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Abstract

Background: Recent genomic analyses of arthropod defense mechanisms suggest conservation of key elements

underlying responses to pathogens, parasites and stresses. At the center of pathogen-induced immune responses

are signaling pathways triggered by the recognition of fungal, bacterial and viral signatures. These pathways result

in the production of response molecules, such as antimicrobial peptides and lysozymes, which degrade or destroy

invaders. Using the recently sequenced genome of the pea aphid (Acyrthosiphon pisum), we conducted the first

extensive annotation of the immune and stress gene repertoire of a hemipterous insect, which is phylogenetically

distantly related to previously characterized insects models.

Results: Strikingly, pea aphids appear to be missing genes present in insect genomes characterized to date and

thought critical for recognition, signaling and killing of microbes. In line with results of gene annotation,

experimental analyses designed to characterize immune response through the isolation of RNA transcripts and

proteins from immune-challenged pea aphids uncovered few immune-related products. Gene expression studies,

however, indicated some expression of immune and stress-related genes.

Conclusions: The absence of genes suspected to be essential for the insect immune response suggests that the

traditional view of insect immunity may not be as broadly applicable as once thought. The limitations of the aphid

immune system may be representative of a broad range of insects, or may be aphid specific. We suggest that

several aspects of the aphid life style, such as their association with microbial symbionts, could facilitate survival

without strong immune protection.

Background

Aphids face numerous environmental challenges, includ-
ing infection by diverse pathogens and parasites. These
pressures include parasitoid wasps, which consume their
hosts as they develop inside, and a variety of viral, bac-
terial and fungal pathogens. Both parasitoid wasp and
fungal pathogens cause significant decline of natural
aphid populations [1,2], and have been suggested as
potential agents for biocontrol of these agriculturally
destructive pests. While facing such challenges, aphids
also cope with predators and abiotic stresses, such as

extreme temperature fluctuations. Thus, like most
insects, aphids must attempt to survive in a harsh, com-
plex environment.
Insects have a number of defense mechanisms. First,

many insects, including aphids, behaviorally avoid preda-
tors, pathogens, and environmental stressors [3-6].
When stressors cannot be avoided, insects have a pro-
tective cuticle and gut pH inhospitable to many foreign
organisms. If these barriers fail, immunological defense
mechanisms recognize the invader, triggering a signaling
cascade and response. While insects do not have adap-
tive, antigen-based responses typical of vertebrates,
insects do have innate immune responses, which include
clotting, phagocytosis, encapsulation, and production of
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antimicrobial substances [7,8]. Phagocytosis and encap-
sulation are referred to as cellular responses as they are
mediated by blood cells [9]. Reponses vary depending
on the invader, with antimicrobial peptides being central
to combating microbes and encapsulation being central
to combating larger invaders, such as parasitoids. Until
recently, it was presumed that insects were limited to
these non-specific innate immune responses and had no
specific immunity (for example, the antigen-based
immune response of humans). There is, however,
increasing evidence for the ability of insects to mount
specific immune responses [10].
Here we focus on the identification of aphid genes

that are known to play a role in the recognition and
degradation of microbial pathogens in other insects, as
these are the invertebrate defense processes that are
best understood. In the fruit fly Drosophila melanoga-

ster, recognition of an invasive microbe leads to signal
production via four pathways (Toll, immunodeficiency
(IMD), c-Jun N-terminal kinase (JNK), and Janus
kinase/Signal transducers and activators of transcription
(JAK/STAT)) [11]. Each pathway is activated in response
to particular pathogens [12]. Signaling triggers the pro-
duction of a multitude of effectors, including, most
notably, antimicrobial peptides (AMPs). Insect AMPs
may be 1,000-fold induced in microbe-challenged insects
compared to basal levels. In insect genomes annotated
to date, these pathways appear well conserved, with
most of the key components found across flies (Droso-
phila spp.), mosquitoes (Aedes aegypti, Anopheles gam-

biae), bees (Apis mellifera) and beetles (Tribolium
castaneum) [13-17].
Because aphids and other insects face diverse chal-

lenges, we propose models for several genes critical to
other elements of insect stress responses. These include
genes encoding heat shock proteins (HSPs), which are
synthesized in almost all living organisms when exposed
to high temperatures or stress [18]. We also suggest
models for genes involved in the synthesis of the alarm
pheromone (E)-b farnesene, which aphids release in the
presence of predators [19]. While there are undoubtedly
many other genes involved in stress and immunological
responses, our selection of genes for exploration pro-
vides a broad survey of the known insect immune and
stress repertoire and will serve as a basis for future
exploration of more specific responses.
The pea aphid genome provides novel insights into

arthropod immunity for two reasons. First, most of our
understanding of insect immune and stress responses
comes from holometabolous insects, the group of
insects with complete metamorphisis, such as flies, but-
terflies, beetles and bees. The genome of the hemimeta-
bolous pea aphid, Acyrthosiphon pisum, may thus
provide novel insight into immunity and defense in

more basal, non-holometabolous insects, which have
incomplete metamorphisis. Second, aphids are unique
amongst the arthropods sequenced to date in that they
are intimately dependent on both obligate and faculta-
tive bacterial symbionts for their survival. The aphid
symbiont community includes Buchnera aphidicola,
obligate and intracellular Gram-negative bacteria that
have the ability to synthesize required amino acids not
readily available in the aphid diet. Beyond this obligate
symbiosis, aphids frequently host one or more additional
Gram-negative bacterial symbionts, including most nota-
bly Hamiltonella defensa, Serratia symbiotica and
Regiella insecticola [20,21]. Unlike Buchnera, which is
present in all aphids and is thus considered a primary
symbiont, these bacteria are considered to be facultative,
secondary symbionts, because their presence varies
within an aphid species [22]. Secondary symbiotic bac-
teria have been shown to influence several aspects of
aphid ecology, including heat tolerance and resistance to
parasites and pathogens [23-26]. Specifically, both H.

