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Colorectal cancer (CRC) is one of the most common cancers worldwide. As with other

cancers, CRC is a multifactorial disease due to the combined effect of genetic and

environmental factors. Most cases are sporadic, but a small proportion is hereditary,

estimated at around 5-10%. In both, the tumor interacts with heterogeneous cell

populations, such as endothelial, stromal, and immune cells, secreting different signals

(cytokines, chemokines or growth factors) to generate a favorable tumor

microenvironment for cancer cell invasion and metastasis. There is ample evidence that

inflammatory processes have a role in carcinogenesis and tumor progression in CCR.

Different profiles of cell activation of the tumor microenvironment can promote pro or anti-

tumor pathways; hence they are studied as a key target for the control of cancer

progression. Additionally, the intestinal mucosa is in close contact with a

microorganism community, including bacteria, bacteriophages, viruses, archaea, and

fungi composing the gut microbiota. Aberrant composition of this microbiota, together

with alteration in the diet‐derived microbial metabolites content (such as butyrate and

polyamines) and environmental compounds has been related to CRC. Some bacteria,

such as pks+ Escherichia coli or Fusobacterium nucleatum, are involved in colorectal

carcinogenesis through different pathomechanisms including the induction of genetic

mutations in epithelial cells and modulation of tumor microenvironment. Epithelial and

immune cells from intestinal mucosa have Pattern-recognition receptors and G-protein

coupled receptors (receptor of butyrate), suggesting that their activation can be regulated

by intestinal microbiota and metabolites. In this review, we discuss how dynamics in the

gut microbiota, their metabolites, and tumor microenvironment interplays in sporadic and

hereditary CRC, modulating tumor progression.
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INTRODUCTION

Colorectal cancer (CRC) is the third most common cancer in
both sex worldwide with an estimated 1.8 million new cases and
mortality rates in 2018 over 800,000 (1). The vast majority of
CRC cases are classified as sporadic and occur in average risk
patients, with no family history or an apparent genetic
predisposition demonstrated, mostly affecting people older
than 50 (2). However, heredity represents a significant cause of
CRC, in which 20-30% are familial cases, with 5-10% linked to
inherited variants in cancer-predisposing genes (3). The most
common hereditary CRC is Lynch syndrome, accounting for 2-
3% of cases, followed by familial adenomatous polyposis (FAP)
responsible for 0.5-1% of cases, and other hereditary variants
such as MUTYH-associated polyposis (MAP), Peutz-Jeghers
syndrome, among others, represent <1% of cases (3).

Diverse studies have highlighted the role of gut commensal
microbiota in host physiology and diseases such as cancer by
modulating the immune response, genetic damage, and
apoptosis (4–6). The intestinal tract is an extensive surface in
contact with lumen antigens, including more than 100 trillion
microorganisms, predominating the phyla Firmicutes and
Bacteroidetes (7). Accordingly, the mucosa has a complex
immune system maintaining the homeostasis in steady
conditions but swiftly responding to an insult (8). Additionally,
alteration in the gut microbiota disrupts the epithelial barrier
promoting inflammation and tumorigenesis-associated
pathways (9).

Cancer, rather than being formed by homogeneous malignant
cells, contains a heterogeneous cell population, such as
endothelial, stromal, and immune cells, secreting soluble
signals (cytokines, chemokines, or growth factors), interacting
with tumor cells, generating a favorable microenvironment to
support tumor growth and progression (10, 11). Moreover,
tumor and microenvironment cells respond to signals from
microbiota, regulating multiple host pathways related to
carcinogenic processes, such as the induction of mutations in
infected cells by a pathogenic E. coli strain or epithelial invasion
by Fusobacterium nucleatum (12, 13). Additionally, microbiota,
through the production of metabolites, such as short-chain fatty
acids (SCFAs) or polyamines (4, 14), controls tumor cell function
and microenvironment.

Here we aim to review the role of tumor microenvironment
components in sporadic and hereditary CRC, with an emphasis
in interactions between microbiota, immune system, and diet-
derived metabolites.

IMMUNE SYSTEM IN TUMOR
MICROENVIRONMENT

The tumor microenvironment (TME) has a wide diversity of
molecules and cell types, including immune cells, fibroblast,
adipocytes, endothelial cell and microbiome (6, 15). The
immune system is particularly composed of innate immune
cells such as neutrophils, macrophages, dendritic cells (DCs),

mast cells and natural killer cells (NK), and adaptive immune
cells such as T and B lymphocytes (16), participating in
prevention and promotion of tumor development, having pro
and anti-tumor functions (17).

Immunosurveillance refers to the role of the immune system
in recognizing antigens from transformed cells, thus generating
memory and effector cells, which seek out and control generation
of new tumor cells (18).

Tumor cel ls undergo a select ion process cal led
immunoediting consisting of 3 stages: elimination, equilibrium,
and escape. In the first phase, the antitumor immune response
eliminates initiating tumor cells; the tumor then evolves into a
static phase (equilibrium) in which some malignant cells avoid
the immune response, without tumor elimination. Finally, the
resistant clones manage to evade the immune system acquiring
pro-tumorigenic properties and reducing their immunogenicity,
allowing tumor development and clinical manifestations (19).

Lymphocytes are key cells in the tumor microenvironment,
and according to their profile have different functions in cancer
progression: CD8+ T cells lyse tumor cells and release cytokines
enhancing cytotoxic responses, such as IFNg; CD4+ Th1 T cells
release cytokines improving lymphocyte cytotoxic function;
regulatory CD4+ T cells (Treg) are immunosuppressive cells,
preventing chronic inflammation and maintaining immune
tolerance, by suppressing effector T cell proliferation and
activation (17, 20). B cells recognize tumor antigens and
produce specific antibodies against the tumor with the
coopera t ion of he lpe r T ce l l s , decr ea s ing tumor
progression (21).

