthrop et al. [13] also investigated the effect of the permutation mask used by 

the simplified version of LISYS, which employs r-chunk matching. From this investigation, they found that 

the incorporation of r-chunks and permutation masking reduced false positives and increased true positives. 

Additionally, they found that varying r had little effect, unlike with full-length detectors. As the r-chunks 

scheme performed remarkably well the authors investigated it further, and subsequently found that the 

dramatic increase in performance was in part due to the configuration of their test network. Nevertheless, it 

still outperformed the full-length detector scheme.  

 

In later work, Esponda et al. [42] formally showed that r-contiguous matching augmented by the 

permutation mask is able to cover a larger space recognised by Hamming distance matching. Their study 

also showed that there are still non-self strings not detected by r-contiguous matching augmented by the 

permutation mask. (Wierzchon [118] [117] [119] had also presented the number of existing holes and the 

lower bound of a detection failure error rate based on his new algorithm, another modification the NS 

algorithm using a binary template. This analysis, however, was limited to using r-contiguous matching on 

static data.) More importantly, Esponda et al.'s work [42] provided a formal framework for positive and 

negative detection schemes that analysed the trade-offs between two schemes. Firstly, they emphasised the 



necessity of generalising a set of strings to be recognised by the adopted matching methods, in order to 

discriminate non-self patterns from self patterns in a realistic amount of time. This understanding calls for a 

partial matching method to generalise detector strings. In order to explain the relation between a partial 

matching and string generalisation, the property termed crossover closure is introduced. When all the 

possible sliding windows of each string existing in a universal string set exactly match the corresponding 

windows of some self-strings, it is said that the self-string set is closed under crossover closure. The 

authors used this property to characterise two matching methods: r-contiguous and r-chunk matching. It 

was formally proven that when these two matching methods were employed by two different detecting 

approaches - negative disjunctive and positive conjunctive, both cannot recognise all string sets under 

crossover closure, and both can recognise some sets not under crossover closure. It was additionally shown 

that the string space recognised by negative disjunctive detection is equivalent to the one covered by 

positive conjunction detection. The authors continued to estimate the expected number of detectors when r-

chunk is applied for negative disjunctive or positive conjunctive detection. For the first time, an estimation 

was developed for how many self-strings are required for either negative disjunctive detection or positive 

conjunctive detection to be computationally advantageous. Moreover, the authors approximated the number 

of holes as a function of self-strings coupled with a string length and a size of r. An interesting observation 

from this approximation is that the number of holes decreases as more self strings are added, when the size 

of r is relatively close to the string length. Further work by the same authors [41] extended the similar 

formal analysis to the case when non-overlapping sliding windows are used for r-chunk matching.  

 

Whist the above work focused on the improvement of binary string matching and coverage, Gonzalez [50] 

extensively studied various detector representation schemes of the NS algorithm (see figure 1). The original 

NS algorithm employed a binary representation of given data and detectors. Gonzalez et al. [50] [51] 

showed the limitations of the NS algorithm which are possibly caused by the binary representation scheme. 

They argued that matching rules between two binary strings cannot represent a good generalisation of a self 

space and thus a generated detector set shows poor coverage of a non-self space. The main reason for this 

problem, the authors explained, was that the affinity relation between two binary strings represented by 

binary matching rules cannot capture the affinity relation between two data examples in a given problem 



space. To verify this argument, the authors visualised the coverage space of a single detector on a problem 

space illustrated by two-dimensional real values, and measured detection and false alarm rates by applying 

different binary matching rules and matching thresholds. The results of these assessments supported their 

claim.  

 

Subsequent research by Dasgupta and Gonzalez [31] [54] [50] examined whether the fundamental idea of 

NS is advantageous for the network intrusion detection problem. They compared a negative 

characterisation approach to positive characterisation. The positive approach focused on generating rules 

covering a self-space and detected anomalies by monitoring events that matched no self rules. Their 

implementation of the positive selection algorithm used a k-dimensional tree, giving a quick nearest 

neighbour search. On the other hand, their negative characterisation approach employed a genetic algorithm 

in order to generate detector rules covering niches of a non-self space. While the NS algorithm generated 

detectors covering the same radii of clusters in non-self space, Dasgupta and Gonzalez used the GA to let 

detectors evolve to cover generalised niches that had various radii. In order for detector rules to evolve, the 

fitness function was defined by the volume of non-self space covered by detector rules after a penalty 

having been applied according to the number of matching self examples. To test the system they used a 

small subset of the 1999 Lincoln Labs outside tcpdump datasets [89]. Overall, the best detection rates they 

found were 95% and 85% for positive and NS respectively. They concluded that it is possible to use NS for 

IDS, and that in their time series analysis, the choice of time window was imperative. 

 

Different work using the same algorithm to detect intrusions on mobile ad hoc networks was reported 

in [67]. Dasgupta and Gonzalez extended the negative characterisation approach to generate detectors 

represented by fuzzy rules [50] [49]. Further experiments on the same data set showed the advantages of 

using fuzzy rules to represent detectors. Specifically, they provided better definition of the boundary 

between a self and a non-self space, they showed an improved detection accuracy because of the reduction 

of a search space due to the fuzzy representation and they also generated a more compact representation of 

a non-self space by reducing the number of detectors.  