defensa and S. symbiotica confer protection against
parasitoid wasp development [27,28], and R. insecticola

decreases A. pisum mortality after exposure to the fun-
gal pathogen Pandora neoaphidis [29]. These are some
of the best-studied examples of symbiont-conferred pro-
tection [30].
Aphids thus provide an excellent opportunity to study

the immune system of an organism that is dependent
on microbial symbionts but is hampered by parasites
and pathogens. Despite this, little work has been done
to characterize the aphid immune response. Altincicek
et al. [31] found that compared to other insects, stab-
bing a pea aphid with bacteria elicits reduced lysozyme-
like (muramidase) activity, and no detectable activity
against live bacteria in hemolymph assays. Furthermore,
suppression subtraction hybridization (SSH) of bacterial-
challenged aphids uncovered no antimicrobial peptides
and few genes of known immune function [31]. These
results are surprising given that similar studies in other
insects demonstrate that antimicrobial peptide produc-
tion and upregulation of immune-related genes is a
common feature of the insect immune response that
can be captured in functional assays such as SSH
[32-35]. This suggests that aphids have a significantly
reduced or altered immune repertoire.
Using the recently sequenced genome of the pea aphid

clone LSR1, in this study, we take two approaches to
study immunity and stress in pea aphids. First, we assay
presence/absence of a subset of known immune and
stress-related genes. Second, we combine functional
assays targeting the production of RNA and proteins to
gain insight into how pea aphids respond to various
challenges. Overall, our results suggest that pea aphids
are missing many genes central to immune function in
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other insects, and that, although pea aphids do mount
some response to challenges, the overall immune-
response of pea aphids is more limited than that of
other insects studied to date.

Results and discussion

Overview of annotation

We focused our manual annotation efforts on a subset
of genes involved in the innate, humoral immune
response contributing to recognition, signaling and
response to bacteria and fungi in arthropods. We also
manually annotated some genes involved in more gen-
eral stress responses (for example, HSPs). All annota-
tions are based on the recently completed sequencing
of pea aphid clone LSR1 [36]. All genes manually
annotated, as well as those genes that we found to be
missing in the pea aphid genome, are listed in Table
S1 in Additional file 1. Also in this table, BLAST-
based searches revealed that another aphid, Myzus per-

sicae (green peach aphid), has putative homologs for
many immune and stress related genes identified in
the pea aphid.

Annotation of microbial recognition genes

Peptidoglycan receptor proteins

Upon microbial invasion, Drosophila utilize several
pathogen recognition receptors (PRRs) to detect patho-
gen-specific molecular patterns (for example, cell-sur-
face motifs) [37]. PRRs include peptidoglycan receptor
proteins (PGRPs), which recognize peptidoglycans pre-
sent in cell walls of Gram-positive and Gram-negative
bacteria. PGRP-based recognition activates both the Toll
and IMD/JNK pathways. PGRPs are highly conserved,
with mammals and insect PGRPs sharing a 160 amino
acid domain [38,39]. Thus, it is surprising that pea
aphids, in contrast to all other sequenced insects, appear
to have no PGRPs. One other sequenced arthropod, the
crustacean Daphia pulex, is also missing PGRPs [40].
Gram-negative binding proteins

GNBPs (Gram-negative binding proteins, a historical
misnomer) are thought to detect Gram-positive bacteria
[41]. GNBPs and PGRPs are suspected to form a com-
plex. GNBPs then hydrolyze Gram-positive peptidogly-
cans into small fragments, which are detected by PGRPs
[41,42]. Aphids have two GNBP paralogs, GNBP1 and
GNBP2 (see Figure S1a in Additional file 1). Because
GNBPs are thought to form a complex with PGRPs, the
presence of GNBPs without PGRPs in aphids, as well as
in the crustacean D. pulex [40], calls into question
whether GNBPs play a role in bacterial detection in
these organisms. Some GNBPs and similar proteins are
known to function in fungal recognition [42], which
may be the primary function of these molecules in
aphids.

Lectins

Lectins are a diverse group of sugar binding proteins.
Many lectins function in insect immune recognition by
binding to polysaccharide chains on the surface of
pathogens [43]. Drosophila c-type lectins also appear to
facilitate encapsulation of parasitoid invaders, by mark-
ing surfaces for hemocyte recruitment [44]. Aphids have
five c-type lectin paralogs.
Galectins are another widely-distributed group of lec-

tins [45]. In mosquitoes, galectins are upregulated in
response to both bacterial and malaria parasite infection
[46,47]. Insect galectins are thought to be involved in
either pathogen recognition, via recognition of b-galac-
toside, or in phagocytosis [45]. Aphids have two galectin

paralogs.
Class C scavenger receptors

In Drosophila, Scavenger receptors exhibit broad affinity
towards both Gram-positive and Gram-negative bacteria,
but not yeast [48]. Pathogen recognition by class C sca-
venger receptors in Drosophila facilitates phagocytosis,
and natural genetic variation of Drosophila scavenger
receptors is correlated with variation in the ability to
suppress bacterial infection [49]. While D. melanogaster

has four class C scavenger receptor homologs, A. gam-

biae and A. mellifera have only one. Pea aphids appear
to have no class C scavenger receptors.
The Nimrod superfamily and Dscam

Several members of the Nimrod superfamily appear to
function as receptors in phagocytosis and bacterial bind-
ing [50,51]. Such insect genes include eater and nimrod.
Many of these genes are characterized by a specific EGF
(epidermal growth factor) repeat, and are duplicated in
the genomes of D. melanogaster, T. castaneum and A.

mellifera [52]. We were unable to identify any EGF
motif genes in the pea aphid genome.
Complex alternative splicing of Dscam (Down syn-

drome cell adhesion molecule) generates diverse surface
receptors sometimes employed in arthropod innate
immune defenses [53-55]. Though we did not manually
annotate this complex gene as a part of this initial aphid
immune gene project, we did identify multiple predicted
protein sequences coded by the aphid genome with
strong similarity to Dscam in other insects [GenBank:
XP_001951010, XP_001949262, XP_001945921,
XP_001951684, XP_001942542]. Further investigations
will be necessary to determine the activity and hyper-
variability of these genes and their transcripts in aphids.