Currently, the use of tumor infiltrated lymphocyte
quantification to stratify patients and predict survival is rising,
with a score system called Immunoscore™, based on the CD3+

CD8+ T cells and memory T (CD45RO+) density in CRC (22–
24). Alternatively, high density of FOXP3+ cells has been
described in CRC (25), even though the relation of FOXP3+

Treg with CRC prognosis is still controversial (favorable
prognosis (25–28); poor prognosis (29, 30). These differences
can account for a heterogeneous FOXP3+ population, and not
necessarily with a suppressor T cell phenotype (31, 32) therefore
deeper studies on the function of infiltrating FOXP3+
subpopulations and their interaction with other cells of the
tumor microenvironment are required to understand their role
in CRC.

NK ce l l s e l imina t e tumor ce l l s l a ck ing ma jor
histocompatibility complex class I (MHC-I) expression, by Fas/
FasL pathway, by releasing perforin and granzyme, or DCs and
macrophages-activating cytokines (33). MHC-I loss of
expression is a common alteration in CRC (34). However,
CRC tissue shows low NK cell content compared to adjacent
normal tissue, independent of MHC-I expression (35), proposing
poor NK infiltration to the TME as a cancer evasion mechanism
in immune surveillance. Non-classical MHC class I molecule
expression avoid NK antitumor function, such as human
leukocyte antigen HLA-E, binding to NK cell inhibitory
receptors and suppressing cytotoxic activity in CRC (36).
Furthermore, peripheral NK cells from CRC patients have a
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dysregulated phenotype with decreased cytotoxic function, thus
allowing tumor cells dissemination (37).

Tumor-associated macrophages (TAMs) are usually
a s soc ia t ed wi th M2-profi l e macrophages , pos se s s
immunosuppressive properties, promote tumor progression,
and, M2-TAMs marker expression is a poor prognostic factor
in CRC (38).

Other essential cells in the tumor microenvironment are
myeloid-derived suppressor cells (MDSCs), that probably through
T reg cell induction, in addition to NK and T effector cell
suppression, inhibit antitumor responses (39). In CRC their
increase in both tumor and peripheral blood correlates with stage
and metastasis (39, 40), revealing their immunosuppressive activity.

Additionally, tumor associated neutrophils (TAN) appear to be
an important component of tumor-infiltrating cell populations in
CRC. Indeed, high TAN content is associated with improved
survival in CRC patients (41–43) possibly indicating a positive
response to 5-FU-based chemotherapy (44). Neutrophils in the
tumor microenvironment can also promote anti-tumor responses
mediated by macrophages (45) or CD8+ T cells (42), although
contradictory results have been reported in mouse models. In mice
with inducible colon adenoma, T‐cell suppression is mediated by
neutrophil‐secreted metalloproteinase activation, thus considered
an immunosuppressive mechanism in CRC (46). Moreover,
neutrophils promote hepatic metastasis growth and angiogenesis
mediated by fibroblast growth factor 2 (FGF2) (47). Additionally,
in a model of colitis-associated colorectal cancer (CAC), an anti-
neutrophil antibody reduced the number of tumors and
intracolonic neutrophils infiltration along with MMP-9 mRNA
expression, suggesting TANs promote tumor development (48).

Contradictions between murine models and human sample
data possibly associate with differing neutrophil functions and
biology, along with tumor formation, as mice form faster and do
not fully mirror human tumor development stages and cellular
interactions (49). Consequently, this consideration should be
taken with studies from murine-human models.

There exists vast information regarding immunity in CRC,
revealing a complex interaction between components of the
immune system and the tumor. The immune system plays a
double role, at the beginning and in the development of CRC,
where immune-tumor interactions present opportunities for
creating treatments preventing tumor development or
improving current treatments.

GUT MICROBIOME

A healthy gut microbiome varies according to the high grade of
interindividual differences, influenced by diet, lifestyle, age,
gender, and geography. In 2018, the International Life Sciences
Institute (ILSI) of North America workshop concluded that
“mechanistic links of specific changes in gut microbiome
structure with function or markers of human health are not
yet established” (50). However, there is consensus that the
healthy gut microbiome goes through a stable and resilient
equilibrium state (51) with high species diversity (50–52)
predominantly composed of Bacteroidetes, Firmicutes, and

Actinobacteria, exhibiting differences in distribution between
mucosal-to-luminal and proximal-to-distal (53–55). The gut
microbiota is influenced by the birth mode, breastfeeding (56),
gender (hormones) (57, 58), pregnancy (59, 60), lifestyle (e.g.
sedentary or sports practice) (61), diet (52), age (62), among
others. Furthermore, diet patterns enriched in animal protein/fat
or carbohydrates are associated with Bacteroides and Prevotella
enterotypes, respectively (63). The above was confirmed by the
fecal microbiome characterization in healthy subjects (children
and adults) from Amazonas of Venezuela, rural Malawi, and the
US metropolitan area revealed prominent differences between
age groups and between rural and urban cohorts (52).