 



In [55] [50] [53], Gonzalez and Dasgupta developed the real-valued negative selection (RNS) algorithm. 

The RNS algorithm employs two distinctive features: the use of real-value representation and hybridising 

the NS algorithm with a classifier. The limitation of binary representations used by the NS algorithm 

motivated them to propose a new detector generation algorithm coupled with a novel matching function. In 

addition to the NS approach, classifier-based supervised learning paradigms have also been suggested as a 

possible avenue of exploration by IDS researchers [96]. However, a practical difficulty in using a classifier 

for IDS, namely gathering an extensive set of non-self data, has attracted many researchers to employ the 

NS algorithm as an anomaly detector. In order to resolve these problems faced by a conventional classifier 

or the NS algorithm, Gonzalez and Dasgupta used a combination of the two: the NS algorithm to generate 

artificial non-self data examples and a classifier to learn the non-self space from these examples.  

 

The RNS algorithm uses n-dimensional vectors as detectors. Detectors have a radius r, in other words they 

represent hyper-spheres in combinations with a fuzzy Euclidean matching function. In training, detectors 

are generated randomly and then moved to both maximise the coverage of a non-self space and to minimise 

the coverage of a self space. Detectors match if the median distance to their k-nearest neighbours is less 

then r and matching detectors are discarded. Surviving detectors are then provided to a multi-layer 

perceptron classifier trained with back-propagation. From this work, the authors concluded that scaling is 

not a problem in NS when real values are used rather than binary and r-continuous matching. They also 

concluded that NS could train their classifier effectively without providing non-self data collected from a 

real environment. The latest work by Gonzalez et al [56] hybridised the RNS algorithm with a Self-

Organizing Map (SOM). This work attempted to visualize anomalies in 2-dimensional map. In contrast, the 

latest work by Ji and Dasgupta [71] [72] further extended the RNS algorithm by introducing the variable 

lengths of a detector radius. The authors of this work aim to show an improvement in the detection 

accuracy and algorithm efficiency, through covering a non-self space with fewer detectors, and cover the 

holes by using detectors with a smaller radius.  

 



While the RNS algorithm may alleviate the scaling problem of the NS algorithm
3
, it creates different 

problems: the number of detectors required to cover a non-self space and the radius of each detector cannot 

be estimated in advance, and there is no guarantees of achieving the optimal space coverage with minimum 

overlap. In order to solve these problems, Gonzalez et al. proposed a randomised real-valued negative 

selection (RRNS) algorithm [50][52]. The RRNS algorithm uses Monte Carlo integration, which is a well-

known randomised algorithm, to calculate the number of detectors needed to cover a non-self space. It first 

estimates the volume of a self space based on the assumption that the average minimum distances from 

collected self samples forms the boundary of self space. Then the number of detectors required to cover a 

non-self space is calculated by defining a fixed length of detector radius, through obtaining the volume of a 

non-self space as the complementary to the volume of an estimated self space. Furthermore, for the 

efficiency of detector generation, simulated annealing is used to minimise the overlapping spaces covered 

by detectors. Through this modification the authors show that the RRNS algorithm provides a better non-

self space coverage with the same or less computational effort compared to the RNS algorithm. However, 

scalability tests were not performed with respect to computing time on a realistic size of intrusion related 

data.  

 

In recent work, Stibor et al.[111] gave a comparison between the real-valued positive and negative 

selection algorithms and two statistical anomaly detection algorithms, the Parzen-Window method and one-

class support vector machine(SVM). The comparison revealed that the real-valued positive selection and 

the Parzen-Window method suffered from long computation times although both produced good 

classification accuracy. The real-value negative selection algorithm with variable-sized detectors had poor 

classification performance (the maximum detection rate reached 2.6% on high dimensional space). On the 

other hand, the one-class SVM produced high detection rates while maintaining an acceptable run-time 

complexity.  

 

Work in this area is progressing rapidly. While the RNS algorithm attempts to cover a non-self space by 
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generating hyper-sphere detectors, Shaprio et al.[102] generated hyper-ellipsoid detetors, which are more 

flexible in shaping detectors. They used an evolutionary algorithm that reshaped randomly generated 

hyper-ellipsoid detectors fit to a non-self space. In contrast, the recent work of Zi and Dasgupta[73] 

attempted to solve the coverage problem by integrating the statistical hypothesis test to the negative 

selection algorithm. In this approach, the generation of detectors terminates when the hypothesis test rejects 

the null hypothesis "The coverage of non-self space by all the existing detectors is below an expected 

percentage". Although this work showed hypothesis test integration with RNS, authors claimed that it can 

be integrated with any type of negative selection algorithm [73]. 