Annotation of signaling pathways

The Toll signaling pathway

The Toll pathway is a signaling cascade involved in both
development and innate immunity. In Drosophila, dele-
tion of many of the component genes leads to increased
susceptibility to many Gram-positive bacteria and fungal
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pathogens [11], and some Gram-negative bacteria and
viruses [12]. In addition, upregulation of many compo-
nents of the Toll pathway is observed following parasi-
toid wasp invasion [56]. The Toll pathway appears to be
intact in pea aphids. We found convincing matches for
genes encoding the extracellular cytokine spätzle, the
transmembrane receptor Toll, the tube and MyD88
adaptors, the kinase pelle, the inhibitor molecule cactus
(a homolog of IkB), cactin, Pellino, Traf, and the trans-
activator dorsal (Figure 1). The latter two genes are
duplicated.
As in other insects, there are several gene families

associated with the Toll pathway that are represented in

aphids. First, aphids seem to have multiple spätzles that
segregate with Drosophila spätzles 1, 2, 3, 4 and 6 in
phylogenetic analyses (Figure S1b in Additional file 1).
Second, aphids also have a suite of serine proteases and
serine protease inhibitors (serpins). Though we did not
manually annotate serine proteases and serpins as a part
of this initial aphid immune gene project, we did iden-
tify multiple predicted protein sequences in the aphid
genome with strong similarity to serine proteases and
serpins in other insects. In insects, these molecules
function in digestion, embryonic development and
defense responses towards both microbial and parasitoid
wasp invaders [57-59]. In the absence of microbial

Figure 1 Some key insect recognition, signaling and response genes are missing in the pea aphid. Previously sequenced genomes of

other insects (flies, mosquitoes, bees, beetles) have indicated that immune signaling pathways, seen here, are conserved across insects. In

aphids, missing IMD pathway members (dashed lines) include those involved in recognition (PGRPs) and signaling (IMD, dFADD, Dredd, REL).

Genes encoding antimicrobial peptides common in other insects, including defensins and cecropins, are also missing. In contrast, we found

putative homologs for most genes central to the Toll, JNK and JAK/STAT signaling pathways.
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challenge, the serpin necrotic prevents activation of the
Toll pathway, but upon immunological challenge, the
Toll pathway is triggered by a cascade of serine pro-
teases, including persephone, which is thought to be
specific to fungal challenge [41]. Though it is not clear
which of the many aphid serine proteases is homologous
to persephone, it is likely that pea aphids have serine
proteases capable of triggering the Toll pathway. Finally,
aphids also have multiple genes encoding Toll receptors,
which function as transmembrane receptors in both
mammals and insects. While nine single-copy Toll
genes have been identified in D. melanogaster (Toll1 to
Toll9), it seems that pea aphids, like other insects, lack
some of these genes, but have multiple copies of others
(Figure S1c in Additional file 1). In other organisms,
some, but not all, Tolls serve a role in immune function,
while others function in developmental processes
[60-62]. For aphids, it is not yet clear what role each
Toll serves.
The JAK/STAT signaling pathway

Like the Toll pathway, in Drosophila, the JAK/STAT
pathway is involved in both development and immunity.
The JAK/STAT pathway is the least understood of the
core insect immune pathways. JAK/STAT pathway
induction appears to lead to overproliferation of hemo-
cytes, upregulation of thiolester-containing proteins
(TEPs), and an antiviral response [63]. Changes in gene
expression following parasitoid wasp invasion of Droso-
phila larvae suggest a role for the JAK/STAT pathway
in parasitoid response [56]. Pea aphids have homologs
of all core JAK/STAT genes, including genes encoding
the cytokine receptor domeless, JAK tyrosine kinase
(aka Hopscotch), and the STAT92E transcription factor
(Figure 1). STAT92E appears to be duplicated. No
homologs were found for upd (unpaired), considered a
key ligand in Drosophila JAK/STAT induction. This
ligand is also missing in other insects (for example, A.
mellifera) [14].
IMD and JNK signaling pathways

Surprisingly, pea aphids appear to be missing many cru-
cial components of the IMD signaling pathway. This
pathway is critical for fighting Gram-negative bacteria in
Drosophila [11,64], and IMD pathway member knock-
outs influence susceptibility to some Gram-positive bac-
teria and fungi as well [12]. IMD-associated genes
missing in pea aphids include PGRPs (see above), IMD,
dFADD, Dredd and Relish (Rel) (Figure 1). In contrast,
conserved one-to-one orthologs of these same genes are
found across Drosophila, Apis, Aedes, Anopheles and
Tribolium [13]. Cursory BLAST-based searches for these
genes in other arthropods suggest that some may be
missing (Figure 2). Pea aphids do have homologs for a
few pathway members (TAB, TAK, kenny, Iap2 and
IRD5; Figure 1).

While missing IMD-associated genes, pea aphids have
plausible orthologs for most components of the JNK
pathway (Figure 1). In Drosophila, the JNK pathway reg-
ulates many developmental processes, as well as wound
healing [65], and has been proposed to play a role in
antimicrobial peptide gene expression and cellular
immune responses [11,66]. Genes present include hep,
basket, and JRA. Searches for homologs to the Droso-

phila kayak (kay) gene found an apparently similar tran-
scription factor encoding gene in the A. pisum genome
[GenBank: XP_001949014], but this match was largely
restricted to the leucine zipper region, and failed tests of
reciprocity.
The absence of IMD but presence of JNK in pea

aphids is surprising as, in Drosophila, the IMD signaling
pathway leads to activation of components of the JNK
signaling pathway [11]. Specifically, when TAK, a pro-
tein kinase of the IMD pathway, is activated, it triggers
the JNK pathway. Whether TAK can be activated with-
out the rest of the IMD pathway is unknown. An alter-
native IMD-independent activation of JNK, via the
inducer Eiger [67], has been proposed in Drosophila

[66]. As Eiger is present in the pea aphid, this mode of
activation may serve a critical role in any aphid JNK-
based immune response.

Annotation of recognition genes

Antimicrobial peptides

Introduction of microbes into most insects leads to the
production of AMPs by the fat body, an insect immune-
response tissue, and occasionally by hemocytes and
other tissues [68-71]. These peptides are secreted into
the hemolymph, where they exhibit a broad range of
activities against fungi and bacteria. The mechanisms of
AMP action are poorly understood, but at least in some
cases (for example, drosomycin in Drosophila), AMPs
destroy invading microbes by disrupting microbial cell
membranes, leading to cell lysis [71].
Antimicrobial peptides are diverse and ubiquitous.