Dysbiosis in Sporadic Colorectal Cancer
The first reports revealing CRC-associated dysbiosis date from
2011, which is related to the expansion of next generation
sequencing (NGS) techniques (64–66) and highlighting the
overrepresentation of the anaerobic bacterium Fusobacterium

nucleatum in CRC (65, 66).
CRC patient gut microbiota differs from healthy individuals,

highlighting a reduced diversity (67) at fecal and tumor levels (68),
with the phyla Proteobacteria, Fusobacteria, and Lentisphaerae

enrichment in fecal samples, and Firmicutes and Actinobacteria

reduced (67). The bacterial genera Fusobacterium,

Peptostreptococcus, Porphyromonas, Prevotella, Parvimonas,

Bacteroides, and Gemella, are prominently enriched in CRC (69)
and in contrast, the genera Roseburia, Clostridium,

Faecalibacterium and Bifidobacterium decreased (68).
A metagenomics study of fecal samples from patients with

CRC showed a stage-dependent microbiota variation, with some
species increasing in abundance through tumor development
(Fusobacter ium nuc leatum, So lobac te r ium moore i ,

Peptostreptococcus stomatis, Peptostreptococcus anaerobius,
Lactobacillus sanfranciscensis, Parvimonas micra and Gemella

morbillorum), and some species stage-specific. The Atopobium

parvulum, Actinomyces odontolyticus, Desulfovibrio

longreachensis and Phascolarctobacterium succinatutens species
increased only in early stage S0, in contrast, Colinsella

aerofaciens, Porphyromonas uenonis and Dorea longicatena
increased only in late stages III/IV (70). Similar studies with
tissue samples demonstrated that early stages have an
enrichment of Fusobacterium, Leptotrichia, Gemella and

Parvimonas, and reduction of Blautia and Bacteroides.
Furthermore, in CRC pre-tumor lesions an enrichment of
Pseudomonas veronii and E. coli exists (71), suggesting these
species have oncogenic potential.

A reduction of some bacterial species during gut
tumorigenesis has also been reported. One example is
Faecalibaculum rodentium and its human equivalent
Holdemanella biformis belonging to the Erysipelotrichaceae

family, showing a reduced fecal content in early phases of
tumorigenesis from ApcMin/+ model and patients with large
colorectal adenoma, respectively (72). These bacteria block
tumor proliferation by mediating the production of SCFAs (see
later in Short-Chain Fatty Acids (SCFAs) section), (especially
butyrate) inhibiting HDAC in adenomas, by increasing H3
histone acetylation and downmodulating the calcineurin-
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NFATc3 pathway (72). Additionally, gut microbiota relates to
tumor immune cell infiltration, where specific bacteria genera,
such as Alloprevotella, Treponema, and Desulfovibrio, are
enriched in tumors with high T cell marker (CD3) content and
accompany prolonged CRC patient survival. Whereas,
Prevotella, Bacteroides, and Fretibacterium, are overrepresented
in CD3 low tumors by regulating chemokine expression from
tumor cells (73).

All these antecedents suggest that intestinal microbiota can
give both beneficial and adverse effects on gut physiology
contributing to health or disease susceptibility. This may
therefore lead to novel strategies enriching specific kinds of
bacteria or metabolite production favoring anti-tumor immune
cell recruitment or tumor proliferation blocking.

Dysbiosis in Hereditary Colorectal Cancer
The evidence of the microbiota role in cancer development of
hereditary CRC patients is scarce.

In the inherited condition FAP (caused mainly by a germline
mutation of the APC tumor suppressor gene) (3), intestinal
mucosa with precursor lesions (polyps) presents bacterial
biofilms composed predominantly by pks+ Escherichia coli and
enterotoxigenic Bacteroides fragilis . Additionally, co-
colonization of both bacteria in a CRC murine model
accelerates tumor development and increased mortality
(associated with high IL-17 levels and DNA damage),
suggesting pks+ Escherichia coli and enterotoxigenic
Bacteroides fragilis act as protumorigenic bacteria in early
colonic tumor development in genetically susceptible
patients (74).

Fecal microbial patterns demonstrate that FAP patients
carrying pathogenic APC mutations showing increased
abundance of Fusobacterium mortiferum and a decreased
representation of Faecal ibacterium prausnitzi i and
Bifidofacterium pseudocatenulatur, compared to patients
without an identified mutation (75). Moreover, increased seric
me t abo l i t e s (R ) - 3 -Hyd roxybu t r y r i c a c i d and 2 -
Hydroxyphenethylamine exists in patients carrying APC
mutation, together with lower levels of 7-Ketocholesterol, DL-
lactate, L-Pyroglutamic acid (75). Among other relationships, a
positive correlation between Faecalibacterium prausnitzii and
cortisol exists; however, more evidence is needed to clarify the
association between metabolites and gut microbiota (75).

In characterizing Lynch syndrome patients’ microbiome, an
fecal over-representation of Faecalibacterium prausnitzii,
Parabacteroides distasonis, Ruminococcus bromii, Bacteroides

plebeius, Bacteroides fragilis and Bacteroides uniformis was
identified in both postoperative LS female patients with
colorectal syndrome or LS extracolonic cancer, however
distinct to controls (76). Microbiota’s role in early stages of
carcinogenesis, was prospectively evaluated in fecal and mucosa
samples from LS patients (carriers of pathogenic germline MMR
mutation) and demonstrated: 1) colectomy and CRC history has
the largest effect on microbiome profiles; 2) microbial changes
are similar in Lynch adenoma and CRC; 3) fecal microbial
transcriptional activity is a weak predictor of adenomas
development. Although microbiome monitoring does not

appear to be effective in early prediction of adenomas, the
possibility exists of early microbiota changes in LS neoplasia (77).