 

Finally, hybrid approaches that combine NS with other algorithms are becoming more common in recent 

literature. In [38], Dozier et al. used a steady-state GA to discover the coverage holes of LYSIS type of 

AIS-IDS. The AIS-IDS (GENERTIA) employed in the following work [68] generates additional detectors 

that can cover the coverage holes discovered by the steady-state GA. Hang and Dai [60] had a similar 

motivation but used a different approach. They used anomaly patterns, which are rare but still possible to 

be collected, as seeds to generate additional synthetic anomalies. Artificial anomalies are generated by 

using a co-evolutionary GA and the NS algorithm. The co-evolutionary GA abstracts the positive selection 

process of the HIS, which generalises patterns of the self-class. Then, new artificial anomaly patterns are 

generated from empty spaces which neighbour a small number of anomaly patterns. The new patterns are 

then given to the negative selection algorithm with the evolved normal patterns to finalise an artificial 

anomaly set. The synthetic anomalies can be the coverage holes that might be missed by the LYSIS type of 

AIS-IDS. These patterns are fed into standard classifiers such as C4.5 and NaiveBayes to detect previously 

unknown anomalies. 

 

3.2.5  Summary and Discussion of Negative Selection Approaches 

As seen in this section, various features of the NS algorithm makes it by far the most popular algorithm in 

solving IDS problems, notably for anomaly detection [46]. However, despite its appealing properties, it has 

not shown great success in real-life applications. There are two drawbacks to utilising the NS algorithm, 

namely scalability and coverage, and these are the main barriers to its success as an effective IDS. To 



tackle the scalability problem, primarily two different types of research efforts have been made. The first 

group of research is focused on devising more efficient detector generation algorithms. Various approaches 

have been attempted such as a linear-time algorithm [37], a greedy algorithm that removes redundant 

detectors [37], [103], [118], and employing diverse ways of evolving detectors [11] [57] [59]. The second 

group of work has concentrated on employing a new matching function, namely r-chunks 

matching [14] [42], possibly saving computation time during detector generation and matching. To increase 

the non-self space coverage of detectors, reducing the number of holes existing in a binary detector space 

coupled with contiguous matching [62] [64] [75] [13], and proposing real-valued detectors with 

corresponding matching functions [50] [71] [72] have been investigated. Significant work on a formal 

framework for positive and negative detection schemes was reported in [42]. This work analyses the trade-

offs between two schemes and hence estimates how many self strings are required for either negative or 

positive detection to ensure that it is computationally advantageous.  

 

However, there are still unresolved issues for the NS algorithm to be an effective IDS. As some researchers 

argue in [8] [20], possibly the most controversial problem of the NS algorithm is its intrinsic limit starting 

from the initial assumption - detecting foreign patterns as intrusions. Non-self patterns would not 

necessarily indicate intrusions and thus a high false positive error rate caused from this assumption is 

perhaps the inevitable limit of the NS algorithm. Hence, tackling this limit is important future research. The 

application of a more flexible boundaries between self and non-self space using fuzzy rules [50] [49] is one 

example of such efforts.  However, as pointed out by Stibor [110] [112] et al, there may be inherent 

problems with the computational efficiency of NS that can never be resolved. 

 

3.3  Danger Theory Approaches 

Not all AIS are based on the negative selection algorithm (as can be seen by the other major branches in 

figure 1). Work by Burgess [20] was attentive to alternative immune theories apart from the self and non-

self detection model. He claimed that the self and non-self distinction concept, on which the NS based AIS 

is based, is too simple to explain the whole human immune mechanism, and thus too straightforward to be 

applied in AIS. Instead, he advocated a different immunology theory called the danger theory [93]. 



Although this model is still controversial among immunologists, he considered this model to be more 

appropriate for AIS. The single attribute that makes this model different from other immune theories is that 

immune response is triggered by unusual deaths of self-cells. Following this model, Burgess [20] [21] put 

the emphasis of AIS on an autonomous and distributed feedback and healing mechanism, triggered when a 

small amount of damage could be detected at an initial attacking stage. The system, named Cfengine, also 

aims to automatically configure large numbers of systems on a heterogeneous network with an arbitrary 

degree of variety in the configuration. After a human administrator initially specifies configuration policies 

at a very general level using an expert system shell, the system automatically monitors the state of each 

system and adapts initially specified generic policies to be more locally optimised. This change 

immediately triggers the modification of other policies affecting different hosts. The new policy reflects a 

new environment and other hosts can optimise their own policies. Burgess [20] uses an agent framework, 

employing an expert system based agent that locally optimises the maintenance of each local host in a 

distributed environment. In [21], Burgess reported that Cfengine has run on an estimated 10,000 nodes 

around the world since its inception in 1993. He also reported the experiences of Cfengine users as saving 

administrator's time, scaling well (showing successful running on 2500 Sun hosts) and the minimal load of 

running Cfengine (recording only a few percent of available CPU time). Burgess explained two main 

features which contributed to the success of Cfengine: the usefulness of abstract class model and 

converging traits of its operation. The initial maintenance policy indicates the abstract classes of machines 

and resources in a network, which is based on several attributes, such as OS, network domain, address and 

any proposition defined by a user. When Cfengine runs, it applies a configuration policy suitable for the 

classes of monitoring hosts and resources. The class based generic policy is then locally optimised as 

Cfengine continues to change the policy depending on what is locally observed. Burgess [24] also formally 

showed by using game theory that this kind of repeated application of policy change can converge to the 

stable equilibrium of a local policy. Once the convergent state is reached, Cfengine becomes passive or 

quiescent until the next considerable anomaly arises. This phenomenon was understood as a form of system 

homeostasis.  