They tend to be small molecules (<30 kDa) specialized
at attacking particular microbial classes (that is, Gram-
positive bacteria, fungi, and so on) [68,69]. While some
antimicrobial peptides are found in only a single insect
group (for example, metchnikowin is found only in
Drosophila), others are widely dispersed across eukar-
yotes (for example, defensins are present in fungi,
plants and animals). Genomics, coupled with proteo-
mics, has revealed that all sequenced insects, and
many other insects, have multiple types of antimicro-
bial peptides (Figure 2). Pea aphids, surprisingly, are
missing many of the antimicrobial peptides common
to other insects. For example, while all insect genomes
annotated thus far have genes encoding defensins [13],
homology-based searches, phylogenetic-based analyses,
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transcriptomics (see below), and proteomics (see
below) failed to find any signatures of defensins in the
pea aphid genome. The presence of defensins in the
human louse Pediculus humanus (Figure 2), and in the
ancient apterygote insect, the fire brat Thermobia

domestica [34], suggests that defensins have been lost
during aphid evolution.
Extensive searches for genes encoding insect cecro-

pins, drosocin (and other proline-rich arthropod AMPs),
diptericin (and other glycine-rich AMPs), drosomycin,
metchnikowin, formicin, moricin, spingerin, gomesin,
tachyplesin, polyphemusin, andropin, gambicin, and vir-
escein also revealed no hits. Weak hits were found for
genes that encode for two antimicrobial peptides in
other invertebrates: megourin [UniProtKB: P83417], ori-
ginally isolated from another aphid species, the vetch
aphid Megoura viciae (P Bulet et al., unpublished data)
and penaeidin [UniProtKB: P81058], originally isolated
from the shrimp Penaeus vannamei. The putative pea
aphid Megourin (scaffold EQ11086, positions 45,752 to
45,892), however, is highly diverged from that of M.

viciae (31% identity) and, compared to its M. viciae

counterparts, seems to have a shorter carboxy-terminal
region containing a stop-codon (Figure S2 in Additional
file 1). Using three different primer pairs, we were

unable to amplify products of this putative Megourin

from cDNA generated for expression analyses (see
below). The highly divergent Penaeidin [GenBank:
ACYPI37769] (Figure S2 in Additional file 1) also did
not amplify from cDNA.
We found six Thaumatin homologs in the A. pisum

genome that show overall sequence and predicted struc-
ture similarities to plant thaumatins (Figure 3a, b).
Thaumatin-like proteins are disulfide-bridged polypep-
tides of about 200 residues. Some thaumatins possess
antifungal activity in plant tissues after infection [72].
Recently, a thaumatin found in the beetle T. castaneum

was shown to inhibit spore germination of the filamen-
tous fungi Beauveria bassiana and Fusarium culmorum

[32]. Phylogenetic analyses revealed that A. pisum thau-
matins form a monophyletic group closely related to
beetle thaumatins (Figure 3c). Since thaumatin-like
genes are conspicuously absent from the genomes of
Drosophila, Apis, Anopheles, Pediculus and Ixodes (Fig-
ure 2), our findings indicate that thaumatins may repre-
sent ancient defense molecules that have been lost in
several insect species, or have been independently
acquired in aphids and beetles. The monophyly of aphid
and beetle thaumatins provides no indication of an ori-
gin of novel acquisition (Figure 3c).

Figure 2 Gene families implicated in arthropod immunity suggest unique features of the pea aphid immune system. Black indicates

present (copy number is indicated, when known), white indicates absent, and gray indicates equivocal or unknown. Values for D. melanogaster,

A. gambiae, T. castanateum, A. mellifera, and some D. pulex genes are based on published analyses [13,14,16,17,40]. For previously unannotated D.

pulex genes, as well as for I. scapularis and P. humanus genes, we determined presence via cursory BLAST searches against available genome

databases [127,128] (wfleabase.org, vectorbase.org) using both D. melanogaster and A. pisum protein sequences as queries. Gene presence for

Ixodes was confirmed based on previous studies [129]. Future comprehensive annotation of the Pedicularis and Ixodes immune gene sets may

reveal the presence of additional genes and lack of functionality of others. PPO, prophenoloxidase.
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Figure 3 Evolutionarily conserved thaumatins are present in pea aphids and plants. (a) The three-dimensional structure of the pea aphid

thaumatin ACYPI009605 (top) was calculated using the published crystallographic structure of a sweet cherry (plant) thaumatin 2AHN_A

(bottom) [130] and Swissmodel [131], revealing that both thaumatins are similar in structure. However, one exposed loop, encircled by a dotted

line, shows a significant difference in structure, suggesting possible adaptation to different targets. (b) Similarities are also revealed in the

alignment of the pea aphid thaumatin with the plant thaumatin. A predicted signal sequence of the pea aphid thaumatin is underlined.

Identical amino acids are highlighted in red. (c) Maximum likelihood phylogeny of thaumatins, indicating branches leading to nematode, plant,

insect and bacteria-specific clades. Red highlights the sweet cherry thaumatin. Blue highlights the pea aphid thaumatins. Asterisks indicate

approximate likelihood ratio test support >80. Abbreviations: Api, A. pisum; Cac, Catenulispora acidiphila; Cel, Caenorhabditis elegans; Mtr,

Medicago truncatula; Pav, Prunus avium; Tca, Tribolium castaneum; Tpr, Trifolium pretense.
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Lysozymes