Tumorigenic Effects of Bacterial Species
Bacteria are involved in colorectal carcinogenesis through
pathomechanisms such as: tissue invasion, local immune
response modulation and metabolites or toxins secretion
(Table 1). The most relevant CRC-associated bacteria are
Fusobacter ium nuc leatum, Peptos treptococcus ssp . ,

Porphyromonas ssp., Prevotella intermedia, Parvimonas micra,

Bacteroides fragilis and Gemella morbillorum (69).
Next, the role of pks+ Escherichia coli and Fusobacterium

nucleatum is clarified in colorectal cancer, both being examples
of bacteria thoroughly studied with mechanisms associated to
CRC carcinogenesis.

pks+ Escherichia coli
E. coli is a commensal organism widely distributed along the gut,
comprised by four phylogenetic groups (A, B1, B2 and D), with
strains possibly linked to CRC as they produce inflammation and
secrete toxins, such as cyclomodulins (toxins interfering with the
eukaryotic cell cycle) (97). Among them, colibactin, is
synthesized by 19 encoded genes within the 54-kilobase
genomic island polyketide synthase (pks) (85), and relevantly
pks+ E. coli are abundant in CRC and IBD patients (98).

Azoxymethane (AOM) administered to IL10-/- germ-free
mice colonized with pks+ E. coli or E. faecalis induces
aggressive inflammation; however, only pks+ E. coli

developed invasive adenocarcinoma, demonstrating that E.

coli-specific factors promote colitis-associated cancer (98), as
col ibact in induces DNA double-strand breaks and
chromosomal instability in human cells (85, 86, 99).
Additionally, prolonged exposure to pks+ E. coli in human
intestinal organoids induces a DNA mutational signature
characterized by random single-base substitutions, deletions
and insertions (100) (Figure 1).

Decreased tumor-infiltrating lymphocytes (TILs) in the invasive
CRC margin is associated with pks+ E. coli (101). Moreover,
APCMin/+ mice exposed to colibactin-producing E. coli exhibit
more polyps and decreased CD3+ CD8+ T-cells than noninfected
animals or infected with pks-lacking E. coli strains, suggesting
colibactin induces a carcinogenic microenvironment (101).

Interestingly, microbial diversity is altered in mice receiving
pks+ E. coli strain compared to non genotoxic-strain exposed
mice, suggesting colibactin exert a direct effect on gut microbiota,
additional to its other host effects (102).

Fusobacterium nucleatum
Fusobacteria are a Gram-negative anaerobic bacilli, with
Fusobacterium nucleatum a component of oral microbiota;
although associated with oral, extraoral diseases (103), and
colorectal adenomas and adenocarcinoma (65, 66, 104).
Although detection rates of F. nucleatum in CRC patients
differ widely due to methods used and samples analyzed (105)
correlation between bacteria abundance and poor cancer-specific
survival (106, 107) or lymph node metastasis (66) have been
described, and is suggested as a prognostic marker.
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F. nucleatum participates in carcinogenic processes through
virulent factors (Figure 2), highlighting the adhesion protein
FadA and the autotransporter protein Fap2. FadA allows bacteria
attachment and invasion of E-cadherin-expressing cells (89) and
induction of human CRC cell proliferation in a FadA-dependent
ß-catenin signaling activation and proinflammatory response
associated with NF-kB2 upregulation (89). Another FadA
function is vascular endothelial VE-cadherin removal from
cell-cell junctions, increasing endothelial cell permeability, thus
allowing bacteria to cross junctions (108).

Addit ional ly , F. nucleatum invasion promotes a
proinflammatory response mediated by p38 or MAPK signaling
in HEK293T cells (87), and mediated by ROS in Caco-2 cell line
(88), both pathways involved in early tumorigenesis (109). Indeed,

bacterium abundance is positively correlated to local cytokine gene
expression, such as TNFa and IL10, in colorectal adenomas (110).
In APCMin/+ mouse model, F. nucleatum exacerbates
tumorigenesis and recruits tumor-infiltrating myeloid cells
(granulocytes, macrophages, DCs, and MDSCs), and shares a
proinflammatory signature with Fusobacterium-associated
human colorectal cancer, suggesting these bacteria promotes a
tumor microenvironment favoring neoplasia progression (111). F.
nucleatum content inversely correlates with CD3+ T cells density
in tumor, showing modulation of immune response is another
disease mechanism (112). Additionally, F. nucleatum is associated
to immune evasion in cancer, avoiding NK-mediated tumor cell
lysis via FAP2 interaction with the inhibitory NK-receptor TIGIT
(90, 91).

FIGURE 1 | Pro-tumorigenic effects of pks+ E. coli. Strains having the pathogenicity island pks can synthesize colibactin toxin having oncogenic potential. Colibactin

damages colonocyte DNA by inducing double-stranded DNA breaks and single-base substitution, deletion, and insertion mutations, favoring accumulation of

damage and increasing the risk of malignant cell transformation.

TABLE 1 | Bacteria involved in colorectal carcinogenesis.

Effect pro-tumor/relation with cancer References

Streptococus gallolyticus Expresses a collagen binding protein pil1 that confers a capacity to colonize tissue. (78)

Promote tumor progression via induction of proinflammatory mediator such as COX2 and IL1, as well as angiogenic

cytokine IL8.

(79)

Some S. gallolyticus strains are able to promote host cell proliferation and adhered to colon cancer cells while others are

not. Those virulent strains can promote tumor development in AOM-induced mouse model of CRC.

(80)

Enterotoxigenic

Bacteroides fragilis (ETBF)

Using a murine model, ETBF induces persistent subclinical colitis and hyperplasia. (81)

B. fragilis toxin (BFT) upregulates spermine oxidase, a polyamine catabolic enzyme, generating reactive oxygen species

and thereby DNA damage.

(82)

EBFT induces colitis and tumorigenesis via IL17 induction, activation of STAT3 and recruitment of polymorphonuclear

immature myeloid cells on lamina propria.