 

The recent development of Cfengine [22] added several new features together with a more sophisticated 



anomaly detection engine [23] [25] [26]. Within the Cfengine framework, a statistical filter using a time-

series prediction detects the significance of deviation. The symbolic content of observed events determines 

how the system should respond, and is based on a locally optimised policy. Burgess saw a statistical 

anomaly as a danger signal, and claimed that only the content of observed events characterises the internal 

degree of the signal. In order to increase the scalability of the anomaly detection component, it 

incrementally updates the mean and variance of the sampled events. These events are the number of users, 

the number of processes, average utilisation of the system (load average), number of incoming and 

outgoing connections based on each service, and the numerical characteristics of incoming and outgoing 

packets. By performing this mechanism, the model can keep two dimensional time series records, which 

shows firstly the mean and variance of the current interval (in this case, 5 minutes) and secondly, the mean 

and variance of a long period (in this case, 2 weeks). Burgess argued that this kind of cross-checking would 

help to decrease the false positive error rate. Other work by Begnum and Burgess [15] extended Cfengine 

by combining anomaly detection based automated response mechanism called pH [107]. By the 

combination of signals from the two systems they intended that pH would be able to adjust its monitoring 

level based on inputs from Cfengine, and Cfengine would be able to adjust its behaviour in response to 

signals from pH. Cfengine therefore exploits several features of immune system, most notably being 

lightweight, self-organised, distributed and multi-layered. 

 

Also influenced by the idea of the danger theory, Le Boudec and Sarafijanovic [101] extended their earlier 

work on mobile ad-hoc networks [18], [19] [100] (described earlier) and chose to regard a packet loss in the 

network as a danger signal. In their system the danger signal is used to stop the relevant antigens entering 

the NS process. When the sequences of protocol events are collected i) at the nodes belonging to the route 

where the packet loss is observed, and ii) during the time close to the packet loss time, they are considered 

as non-self antigens. These non-self antigens are not passed to the detector generation process of the NS 

algorithm. In addition, danger signals are used as co-stimulation signals confirming successful detection 

through a detector, with good performing detectors becoming memory detectors. Their experiments were 

carried out on the Glomosin network simulator [121], where 5-20 nodes misbehaved among a total of 40 

nodes. The reported test results were firstly, that the use of danger signals strongly impacted on the 



reduction of false positive error rates and secondly, that the addition of memory detectors also improved 

detection rates. Once again, their system has the potential to be disposable, distributed, self-organised and 

light-weight, but has not been demonstrated in a realistic ad-hoc network yet. 

 

Aickelin et al. [9] [8] presents the first in-depth discussion on the application of danger theory to intrusion 

detection and the possibility of combining research from wet and computer laboratory results (see figure 1). 

They aim to build a computational model of danger theory which they consider important in order to 

define, explore, and find danger signals. From such models they hope to build novel algorithms and use 

them to build an IDS with a low false positive error rate. The correlation of danger signals to IDS alerts, 

and also of IDS alerts to intrusion scenarios, is considered particularly important. Their proposed system 

collects signals from hosts, the network and elsewhere, and correlates these signals with IDS alerts. Alerts 

are classified as good or bad in parallel to biological cell death by apoptosis and necrosis. Apoptosis is the 

process by which cells die as a natural course of events, as opposed to necrosis, where cells die 

pathologically. It is hoped that alerts can also be correlated to attack scenarios. 

 

To adopt danger signals (apoptosis and necrosis) which trigger artificial immune responses within an AIS, 

Bentley et al [16] introduced the concept of artificial tissue. The authors stressed that the tissue is an 

integral part of immune function, with danger signals being released when tissue cells die under stressful 

conditions. They also highlighted that tissue could play the role of interface between immune responses and 

pathogenic attacks. The authors argued that the absence of artificial tissue in conventional AIS caused 

difficulties, with every new AIS needing to be “wired” to a specific problem and hence it was difficult to 

compare, analyse, and apply such existing AIS to new problems. The authors proposed new tissue growing 

algorithms designed for AIS that provided generic data representations and hence allowed the artificial 

tissue to play the role of an interface between a problem and an immune algorithm. The algorithms took a 

series of input data stream and the artificial tissue grew to form a specific shape by linking input data cells. 

When new input data was provided to the tissue, the structure of the tissue changed in response. 

Restructuring tissue caused the deaths of data cells, which released danger signals in return. In this way, the 

tissue provided a spatial and temporal structure, enabling the AIS to start immune responses which were 



spatially and temporarily focused. The work exploits immune features such as being self-organised, 

lightweight and disposable, and has the potential to be implemented as a distributed system, and combined 

with other immune algorithms to make it multi-layered. To date it has only been tested on UCI machine 

learning data, however. 