Lysozymes represent a family of enzymes that degrade
bacterial cell walls by hydrolyzing the 1,4-beta-linkages
between N-acetyl-D-glucosamine and N-acetylmuramic
acid in peptidoglycan heteropolymers [73]. They are ubi-
quitously distributed among living organisms and are
believed to be essential for defense against bacterial
infection. Lysozymes are classified into several types
(that is, c (chicken), g (goose), i (invertebrate), plant,
bacteria and phage types). C-type lysozymes are the
most common for metazoa, being found in all verte-
brates examined thus far and many invertebrates,
including all the previously sequenced insects. For
example, D. melanogaster and A. gambiae have at least
seven and nine loci for c-type lysozymes, respectively
[74,75]. Insects also have i-type homologs, but their bac-
teriolytic activities are unclear [76].
Unlike other insects sequenced thus far, similarity

searches demonstrated that A. pisum lacks genes for c-
type lysozymes. The analysis further verified that the
genome also lacks genes for g-type, plant-type, and
phage-type lysozymes. Only three genes for i-type
homologs were detected in the genome (Figure S1d in
Additional file 1). One of them, Lys1, is highly expressed
in the bacteriocyte [77]. Two others, Lys2 and Lys3, are
located adjacent to Lys1.
Notably, two genes that appear to have been trans-

ferred from bacterial genomes to the A. pisum genome
encode bacteriolytic enzymes [36]. One is for a chimeric
protein that consists of a eukaryotic carboxypeptidase
and a bacterial lysozyme. The other (AmiD) encodes N-
acetylmuramoyl-L-alanine amidase, which is not a true
lysozyme (1,4-beta-N-acetylmuramidase) but similarly
degrades bacterial cell walls. While some of these bac-
teriolytic-related genes are highly expressed in the bac-
teriocyte, and lysozymes appear to be upregulated in
response to some challenges (see gene expression study,
below), assays of bacterioltyic activity of hemolymph
from immune-challenged aphids suggest that aphid
hemolymph has weak to no lysozyme-like activity [31].
Further studies will determine the role of these gene
products.
Chitinases

Chitinases are enzymes that degrade chitin (a long-chain
polymer of N-acetyl-D-glucosamine), hydrolyzing 1,4-
beta-linkages between N-acetyl-D-glucosamines. Chiti-
nases and lysozymes represent a superfamily of hydro-
lases, and their catalytic activities are similar. Indeed,
some chitinases show lysozyme activity and vice versa
[73]. In insects, chitinases are used to degrade the chitin
in the exoskeleton and peritrophic membrane during
molting, and some are suspected to have antifungal
activity, as fungal cell walls also consist of chitin [78].
Similarity searches followed by phylogenetic analyses

demonstrated that the genome of A. pisum encodes
seven genes for putative chitinase-like proteins [79].
Further studies are required to determine the biochem-
ical properties and substrate specificity of these chiti-
nase-like proteins.
TEPs and Tots

Some TEPs can covalently attach to pathogens and
parasites in order to ‘mark’ them for phagocytosis [80].
Like other insects, aphids have multiple Tep paralogs.
Both are homologous to TepIII (Figure S1e in Addi-
tional file 1). Homologs of TepI, TepII and TepIV were
not found. In contrast, no Turandot (Tot) genes, which
encode small peptides induced by severe stress and sep-
tic injury in Drosophila [81-83], have been found in
aphids or in other insects other than Drosophila spp.
Both TEPs and Tots are thought to be regulated by the
JAK/STAT pathway.
Prophenoloxidase

Phenoloxidase-mediated melanin formation characteris-
tically accompanies wound clotting, phagocytosis and
encapsulation of pathogens and parasites [84]. In insects,
the inactive enzyme prophenoloxidase (ProPO) is acti-
vated by serine proteases to yield phenoloxidase [85].
Aphids appear to have two prophenoloxidase homologs
(ProPO1, ProPO2; Figure S1f in Additional file 1), which
are homologous to D. melanogaster Diphenol oxidase

A3 [Flybase: CG2952].
Nitric oxide synthase

Production of nitric oxide is mediated by the enzyme
nitric oxide synthase. Nitric oxide is a highly unstable
free radical gas that has been shown to be toxic to both
parasites and pathogens. In insects, Nos is upregulated
after both parasite and Gram-negative bacterial infection
[86,87]. Like other insects, pea aphids have one Nos

homolog.
Heat shock proteins

Though called HSPs, these proteins are produced in
response to a range of stresses in both eukaryotic and
prokaryotic organisms [18]. They serve as chaperones,
facilitating protein folding and stabilization, and as pro-
teases, mediating the degradation of damaged proteins.
HSPs may also serve as signaling proteins during
immune responses [18,88]. In many insects, including
aphids, HSPs have been shown to be upregulated after
septic injury and microbial infection [31,89-92]. We
identified 15 HSPs of varying molecular weight in pea
aphids (Figure S1g in Additional file 1).
Gluthione-S-tranferases

Gluthione-S-tranferases comprise a diverse class of
enzymes that detoxify stress-causing agents, including
toxic oxygen free radical species. They are upregulated
in some arthropods upon oxidative stress [93] and
microbial challenge [89,94]. Pea aphids have at least 18
genes encoding gluthione-S-tranferases and many other
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detoxification enzymes that likely play a role in stress
responses [95]. Ramsey et al. [95] identified many of the
genes encoding detoxification enzymes in A. pisum and
in Myzus persicae.
Alarm pheromone production

In response to predators, aphids release an alarm phero-
mone that causes neighboring aphids to become more
mobile and to produce more winged than unwinged off-
spring [19,96]. These winged offspring have the ability
to disperse to enemy-free space. While many insects
produce a suite of chemicals that constitute an alarm
signal, the aphid alarm pheromone is dominated by a
single compound, (E)-b farnesene [97]. While the genes
underlying alarm pheromone production have not been
fully characterized, we have identified a Farnesyl dipho-

sphate synthase (FPPS) and an Isoprenyl diphosphate

synthase (IPPS), which may underlie alarm pheromone
production [98].