(83, 84)

pks+ Escherichia coli colibactin is able to induce DNA double strand breaks and chromosomal instability in human cells. (85, 86)

Fusobacterium nucleatum F. nucleatum invasion promotes a proinflammatory response in cell lines derived from colon cancer. (87, 88)

FadA allows bacteria attachment and invasion of E-cadherin-expressing cells, induction of human CRC and

proinflammatory response associated with NF-kB2 upregulation.

(89)

F. nucleatum avoiding NK-mediated tumor cell lysis via FAP2 interaction with the inhibitory NK-receptor TIGIT. (90, 91)

Peptostreptococcus

anaerobius

Promotes colorectal carcinogenesis through cholesterol synthesis induced by TLR2/TLR4 signaling activation and reactive

oxygen species (ROS) generation.

(92)

P. anaerobius adheres to the CRC cells and accelerates CRC development in APCMin/+ mice. (93)

Enterococcus faecalis Produce hydroxyl radical and extracellular superoxide causing DNA breaks promoting chromosomal instability and

increased inflammation.

(94, 95)

E. faecalis-infected macrophages induce aneuploidy and tetraploidy in colonic epithelial cells through of soluble mediator. (96)
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F. nucleatum is associated with a high degree of
microsatellite instability (MSI-high) and CpG island
methylator phenotype in colorectal carcinoma, suggesting
that this bacteria is involved in a molecular specific CRC
subtype (113, 114). MSI-high CRCs tumors with high F.

nucleatum load are more invasive, show low FOXP3+ density
and elevated CD163+ cells (M2 macrophages), supporting the
bacterial pro-tumoral role (115).

F. nucleatum is more abundant in CRC tissues in patients
with recurrence post-chemotherapy, associated with TLR4/
MyD88 signaling blocking and microRNAs (miRNA-4802 and
miRNA-18a*) activating the autophagy pathway in response to
chemotherapy (116). Moreover, F. nucleatum appears in distal
metastases, demonstrating microbiota stability between primary
tumors and metastasis. Likewise, mouse xenograft models retain
viable F. nucleatum through successive passages, while
metronidazole treatment reduces bacterial load, cancer cell
proliferation and tumor growth (117). In summary, F.

nucleatum induces tumorigenesis through several mechanisms
including epithelial cell adhesion and tumor microenvironment
modulation, becoming an attractive CRC prognosis biomarker.

METABOLITES DERIVED FROM
MICROBIOTA AND ITS ROLE IN CANCER

Gut bacteria modulates the host biology through direct cell
interaction, as well as microbial-derived metabolites. Therefore,
we focus on the role of SCFAs and Polyamines and their

functional impact on colon carcinogenesis and TME,
illustrating microbiota–metabolite–cell interactions.

Short-Chain Fatty Acids (SCFAs)
Microbiota communicates with the host through the generation
of metabolites, being the most well-studied the short-chain fatty
acids (SCFAs), including acetate, propionate, and butyrate,
corresponding to fermentation products of complex
polysaccharides, such as starches and fiber (118). The
Bacteroidetes phylum mainly produces acetate and propionate,
whereas the Firmicutes phylum butyrate (119).

SCFAs are produced in the colon and absorbed into the
bloodstream to be delivered to target tissues, with host cells
responding to SCFAs through receptors (GPR41/FFAR3,
GPR43/FFAR2, GPR109A/HCAR2) or transporters (MCT1/
SLC16A1, SMCT1/SLC5A8) (4). Butyrate is relevant in
intestinal function being the primary energy source for
colonocytes, corresponding to about 70% of total energy
consumption (120).

Administration of SCFAs mixture restores intestinal
epithelial cell turnover in antibiotic-treated SPF mice,
previously having reduced amounts of acetate, propionate, and
butyrate (121), demonstrating that SCFAs are essential in
maintaining intestinal homeostasis. Accordingly, butyrate
enhances M2-macrophage polarization (122), inhibits
lipopolysaccharide (LPS)-induced proinflammatory cytokine
expression in dendritic cells (123) and lamina propria (LP)
mouse macrophages (124), and increases Treg lymphocytes in
a murine model (125, 126).

A B C

FIGURE 2 | Roles of F. nucleatum in CRC tumoral development and metastasis. F. nucleatum virulence factors are FadA and Fap2: (A) FadA is an adhesin that

binds to E-cadherin and allows bacterial invasion, which also induces the colonocyte proliferation through ß-catenin signaling and NFkB2-associated pro-

inflammatory response. (B) Fap2 interacts with the TIGIT inhibitory receptor of NK cells resulting in cytotoxic inhibition, leading to immune evasion. (C) This bacterium

associates with post-chemotherapy recurrence, suggested through LPS-TLR4 interaction activating autophagy, and altering chemotherapy response. Furthermore,

Fap2 recognizes and binds to Gal-GalNac expressed in colorectal tumor cells; high F. nucleatum content found in distal metastases. The above-mentioned effects

indicate that this bacterium participates in both carcinogenic and metastatic processes and may be a potential therapeutic target.
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Intestinal microbiota imbalance possibly relates to changes in
SCFAs levels and loss of gut homeostasis (5). Patients with CRC
and adenoma have reduced SCFAs stool levels (127), possibly
related to reduced butyrate-producing bacteria such as
Bacteroides vulgaris, Bacteroides uniformis, Roseburia, and the
Lachnospiracea family (128–130).