 

Related work by Greensmith et al [58] employed dendritic cells (DC’s) within AIS that coordinated T cell 

immune responses. DCs are a class of antigen presenting cells that ingest antigen or protein fragments in 

the tissue, and DCs are also receptive to danger signals in the environment that may be associated with 

antigens. During the antigen ingestion process, immature DC’s experience different types of signals that 

indicate the context (either safe or dangerous) of an environment where the digested antigens exist. The 

different types of signals lead DCs to differentiate into two different types: mature and semi-mature. The 

chemical messages known as cytokines produced by mature and semi-mature DCs are different and these 

different messages influence the differentiation of naïve T cells into several distinctive paths such as helper 

T cells or killer T cells. In this way, the DC drives the T cell to react to the antigen in an appropriate 

manner and as such the DC can be seen as the interpretative brain behind the immune responses. 

Greensmith et al abstracted several properties of DCs that would be useful for application to anomaly 

detection [58]. In particular, they categorized DC input signals into four groups – PAMPs (signals known 

to be pathogenic), safe signals (signals known to be normal), danger signals (signals that may indicate 

changes in behavior) and inflammatory cytokines (signals that amplify the effects of other signals). When 

each artificial DC experiences the combinations of these four different groups of signals released from the 

artificial tissue, it interprets the context of ingested antigens by using a signal processing function, which 

has different weightings depending on the types of input signals. The output of a signal processing function 

determines the differentiation status of DCs (either semi-mature or mature) and in turn various types of T 

cells start diverse immune responses. The work is on-going and remains untested for intrusion detection at 

the time of writing. 

 

Kim et al [87] continued Greensmith et al’s work by discussing T cell immunity and tolerance for computer 

worm detection. Whilst the work of Greensmith et al [58] only presented the role of DCs, Kim et al 



presented how three T-cell central processes, namely T-cell maturation, differentiation and proliferation 

would be embedded within the danger theory-based AIS, called CARDINAL (Cooperative Automated 

worm Response and Detection ImmunNe ALgorithm). CARDINAL attempted to handle three distinctive 

problems raised in designing the AIS that operates as a cooperative automated worm detection and 

response system. Firstly, to optimize the number of peer hosts polled, CARDINAL employs the HIS 

feature that dynamically adjusts the proliferation rate for each effector T cell. Secondly, CARDINAL 

mimics a T cell differentiation process that leads naïve T cells to mature into various types of effector T 

cells depending on the interaction with cytokines. This process was expected to provide the AIS with 

appropriate types of responses depending on the severity and certainty of detected attacks. Finally, 

CARDINAL was designed to automatically adjust the magnitudes of responses by taking into account both 

local and peer information. This mechanism was also borrowed from the amplifying and suppressing 

processes of T cell effector responses via interaction among different types of effector T cells. By 

proposing CARDINAL, the authors showed how the link between the innate immune system led by DCs 

and the adaptive immune system operated by T cells. In particular, authors suggested that CARDINAL was 

not designed to operate in isolation, but in unison as a part of a danger theory inspired AIS, which also 

employed the artificial tissue [16] and the DC algorithm [58], making a multi-layered system that could 

exploit most of the other features of the human immune system. 

 

In [86], the artificial tissue, the DC algorithm and T-cell algorithm were combined and presented as a 

different version of the danger theory inspired AIS. In this work, Kim et al proposed a danger theory 

inspired AIS for detecting and responding to malicious code execution. The system was designed to 

provide the ability to i) detect a danger from environmental conditions (by identifying various local 

anomalies), ii) extract and generalize attack signatures from the data associated with detected danger (by 

constructing system call policy rules), and iii) respond to an on-going attack appropriately (by permitting or 

blocking certain system calls presented as the policy rules generated and refined by AIS). The authors 

anticipated that these abilities would allow the AIS to automatically reconfigure system call policy rules 

depending on the severity and certainty of attacks. These methods have not been tested for real intrusion 

detection yet, however. 



 

As shown in [87], the danger theory inspired AIS was designed to adopt both the innate immune system 

and the adaptive immune system. Apart from the danger theory inspired AIS, most AIS have largely taken 

their inspiration only from adaptive immune systems while the innate immunity directly links to the 

adaptive immunity. Twycross and Aickelin [114] provided a review of biological principles and properties 

of innate immunity, and showed how these could be incorporated into artificial models. In this work, 

authors addressed six properties of the innate immune system that would influence the capability of AIS. 

These six properties are summarized in table 1.  

 

Table 1. General properties of the innate immune system [114] 

Property 1 Pathogens are recognized in different ways by the innate and the adaptive immune systems 

Property 2 The innate immune system receptors are determined by evolutionary pressure 

Property 3 Response to pathogens is performed by both the innate and adaptive systems 

Property 4 The innate immune system initiates and directs the response of the adaptive immune systems 

Property 5 The innate immune system maintains populations of adaptive immune system cells 

Property 6 Information from the tissue is processed by the innate immune system and passed on to the adaptive 

immune system 

 

In addition, the authors evaluated the biological innate immune system based on the conceptual framework 

proposed by Stepney et al [114]. This framework describes five significant properties that affect complex 

behaviors in general: openness, diversity, interaction, structure and scale (ODISS). By showing that the 

innate immune system indeed supports ODISS properties, Twycross and Aickelin highlighted the key and 

unique role of the innate immune system within an integrated AIS.  