Functional assays

Gene expression

We utilized real-time quantitative PCR to conduct a
preliminary investigation of the expression of 23 recog-
nition, signaling and response genes in aphids subjected
to a number of infection and stress treatments (see Sup-
plementary materials and Table S2 in Additional file 1).
While future studies with more biological replicates will
be necessary to fully survey gene regulation in the face
of stress and infection, this initial survey indicates that
aphids do express these genes under both control and
infection/stress conditions (Tables S4 and S5 in Addi-
tional file 1). This suggests that these genes are func-
tional even in the absence of many other missing
immune-related genes.
One expression pattern seen in this initial survey is

of particular note. Unlike other insect immune expres-
sion studies, we found no strong upregulation of anti-
microbial peptides, which frequently exhibit ten-fold or
greater upregulation in the face of infection. For exam-
ple, while Altincicek et al. [32] observed 20-fold upre-
gulation of Thaumatins in tribolium beetles after
stabbing with lipopolysaccaride endotoxin derived from
Escherichia coli, we saw modest upregulation (approxi-
mately 2-fold) of only one Thaumatin (Thm2) after
stabbing aphids (Table S5 in Additional file 1).
Furthermore, despite the fact that they are known to
suppress fungal germination in beetles, the Thaumatin

homologs were not upregulated after fungal infection
at the time point included in this study, and were only
approximately two-fold upregulated at two additional
time points and in a follow-up fungal infection experi-
ment (data not shown) [32]. The role of thaumatins in
fighting microbial infections, however, should not be
discounted, as they may function in the absence of

significant upregulation (that is, they may be constitu-
tively expressed).
Exploration of ESTs from infected and uninfected aphids

In the first of two EST-based experiments, we compared
a cDNA library synthesized from the guts of A. pisum
that had been fed a Gram-negative pathogen, Dickeya
dadantii[99], to a cDNA library synthesized from unin-
fected guts. Strikingly, no standard immune-related
genes, such as antimicrobial peptides, were identified in
the infected sample. The main functional classes differ-
entially expressed were the ‘biopolymer metabolism’

class, many members of which were down-regulated in
infected guts, and ‘transport’ or ‘establishment of locali-
zation’ classes, whose genes were upregulated in infected
guts (Table S6 in Additional file 1). The ‘immune
response’ class, in contrast, was only represented by five
genes. Four of these five genes were in the uninfected
library, while only one, encoding a leucyl-aminopepti-
dase, was identified from the infected library; the
immune function of leucyl-aminopeptidases is not well
understood. Moreover, the ‘response to stress/external
stimulus/biotic stimulus’ classes were not overrepre-
sented in the infected gut library.
In a separate experiment, to further identify aphid

immune-relevant genes, we utilized SSH to compare
cDNA from E. coli-infected aphids and cDNA from
unchallenged aphids. To obtain genes expressed at dif-
ferent phases of the immune response, three RNA sam-
ples were extracted 3, 6 and 12 hours after E. coli

infection and mixed prior to cDNA synthesis.
Among the 480 ESTs that were sequenced from the

subtracted library [GenBank: GD185911 to GD186390],
we found some genes with similarity to proteases and
protease inhibitors but few other immune-related pro-
teins. Interestingly, SSH-based EST analysis failed to
identify any PRRs, such as PGRPs or GNBPs, or any
antimicrobial peptides (Table S7 in Additional file 1). It
is noteworthy that this aphid experiment was conducted
in parallel to a similar Sitophilus weevil experiment,
where many immune-related genes (more than 18% of
ESTs) were identified, including antibacterial peptides
and PRRs [35]. This suggests that the paucity of
immune genes identified in A. pisum is not a technical
issue but may be a specific feature of aphids [31]. In
addition, dot blot analysis demonstrated that only a few
genes (less than 5%) were differentially expressed
between E. coli-stabbed and unstabbed aphids. These
findings indicate that, in contrast to other insects, either
aphids respond only weakly to challenge with E. coli or
aphid genes and pathways directed against these bacteria
are expressed only constitutively.
High performance liquid chromatography

HPLC peptide analyses targeting production of small
peptides (for example, antimicrobial peptides) were run
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on hemolymph samples from pea aphids challenged by
three microorganisms: E. coli (Gram-negative bacteria),
Micrococcus luteus (Gram-positive bacteria) and Asper-

gillus fumigatus (fungi). Profiles were compared between
control, infected and sterile-stabbed aphids at 6, 12 and
18 hours after challenge. When identified, the produc-
tion of small peptides was maximal at 18 hours. In E.

coli-treated samples, no upregulation could be identified
(Figure 4a), in M. luteus-treated samples, there was
modest upregulation (data not shown), and in A. fumi-

gatus-treated samples, there was a significant response,
though few peaks (Figure 4b). In contrast, a response
profile to E. coli from another obligate symbiotic insect
(the weevil, Sitophilus oryzae) exhibited at least five
well-distinguishable upregulated peaks (Figure 4c).
Response being restricted to Gram-positive bacteria and
fungi is consistent with previous identification of
megourin, an antimicrobial peptide in the aphid
Megoura viciae, which appears to have activity against
Gram-positive bacteria and fungi, but not against Gram-
negative bacteria (P Bulet, unpublished). Because so few
distinguishable peaks were present in the aphid samples,
we did not choose to identify the associated products,
but overall the presence of few inducible peptides sug-
gests a peculiar scarcity of antimicrobial peptides in
aphids.

Conclusions

Aphids are one of only a few genomic models for hemi-
metabolous insects, yet until recently, virtually nothing
was known about aphid immune and stress response
systems. Here, by coupling gene annotation with

functional assays, we see evidence that aphids have
some defense systems common to other arthropods (for
example, the Toll and JAK/STAT signaling pathways,
HSPs, ProPO). Surprisingly, however, several of the
genes thought central to arthropod innate immunity are
missing in aphids (for example, PGRPs, the IMD signal-
ing pathway, defensins, c-type lysozymes). This calls into
question the generality of the current model of insect
immunity, and it remains to be determined how aphids
protect themselves from the diverse pathogens and para-
sites that they face.
The fact that we cannot find aphid homologs to many

insect immune genes could be a consequence of the
large evolutionary distance between aphids and the taxa
(in most cases, flies, mosquitoes and bees) from which
these genes are known (that is, the split between the
ancestors of aphids and these taxa occurred approxi-
mately 350 million years ago [100]), making it challen-
ging to find divergent genes via homology-based
searches, even when using highly sensitive methods as
done here. Though we cannot preclude this possibility
in all cases, in some cases, similar homology-based
methods are able to recover homologs in even more dis-
tantly related taxa. For example, querying genome data-
bases with Drosophila genes via BLAST recovers
putative homologs of PGRPs and defensins in P. huma-

nus (human body louse) and in Ixodes scapularis (deer
tick) (Figure 2). The divergence time between Droso-

phila and these taxa is equal to or greater than that
between Drosophila and aphids. Moreover, for some
cases, we could identify genomic regions similar to func-
tional genes in other species, but these regions contain

Figure 4 HPLC traces of inducible hemolymph peptides in the pea aphid compared to the rice weevil. Representative traces (solid, red

lines) are from insects 18 hours after microbial challenge; traces generated from 18 hour control insects are overlaid (dashed, black lines).