Additionally, decreased butyrate receptors GPR109A and
GPR43 content in colon cancer samples (131, 132) suggests
variations of microbiota or substrate impact on receptor
expression on normal epithelial or transformed cells. Butyrate
and propionate, but not acetate, induces crypt proliferation
obtained from healthy cecal biopsies ex vivo (133), although,
butyrate inhibits cell growth and induces colon adenoma and
carcinoma cell apoptosis (134–137). These butyrate roles are
associated with the Warburg effect (Figure 3), where butyrate
generates energy by metabolizing to acetyl-CoA via the Krebs
cycle in the normal colonocyte. However, anaerobic glycolysis is
the primary energy source in cancerous colonocytes, and
butyrate is available to modulate gene expression through
Histone deacetylase (HDAC) inhibition and interrupting cell
cycle (138) thus demonstrating how a metabolite differentially
affects a cell according to its metabolic activity.

Other butyrate antitumoral effects are inhibition of epithelial-
mesenchymal transition, cell proliferation, and migration in
colon cancer cell lines, mediated by increased ROS levels
associated with the small redox protein Thioredoxin-1 (Trx-1)
downregulation (139), suggesting sodium butyrate exerts its role
through Trx-1 downregulation, becoming a possible
therapeutic target.

Generally, butyrate inhibits inflammation and carcinogenesis,
reducing NF-kB and Wnt signaling, both active pathways in
CRC (140, 141). Additionally, LPS-induced proinflammatory
markers and chemokines, including CCL3 in dendritic cells is
reduced after butyrate treatment (123), suggesting butyrate
influences tumor microenvironment and tumor progression.

Polyamine Metabolites
Polyamines are organic polycations involved in cell proliferation
and differentiation, tissue repair, apoptosis, angiogenesis,
immune response, signal transduction, and gene expression
(14, 142–144). The principal polyamines are putrescine,
spermidine, spermine, and cadaverine (145), participating in
gut barrier function and epithelial turnover. Factors such as
biosynthesis, catabolism, and transport finely control

FIGURE 3 | Dual role of butyrate in colorectal cancer. Butyrate exerts dual effects on normal and tumor colonocytes. In normal colonocytes, it functions as an

energy source, being metabolized to acetyl-CoA in the Krebs cycle, allowing cell proliferation. Alternatively, in tumor colonocytes due to the Warburg effect, anaerobic

glycolysis is the main energetic source, therefore, butyrate does not enter the Krebs cycle and available to the nucleus, modulating gene expression through the

HDAC inhibition, leading to p21 and p27 downregulation and inhibiting cell proliferation, thus explaining the beneficial effect associated in cancer.
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intracellular polyamines levels, maintaining a total concentration
at the mM range, with free spermidine and spermine
intracellular concentration corresponding respectively to 7-15%
and 2-5% of the total (146).

Polyamines derive from endogenous synthesis, diet, and gut
microbiota metabolism of amino-acids such as ornithine,
methionine, and arginine (147), suggesting that diet influences
its levels. The first step in polyamine synthesis is ornithine
decarboxylation into putrescine, by Ornithine decarboxylase
(ODC) (14) , w i th oncogenes such as Myc (148)
transcriptionally regulating ODC content and activity
increased in cancer (147). Altered polyamine levels are related
to cancer (146), with increased levels in CRC (149), possibly by
uptake pathway and enzymatic synthesis induction (150).

Spermidine directly affects colibactin toxin synthesis by E. coli
strains, suggesting a role of spermidine in bacterial pathogenicity
and carcinogenesis (151). Polyamine levels increase throughout
tumor development in the APCMin/+ murine CRC model,
demonstrating dysregulation of its metabolic pathway could be
involved in CRC development (152). Additionally, biofilms
formation in colon cancer increases polyamine metabolites,
suggesting polyamines produced by biofilm bacteria or the
host, enhance tumor development (153). Moreover, fecal
metabolomic analysis demonstrated increased amino-acids and
polyamines, principally cadaverine and putrescine in CRC
patients (67).

Regarding the immune response, polyamines are essential for
B and T cells’ activation (154), synthesis being required to induce
cytotoxic activity and T-cell proliferation in vitro and in vivo

(155, 156), However, polyamines possibly have opposing roles
depending on their concentrations, since increased levels in CRC
interfere with anti-tumor immune function, associated to

decreased adhesion molecule expression, such as CD44 and
LFA-1 (157–159) and reduced cytokine production, such as
IFN-g and TNF (160–162) , contr ibut ing to TME
immunosuppression (163). Polyamine blocking therapy (PBT)
targeting their synthesis and transport activates adaptive-
dependent antitumor immune response in murine models,
characterized by increased proinflammatory cytokine
production, cytotoxic CD8+ T cell function, and decreased
immunosuppressive cell levels. Consequently, increased tumor
cell apoptosis leads to decreased tumor growth, indicating that
blocking polyamines signaling could generate an anti-tumor
immune memory and effector response, conferring protection
against tumors (144, 148, 150). Moreover, polyamines inhibit
macrophage polarization toward a proinflammatory M1
phenotype through ODC enzyme-dependent putrescine
synthesis altering chromatin structure and preventing
inflammatory gene transcription (164), thereby affecting anti-
tumor responses (165).