 

3.4  Other algorithms 

While negative selection and the danger theory are perhaps the most popular approaches in AIS for 

intrusion detection, there are many researchers who choose to create AIS based on alternative ideas, for 

practical and philosophical reasons. 



 

In contrast to the negative selection approaches, early work by Somayaji et al. [105] aimed to build an IDS 

based on an explicit notion of self within a computer system (see figure 1). The system was host-based, 

examining specifically privileged processes. The system collected self-information in the form of root user 

�������� (a popular UNIX mail transport agent) command sequences. This self-information was 

constructed as a database of normal commands. Further �������� commands were examined and 

compared with entries in this database. The authors considered the time complexity for this operation was 

O(N) where N is the length of the sequence. A command-matching algorithm was implemented and 

compared with the defined behaviour in the database. Intrusions were detected when the level of 

mismatched entries in the database had risen above a predefined level. Subsequent alerts were generated, 

and a basic response was suggested, but no dramatic system changing response was implemented. While 

this work did exploit the immune properties of being self-organised, it did not make significant use of the 

other five useful properties of the immune system. 

 

Building on previous work by Somayaji et al. [105], the work by Hofmeyr et al. [63] was also motivated by 

the need to improve anomaly-based IDS (see figure 1). Misbehaviour in privileged processes were 

examined through scrutinising the same superuser protocols, but using a different representation. System 

call traces were presented in a window of system calls, a value of six selected by a trial-and-error. This 

window was compared against a database of normal behaviour, stored as a tree structure, compiled during a 

training period. If a deviation from norm was seen, then a mismatch was generated, with sequence 

similarity assessed using a Hamming distance metric. A sufficiently high level of mismatches generated an 

alert, but did nothing to alter the system. All the cases of intrusions tested were detected by the system. 

With regard to false positives, a bootstrap method was used as a proof of concept, though no actual results 

were presented. The authors concluded that false positives could be reduced through the increase in the 

training period. It was claimed that their system was scalable, and generated on average four false positives 

per day, although they did not directly compare their system with any other. The vast majority of the 

presented results was evidence of the database scaling well, finding the optimum sequence length and 

setting the mismatch threshold parameters. The results suggested that this approach could work using data 



from both real and controlled environments, but the authors found that it was difficult to generate live data 

in a dynamic environment. They also noted that issues of efficiency had been largely ignored, but would 

have to be addressed if the system was to work in the real world. Li��� ������	
��� ������� ��� ��
��


�������������������
���������
�������������
���� 

 

Stillerman et al. [113] built on the work of Hofmeyr et al. [63] and introduced an immunity-based intrusion 

detection approach that was particularly applicable to Common Object Request Broker Architecture 

(CORBA) applications. CORBA is a popular common messaging middle-ware that enables the 

communication of distributed objects for distributed applications. The authors employed the same approach 

reported in [63] to detect a misuse attack performed by a legal user of the system, termed a rogue client 

attack. The experimental results showed that the system was able to detect anomalies caused by this attack 

without high false positive error rates. Although this report showed that their work was feasible when 

applied to the CORBA application level of attack, the report did not include exact false positive error rates 

or the training and test data collection periods in the experimental results. Furthermore, their work did not 

utilise any of the new ideas (i.e., negative selection) of AIS, instead directly using a notion of self. 

 

The later work of Ebner et al. [39] also employed a notion of self, which identified authorised users by 

collecting normal typing behaviour of users. The authors chose not to use the NS algorithm, instead simply 

building normal keystroke profiles using the duration of key presses and the delay between key presses. 

They claimed that it would be more efficient and easier to detect non-self by building self patterns when a 

given self space is relatively small, and believed that the identification of self keystroke behaviours 

belonged to such a case. Melnikov and Tarakanov briefly introduced an immunocomputing model for IDS 

in [94]. Their model works on a simple test problem, but further results are being produced at the time of 

writing and may prove promising. Also, Fang and Le-Ping [43] employed the network based AIS, aiNet by 

De Castro and Von Zuben [27]. aiNet is the clustering algorithm which can be used for anomaly detection 

by identifying outliers. 

  

Trapnell Jr. [74] proposed a new immune algorithm that removed malicious nodes from a P2P network. His 



immune algorithm, called the leukocyte-endothelial blacklisting strategy (LEBS), abstracted 

machrophages, a cytokine called TNF and T cells. In LEBS, machrophage agents move around from one 

node to another and detect any malicious nodes. Whenever they detect a malicious node
4
, they become 

activated for a limited period and create a number of TNF agents with limited lifetime and the selection 

expression level. TNF agents are sent out to neighbouring nodes and the selection expression level decays 

during the lifetime of TNF agents. T cell agents also move around different nodes depending on the 

selection expression level they experience. They have selection adhesion functions, which take a selection 

expression level and assign weights to all the neighbor nodes of a node where they locate. The higher 

weighted the neighbor nodes are, the more likely they are selected as the destination of agents for the next 

move. T cell agents become activated when they encounter the activated machrophages. Activated T cells 

then seek for the location of a malicious node presented by the activated machrophages. When they 

encounter a malicious node as their neighbour nodes, they add this malicious node to the blacklist of a 

current node, and become unactivated. The LEBS algorithm also mimics innate immunity triggering the 

proliferation of T cells and provides an effective strategy to distribute the blacklist of malicious nodes to 

peer nodes within a dynamically changing p2p network. Like the work of Le Boudec and Sarafijanovic 

[18] [19] [100] reviewed earlier, this application of immune algorithm to a newer type of network 

architecture may be an excellent approach for these techniques – dynamically changing ubiquitous network 

environments look set to become more common, and with few existing solutions to intrusion detection, the 

self-organising, distributed and lightweight AIS may become a popular solution. 