Phenylthiourea (PTU) served as an internal standard. Arrows indicate peaks that are significantly upregulated (solid, red arrows) or downregulated

(dashed, black arrows). (a) Profile from pea aphids challenged with E. coli, showing no upregulated response. (b) Profile from pea aphids

challenged with the fungus A. fumigatus, showing some differential peaks. (c) For comparison, profile from rice weevils (Sitophilus oryzae)

challenged with E. coli, showing several differentials peaks at multiple retention times.
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large insertions or stop codons (for example, the puta-
tive antimicrobial peptide Megourin), indicating they are
the result of pseudogenization.
One potential explanation for the lack of known

immune-related genes in pea aphids is that aphids
mount an alternative, but equal, immune response. Our
functional analyses, as well as those of Altincicek et al.

[31], found little evidence for an alternative response. In
EST and HPLC analyses, few novel ESTs or peptide sig-
nals were recovered from immune-challenge aphids rela-
tive to their unchallenged controls. It should be noted,
however, that these challenges were primarily limited to
exposure to E. coli bacteria. When testing for expression
of a few immune genes in response to a wider array of
challenges, we do see some evidence of an aphid
immune and stress response. Future expression studies,
including large-scale transcriptional and proteomic stu-
dies, will extend this work and allow for more compre-
hensive characterization of the full complementation of
aphid immune responses.
While we have focused mainly on the humoral com-

ponent of the innate immune response, it is interesting
to note that there is some evidence that the cellular
component of pea aphids’ innate immune response may
also be different to that seen in other insects. While
many insects encapsulate parasitoid wasp larvae,
smothering them to death with hemocytes (insect
immune cells), aphids appear not to have this layer of
protection [101,102]. Aphids, however, appear to recruit
some hemocytes to parasitoid eggs, suggesting that cel-
lular immunity may play an alternative, though possibly
more limited, role [101]. Better insights into the capacity
of the aphid immune system will require further investi-
gation of both the humoral and cellular components of
aphid immunity.
The lack of genomic and molecular data regarding

immune systems of aphid relatives makes it difficult to
establish whether the pea aphid immune system is
unique. There are, however, a number of aspects of
aphid ecology that could facilitate ecological success
without a strong immune defense. Altincicek et al. [31]
proposed three hypotheses to explain the apparent lack
of antimicrobial defenses. First, they suggested that con-
trary to Drosophila, whose natural environment consists
of decaying fruit that is colonized by many microbes,
aphids exploit phloem sap, which only occasionally con-
tains bacteria and rarely contains entomopathogens.
Thus, the risk of encountering pathogens while feeding
is more limited. This assumption, however, is only partly
true. While probing plants, aphids are capable of acquir-
ing pathogenic bacteria from the surface of their host
plants’ leaves [103], and aphids become host to a diverse
assemblage of bacteria and fungi under stressful condi-
tions [104], some of which are pathogenic (NM

Gerardo, unpublished data). Furthermore, Sitophilus
weevils, which when challenged with E. coli significantly
upregulate immune genes [35], spend their entire larval
and nymph stages within sterile cereal grains, indicating
that a sterile diet is not likely to explain the absence of
antibacterial defenses in aphids.
Altincicek et al. [31] also suggest that aphids may

invest in terminal reproduction in response to an
immune challenge, rather than in a costly immune
response. In their study, stabbed aphids produced signif-
icantly more offspring than untreated aphids within 24
hours of injury. Such an increase in reproduction upon
challenge is not uncommon for invertebrates. Biompha-

laria snails [105,106], Acheta crickets [107], Daphnia
waterfleas [108], and Drosophila flies [109] have all been
shown to increase their investment in reproduction in
response to infection. Yet, Drosophila still mount a
complex immune response. Furthermore, aphids do not
increase their reproductive effort in the face of all
immune challenges: fungal infection reduces the number
of offspring A. pisum produce within 24 hours of inocu-
lation [110], and response to stabbing with bacteria
seems to be specific to the aphid genotype and to the
location of the stab (Barribeau, unpublished data).
Therefore, though aphids have the capacity to reproduce
many offspring prior to succumbing to some pathogens,
it seems that immune competence would still provide
increased fitness.
Even without increased reproduction following infec-

tion, the prolific reproductive capacity of aphids suggests
these insects, in general, may invest most resources
towards rapid, early onset reproduction rather than
towards fewer, though better-protected offspring (aka, in
terms of classical ecological theory, aphids may be r-
selected rather k-selection organisms [111]). Recent the-
ory of the evolution of immunity suggests that such
organisms may specifically invest less in costly immune
responses [112,113]. Many characteristics of aphids,
including their rapid generation time, short life span
and small body size all fit a model of r-selection [114].
Drosophila spp., however, also exhibit many of these
characteristics and still invest in a strong defense
repertoire.
The third hypothesis proposed by Altincicek et al. [31]

concerning the evolution and maintenance of aphid
defense relies on the presence of secondary symbionts
that can be found extracellularly in aphids [115]. A.
pisum is protected against fungal pathogens by one of
these secondary symbionts, Regiella insecticola [29], and
also against the parasitoid wasp Aphidius ervi by
another secondary symbiont, Hamiltonella defensa [27].
Such symbiont-mediated host protection may explain
why aphids have a reduced (or specialized) antimicrobial
defense. This hypothesis seems plausible with regard to
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the cost of immune gene expression versus the benefit
of protection by the secondary endosymbionts. However,
it does not explain how the secondary endosymbionts
(as Gram-negative bacteria), often present in aphid
hemolymph, are themselves perceived and controlled by
the aphid immune system. Thus, it is challenging to say
whether the presence of secondary symbionts is a cause
or a consequence of reduced antimicrobial activity.
Potentially, all of these forces could shape the evolu-

tion of aphid stress and immune responses. In order to
test these hypotheses (for example, reproductive invest-
ment, symbiont-mediated host protection), we need
more studies characterizing the global aphid response
under more conditions, and in more aphid species.
Potential insight from aphid relatives with different life-
styles (for example, those not associated with secondary
symbionts, or those that live in soil or other microbe-
rich habitats) may be particularly helpful. More broadly,
as the pea aphid is the first published genome of a
hemimetabolous insect, future analyses of the immune
and stress related genes of more insects in this group
will facilitate the reconstruction of the evolutionary his-
tory of innate immunity and other defenses.