Polyamines anti-inflammatory properties contribute to TME
immunosuppression, (Figure 4), with PBT effective in inhibiting
tumorigenesis, and dietary polyamine supplementation possibly
benefiting aging-associated diseases (148). In TAMs, spermidine
favors M1 polarization while spermine favors M2 (165),
suggesting each polyamine having a unique role in normal and
tumoral cells, although, exogenous spermidine treatment inhibits
endogenous polyamines accumulation, tumor cell growth (166,
167) and promotes autophagy-mediated apoptosis (166).
Fur thermore , spermine-modified pul lu lan reduces
immunosuppressive TME, contributing to inhibiting both
tumor progression and metastasis (168). As mentioned above,
endogenous polyamines could increase tumorigenesis, therefore
endogenous synthesis inhibition, triggered by exogenous

FIGURE 4 | Effects of polyamines in the tumor microenvironment. Red arrows indicate inhibition and black arrows enhancement. Polyamines in TME: a) inhibit

cytotoxic CD8+ LTs function and decrease quantity, inhibit: b) tumor cell apoptosis, c) macrophage polarization toward M1 pro-inflammatory phenotype, d) antitumor

responses and e) pro-inflammatory cytokine production. Alternatively, polyamines enhance: f) tumor angiogenesis, g) tumor cell proliferation, h) macrophage

polarization toward M2 immunosuppressive phenotype and i) tumor cell metastasis. Together, their effects produce an immunosuppressed environment facilitating

tumor progression and metastasis.

Hanus et al. Tumor-Microenvironment Interactions in CRC

Frontiers in Immunology | www.frontiersin.org March 2021 | Volume 12 | Article 6128268

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


polyamines intake, could be a beneficial cancer treatment
regulating polyamine metabolism with similar effects to PBT in
the TME.

Further investigation is merited on the complex interaction
between polyamine metabolism and cancer, as their targeting
undoubtedly offers promising results. In conclusion, polyamines
are metabolites related to microbiota and carcinogenesis,
substantially contributing to TME immunosuppression, and
are becoming potential therapeutic targets in CRC.
Additionally, exogenous polyamine supplements could be very
beneficial in combination with conventional cancer treatments.

INFLUENCE OF DIET IN MICROBIOTA
AND COLORECTAL CANCER

In 1971, Denis P. Burkitt analyzed the relation between bowel
cancer frequency and fiber intake by different populations,
highlighting notable differences between Western diet, where
bowel cancer is more prevalent than less-developed
communities. The proportion of ingested unabsorbable fiber
and refined carbohydrate suggested that the diet in developed
countries affected intestinal transit time, stool consistency, and
bacterial microbiota-related to cancer incidence (169).

Furthermore, when comparing gut microbiota and
metabolites in fecal samples from African Americans vs. native
Africans, differences were found (170). Native Africans showed
more abundant total bacteria, including starch fermenters and
butyrate producers, along with higher SCFAs levels (171). In
contrast, African Americans showed a higher abundance of
microbial genes encoding for secondary bile acid production,
generally associated with carcinogenic properties (172). African
Americans diet is based on higher consumption of meat and fat,
with lower consumption of fiber and less complex carbohydrate
(170), thus suggesting the dietary influence in the production of
beneficial or potentially carcinogenic metabolites.

Diet directly influences intestinal microbiota composition and
metabolic activity, contributing to growing chronic diseases in the
developed world, including obesity, cardiovascular disease, IBD,
and cancer (173, 174). The high fat and high sugar (HF/HS)
western diet have crucial implications on CRC; with a higher risk
associated with red meat intake, opposed to high dietary fiber
intake decreasing CRC risk (175, 176). Additionally, diet-induced
intestinal inflammation (based on high plasma IL6, CRP, and
TNFRSF1B levels) is associated with F. nucleatum-containing
colorectal carcinoma in patients (177), indicating that diet alters
microbiota balance.

The HF/HS diet in a mouse model induced intestinal
inflammation and dysbiosis with an increase of Proteobacteria,
such as E. coli, and decreased protective bacteria and SCFA levels
(178). Furthermore, this diet gut abolishes SCFA effects on host
chromatin states (histone acetylation and methylation) in colon,
and extraintestinal tissues, such as liver and white adipose tissue
(179). Interestingly, SCFA supplementation in germ-free mice
recovers homeostatic epigenetic regulation associated with gut
colonization (179).

Dietary interventions have potential effects in CRC
prevention or treatment, as an adjuvant therapy. In healthy
individuals, non-digestible carbohydrate (substrate for SCFA
production)-enriched diets (whole grain rye flour bread/rye
kernels bread + resistant starch) (180), or cooked barley
kernels (181) showed beneficial effects as: a) decreased glucose
and postprandial insulin levels (180, 181), b) reduce
concentration of IL-6 and TNF-a (181), and c) increased
satiety-inducing intestinal hormone PYY levels (180),
ev idenc ing a po tent i a l p reven t ive e ff e c t o f fiber
supplementation in decreasing intestinal inflammation.

Studies of microbial interventions, using probiotics, were
beneficial for CRC treatment (e.g. reducing F. nucleatum)
(182), together with a combination of physical activity and
improved dietary habits (e.g. reduction of red and processed
meat or refined grain intake) in CRC survivors (183). Protocols
defining the beneficial impacts of diet and physical activity in
CRC patients during and after conventional therapies, and in the
prevention of recurrence in CRC survivors (184) will confer
benefits and should be further explored.

Considering the evidence of the influence of the diet in
protecting and decreasing the risk of cancer, the 4th edition of
the European Code against Cancer recommends that “people
have a healthy diet to reduce their risk of cancer: eating plenty of
whole grains, pulses, vegetables and fruits; limit high-calorie
foods (high in sugar or fat); avoid sugary drinks and processed
meat; and limit red meat and foods high in salt” (185).

CONCLUSIONS AND PERSPECTIVES

In health, microbiota participates in functions such as
immunity regulation, digestion, and nutrition. As dysbiosis
has been associated with diverse pathologies including
CRC, microbiota could play a role in carcinogenesis, as
previously demonstrated.