 

4  Discussion  

In section 2.2, we listed six properties of the immune system that contribute to an effective IDS. The major 

part of this article has provided detailed overviews of systems proposed and implemented, containing one 

or more immune-inspired algorithms or concepts. Table 2 summarises the artificial immune algorithms and 

concepts that the reviewed AISs have employed. It also shows the corresponding biological immune 

                                                           

4
 The actual algorithm on how to detect a malicious node is not presented in [74]   



features that are expected to be obtained from the implementation of the artificial immune algorithms and 

concepts.  

 

Table 2: The Relationship Between Biological Immune Features and Artificial Immune Algorithms 
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Some of algorithms mentioned above correspond closely to the classification of immune algorithms by de 

Castro and Timmis [32] into thymus models, clonal selection algorithms, immune network algorithms and 

bone marrow models. These correspond to our negative selection, clonal selection, idiotypic network and 

gene library categories respectively. Table 3 presents the reviewed AISs coupled with the artificial immune 

algorithms and concepts used. In order to clarify the use of various different types of immune algorithm, we 

shall concentrate here on ‘complete’ intrusion detection systems that detect intrusions in real-time, rather 

than ideas, partial implementations, or simulations.  

 

Table 3: Summary of immune-based algorithms used by the complete systems 
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From Table 3 it is evident that the most popular means of implementing an immune system is through the 

use of a self-nonself model. This approach is used by most systems under review. Only Kephart et al. 

employed a decoy program in detecting new viruses instead of using the self-nonself model. Early work by 

Burgess [21] [22] did not use the self-nonself model but later work [15] introduced anomaly detectors in 

order to trigger immune responses, leading to the optimisation of a system administration policy. Four 

systems out of a total of six were developed by the University of New Mexico team and thus they stem 

from a similar abstract model of the immune system (see figure 1). The other two systems adopt response 

and multi-agent mechanisms. No system reviewed here fully implemented an intrusion detection system 

based on clonal selection, idiotypic networks or gene libraries.  

 

Table 4: Immune properties provided by the systems listed in table 4. 
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Finally, we assess the AISs presented in Table 3 against the immune properties introduced in Table 2. 

Table 4 illustrates immune features that are provided by complete systems. All of them have self-

organising features to an extent, which do not require external management or maintenance in order to 



automatically detect previously unknown intrusions. None of them provides multi-layered detection. (The 

multi-layered property was added to other AIS being tested at a small scale [61] [29].) Detector generation 

through the NS algorithm and the adoption of the permutation mask allows Hofmeyr et al.'s [64] and 

Balthrop et al.'s [14], [13] AIS to be disposable and diverse respectively. Several immune mechanisms such 

as memory cells, imperfect detection and dynamic cell turnover are utilised to create a lightweight detector 

in Hofmeyr et al.'s and Balthrop et al.'s system. However, we have also seen that the lightweight property 

of these systems degrades due to the negative selection process. Burgess's system provides the lightweight 

feature by adoption of abstract classes of machines and resources.  

 

Examining table 4 further, three systems are distributed (here, we strictly apply the meaning of 

"distributed" and thus require that there is no central unit maintaining coordination among distributed 

intrusion processes). However, LYSIS by Hofmeyr et al. [64] and Balthrop et al. [14], [13] are described as 

having “intrinsic distributed features”. LYSIS assumes that the system operates under a broadcast LAN 

environment. A broadcast LAN environment transfers identical input network packets to all the local hosts 

in a domain. Although LYSIS has different sets of detectors at local hosts, they are exposed to exactly the 

same set of input network packets. This kind of environment is a very special case. With a switched 

Ethernet, for example, each host can only experience network packets transferred to it and thus network 

packets handled by each detector set are different from each other. Due to this rather special circumstance, 

LYSIS was able to achieve several novel features, such as scalability and robustness, originating from the 

absence of communication among different detector sets.  

 

From this review it is clear that experimental results so far have shown that relatively simple AIS based 

IDS can work on relatively simple problems, i.e. selected test data and small to medium sized testbeds. As 

shown in this section, there are only six pieces of work that involved the development of IDSs operating in 

a real-time environment and these works do not fully exploit the many potentially beneficial immune 

features identified by other researchers. The first obvious direction of future research is that various 

artificial immune algorithms employing the immune features introduced in table 4 need to be tested and 

investigated on a much larger scale of real-world environment. In order to show true benefits of 



immunologically inspired approaches, it is necessary for AIS to be able to detect intrusions on real-time 

basis.  