The immune system, microbiota and their metabolites
participate in the carcinogenic process, acting differently in each
tumor development stage. In sporadic CRC, specific strains have
been involved in its initiation and development. Specifically,
carcinogenic effects of synthesized toxins and virulence factors
from pks+ E. coli and F. nucleatum, cause DNA damage, increased
epithelial cell proliferation, and immune system modulation, thus
altering the microenvironment favoring tumorigenesis. Moreover,
hereditary CRC reflects dysbiosis, suggesting microbiota changes
during CRC progression occur in genetically susceptible subjects.

Some diet and microbiota metabolites associated with CRC,
such as SCFAs and Polyamines, directly affect tumors and TME
cells, thus becoming potential therapeutic targets.

Diet modifications, such as increasing dietary fiber intake
help reduce the risk of developing CRC (186). In CRC animal
models, prebiotics (oligofructose-maltrodextrin) in combination
with probiotics (Lactobacillus acidophilus, Bifidobacteria
bifidum) appears beneficial, reducing tumor growth and
potentially carcinogenic bacteria, while increasing butyrate
concentration and NK and NKT cell number (187–190).
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Natural compounds, such as curcumin, genistein (an
isoflavone found in soybeans) and apigenin (present in fruits
and vegetables) possibly reduce aberrant crypt foci numbers
(191), increasing intestinal T and B cells (192), and reducing
ODC activity and polyamine levels in CRC cell lines (193, 194).

Due to polyamines and their metabolites participating in cell
proliferation, they become interesting therapeutic targets for
clinical intervention of CRC. As the use of nonsteroidal anti-
inflammatory Sulindac plus DMFO (an inhibitor of polyamine
biosynthesis) in patients reduces adenoma recurrence (195), PBT
would be a promising antitumor response alternative (144).
Alternatively, nanoparticles conjugated with a polyamine
analog, which increase polyamine catabolism, are a possible
innovative intervention, as they induce HCT116 cell apoptosis
in vitro and inhibit xenograft tumor growth (196).

Another option in CRC carcinogenesis is blocking-cytokine
antibodies, since IL-17 and IL-23 receptor blockade inhibits
colorectal tumor formation (83).

Lastly, phages are novel interventions, selectively killing
potentially carcinogenic bacteria, such as F. nucleatum in
APCMin/+ mice, and revert chemotherapy resistance in CRC
cell lines (197).

The above therapies demonstrate a vital relationship between
the microbiota, metabolites, and the immune system,
highlighting the relevance of studies evaluating their
interaction, and offering great potential in CRC prevention and
treatment. However, more clinical trials are needed to verify their
efficacy and safety.

Additional to local properties in the intestinal mucosa, the gut
microbiome systemically modulate other organs (198). Likewise,
gut dysbiosis has been related to obesity (199), allergy (200, 201)
and extra-intestinal cancer, such as lung and pancreatic
adenocarcinoma (202, 203). Enrichment of phylum
Proteobacteria is seen as a common hallmark in diverse cancer
types (204, 205), as well as a potential diagnostic dysbiosis
signature and chronic metabolic disease risk, such as Type 2
diabetes mellitus and cancer (206).

Another extra-intestinal effect of gut microbiota, is seen in the
gut-lung axis, where SCFAs modulate the immune system (198)

and are positively associated with immunotherapy response in
lung cancer patients (207). Alternatively, the gut microbiota
colonizing pancreatic tumors modulate tumor growth, immune
responses and thus influence patient outcome (203, 204).
Therefore, the modulation of the intestinal microbiota is an
interesting target to control other pathologies, not only limited to
the intestine.

As can be seen from the above, delving deeper into the
interactions between metabolites, the immune system, and
microbiota in CRC and other pathologies, will elucidate novel
therapeutic targets. Accordingly, approaches such as diet
modifications, supplementation with metabolites, specific
antibiotics, immune system modulation for anti-tumor
response are suitable and applicable resolutions.
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Colibactin-positive Escherichia coli induce a procarcinogenic immune
environment leading to immunotherapy resistance in colorectal cancer. Int
J Cancer (2020) 146:3147–59. doi: 10.1002/ijc.32920

102. Tronnet S, Floch P, Lucarelli L, Gaillard D, Martin P, Serino M, et al. The
Genotoxin Colibactin Shapes Gut Microbiota in Mice. mSphere (2020) 5:1–
11. doi: 10.1128/mSphere.00589-20

103. Brennan CA, Garrett WS. Fusobacterium nucleatum — symbiont,
opportunist and oncobacterium. Nat Rev Microbiol (2019) 17:156–66.
doi: 10.1038/s41579-018-0129-6

104. Ito M, Kanno S, Nosho K, Sukawa Y, Mitsuhashi K, Kurihara H, et al.
Association of Fusobacterium nucleatum with clinical and molecular
features in colorectal serrated pathway. Int J Cancer (2015) 137:1258–68.
doi: 10.1002/ijc.29488

105. Shang F-M, Liu H-L. Fusobacterium nucleatum and colorectal cancer: A
review. World J Gastrointest Oncol (2018) 10:71–81. doi: 10.4251/
wjgo.v10.i3.71

106. Flanagan L, Schmid J, Ebert M, Soucek P, Kunicka T, Liska V, et al.
Fusobacterium nucleatum associates with stages of colorectal neoplasia
development, colorectal cancer and disease outcome. Eur J Clin Microbiol

Infect Dis (2014) 33:1381–90. doi: 10.1007/s10096-014-2081-3
107. Mima K, Nishihara R, Rong Qian Z, Cao Y, Sukawa Y, Nowak JA, et al.

Fusobacterium nucleatum in colorectal carcinoma tissue and patient
prognosis were responsible for collection of tumour tissue, and acquisition
of epidemiologic, clinical and tumour tissue data, including histopathological
and immunohistochemical character. Gut (2016) 65:1973–80. doi: 10.1136/
gutjnl-2015-310101
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