 

Another significant future research area is exploring various mechanisms of the human immune system that 

have not been studied for intrusion detection. Although this survey article clearly shows that some 

researchers in this field have attempted to adopt new understandings in immunology for intrusion detection, 

most of work has been carried out based on limited knowledge on the immune system. Considering that 

new discoveries and understanding in the human immune system are constantly announced, it is important 

to embed better understood immune models to artificial systems for their success. As shown in [8],[9] 

which is research conducted in collaboration with immunologists, the latest discoveries in immunology can 

provide an informative insight on designing a completely new model of AIS. Perhaps a revolutionary 

solution to computer security problems is more likely if we can employ a revolutionary new understanding 

in the human immune system. 

 

In summary, this review is the first to be carried out on the rapidly-growing area of AIS for IDS. Our 

analysis of the literature shows that progress is being made in a wide diversity of areas, but that there is a 

clear need for research to focus on: 

•� the incorporation of up-to-date immunobiological findings in immune models to ensure that 

immune algorithms produce real advantages; 

•� the exploitation of all known useful features of the immune system in such systems (e.g., being 

distributed, self-organised, lightweight, multi-layered, diverse and disposable); 

•� the production of systems that will scale to real-world network environments; 

•� and the investigation of immune solutions in novel network architectures where no conventional 

solutions for intrusion detection currently exist (for example an artificial immune solution to 

intrusion detection seems like an ideal choice in the rapidly growing area of ubiquitous computing, 

which employs novel computing environments such as MANET, sensor networks, P2P, and mesh 

networks). 

 



5  Conclusion 

The analogy between the HIS and IDS naturally attracts computer scientists to research on immune system 

approaches to intrusion detection. An increasing amount of work has been published on this topic recently 

and here we have collated the algorithms used, the development of the systems and the outcome of their 

implementations. The review conducted in this paper focused on providing an overview of IDS for AIS 

researchers to identify suitable intrusion detection research problems. Information was also provided for 

IDS researchers about current AIS solutions. We have summarised six immune features that are desirable 

in an effective IDS: distributed, multi-layered, self-organised, lightweight, diverse and disposable. In 

addition, we have provided a comprehensive phylogeny of artificial immune algorithms and concepts that 

have been proposed and implemented in previous work. These artificial immune algorithms and concepts 

were shown to provide six desirable immune features.  

 

Through careful examination of literature presented in this paper, one can conclude that immunologically-

inspired IDS still have much room to grow and many areas to explore. The phylogenetic tree given in 

figure 1 clearly illustrates that the history of research in this area has shown a clear focus on three major 

ideas:  

1.� methods inspired by the immune system that employ conventional algorithms, for example, IBM’s 

virus detector [76] 

2.� the negative selection paradigm as introduced by Forrest [106][45] 

3.� approaches that exploit the Danger Theory [93] 

with younger methods based on alternative approaches still being developed. 

 

Will larger scale implementations borrowing more heavily from the HIS, i.e. by incorporating aspects such 

as idiotypic networks, gene libraries and danger theory, be successful?  Will immune algorithms 

implemented in ubiquitous computing environments become mainstream solutions in the future? Such 

work is currently underway by [8] and others. The proof is yet to come, but if it works in vivo, we ought to 

be able to make it work in silico!  
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Appendix 1 Glossary and abbreviations of commonly used terms. 

Term Abbreviation Meaning 

Intrusion detection system IDS Software systems which identify misuse of computer 

networks. 

Misuse detection - Intrusion pattern matching algorithm 

Anomaly detection - Detection of difference from a learned norm 

False positive FP An error, where normal is wrongly identified as an 

intrusion 

False negative FN An error, where an intrusion is wrongly identified as 

normal 

Human Immune System HIS The cells and processes that protect us against harmful 

pathogens. 

Artificial Immune Systems AIS The range of algorithms (e.g. negative selection) based on 

inspiration from the human immune system 

Antigen Ag In biology, the molecule used by immune cells to identify 

pathogens; in AIS, the datum analysed during the 

detection process. Self-antigens comprise normal data; 

non-self antigens comprise abnormal data (potentially 

representing a pathogen or intrusion). 

Antibody various  

(Ig, IgG, IgA, 

IgM, IgD, IgE) 

In biology, a protein produced by B-cells that is designed 

to stick to specific antigens, in AIS, often used 

interchangeably with “detector” and sometimes confused 

with T-cells or B-cells. 

Danger Theory DT Theory of HIS that suggests harmful pathogens can be 

detected by examining “danger signals” generated by 

cells killed abnormally by pathogens. 

Negative Selection NS Theory of HIS that suggests the immune system performs 



anomaly detection by creating detectors that match 

everything except “self antigens”. 

Dendritic cell DC An important class of antigen presenting cells in the HIS 

that ingest antigens or protein fragments and that are 

receptive to danger signals. 

B-cell - Important immune cells in the HIS that produce 

antibodies. 

T-cell various 

(naïve, Th, 

Th1, Th2, 

CTL) 

Significant immune cells in the HIS that differentiate into 

different classes when mature, such as helper T (Th) and 

killer T cells (CTL). T cells primarily detect intracellular 

pathogens that escape antibody detection. 

 

 