Materials and methods

Bioinformatic screening of the pea aphid genome

Immune and stress gene candidates from other insects
(for example, D. melanogaster, A. aegypti, A. gambiae,
A. mellifera) were used to query the pea aphid genome.
Most searches utilized the blastp search function to
search for hits against the predicted A. pisum proteome
[116]. For some gene families and putative paralogs,
protein sequences were aligned to sequences from other
insects and outgroups using ClustalW [117]. These
alignments, as well as available EST and full length
cDNA sequences, served to refine aphid gene models
(exon/intron boundaries, and so on), and to facilitate
phylogenetic analyses. In addition, a comprehensive
database of all available EST sequences from the green
peach aphid, Myzus persicae, was screened using tblastn
to search for potential homologs to all immune and
stress genes annotated in the pea aphid.
For genes that could not be found in the proteome,

we also conducted a tblastn search against all contigs
and unassembled reads. Then, a final, more sensitive
profile-based search was performed for those immune
defense proteins that produced no hits with BLAST
searches. For this analysis, insect and other species pro-
tein sequences belonging to the family of interest were
retrieved from NCBI and aligned with MUSCLE [118].
A hidden Markov model for the alignment was built
and calibrated using HMMER [119]. This was used to
perform a profile-based search (hmmsearch) against the
six-frame translated sequences of the assembled pea

aphid genome and the unassembled reads. Additionally,
a similar search with PFAM profiles [120] was also per-
formed for those families encoding PFAM domains in
their sequences. Whenever a significant hit was found,
the genomic region was analyzed to discard the possibi-
lity that it encoded a pseudogene (presence of stop
codons, absence of relevant domains, and so on).
Phylogenetic analyses of selected protein families were

performed using their corresponding maximum likeli-
hood phylogenetic trees from the pea aphid phylome
[36], deposited in PhylomeDB [121]. When necessary,
additional sequences were added to the original Phylo-
meDB alignment, realigned with MUSCLE and used to
reconstruct a maximum likelihood phylogenetic tree,
using the JTT (Jones-Taylor-Thornton) model as imple-
mented in PhyML v2.4.4 [122], assuming a discrete
gamma-distribution model with four rate categories and
invariant sites, and estimating the gamma shape para-
meter and the fraction of invariant sites. Cladograms
were edited using Dendrogram [123].

Exploration of ESTs from infected and uninfected aphids

In the first experiment, two EST libraries (one control,
one infected) were generated by standard procedures
using a SMART cDNA kit (Clontech, Mountain View,
California, USA), starting from approximately 1,000 dis-
sected A. pisum midguts for each library. The aphids
were clonal, young, reproducing asexuals, which were
either fed on control diet or infected by feeding on arti-
ficial diet with the Gram-negative aphid pathogen Dick-

eya dadantii at 106 bacteria per milliliter [99]. Twenty-
four hours after infection, control and treated aphids
were dissected, and complete guts were transferred
immediately into RNeasy solution (Qiagen Valencia,
California, USA). ESTs were sequenced according to
procedures in Sabater-Munoz et al. [124].
In another EST-based experiment utilizing SSH and

dot-blot technology, we treated aphids (clone LL01)
with rifampicin as described in Rahbé et al. [125] to
reduce symbiont load. We challenged wingless fourth-
instar aposymbiotic aphids by stabbing them with nee-
dles previously dipped into a pellet of overnight cultures
of E. coli (TOP10, Invitrogen Carlsbad, California, USA),
and then maintained them on fava plants. At 3, 6, and
12 hours post-treatment, we stored surviving aphids at
-80°C. To identify genes that are differentially expressed
in response to septic injury, we performed SSH using
RNAs from immune challenged (3, 6 and 12 hours post-
treatment) and untreated aposymbiotic aphids, using the
SMART PCR cDNA Synthesis Kit and the PCR-Select
cDNA Subtraction Kit (Clontech) according to the man-
ufacturer’s instructions and as described in Anselme et

al. [35]. After transformation by electroporation, we
recovered approximately 1,500 colonies from LB agar
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plates. We plasmid extracted and sequenced 500 ran-
domly picked colonies (NucleoSpin® Plasmid Kit,
Macherey-Nagel, Düren, Germany) utilizing the sequen-
cing center at the University of Valencia (Spain). We
compared all sequences against UniProt using blastx.
Immune-related gene sequences (Table S7 in Additional
file 1) were then compared to the aphid genome using
blastn.
To analyze the differential expression status of each

EST, we conducted a dot-blot experiment. Briefly, we
amplified 344 ESTs from the SSH library by colony PCR
with nested PCR primers 1 and 2R from the PCR-Select
cDNA Subtraction Kit. We then spotted 10 μl from
each PCR product onto two different membranes
(Amersham Hybond™-N, GE Healthcare Life Sciences,
Piscataway, New Jersey, USA) using a Bio-Dot Microfil-
tration System (Biorad, Hercules, California, USA). We
hybridized membranes with radiolabeled cDNA probes
generated by reverse-transcription from RNA extracted
from either aposymbiotic aphids stabbed with E. coli or
unstabbed aposymbiotic aphids. We synthesized these
probes using the Super Script™ First Strand Synthesis
system (Invitrogen) for RT-PCR and [a-32P]dCTP, and
purified them using Quick Spin Column (Roche Molecu-
lar Biochemicals, Indianapolis, Indiana, USA). After
exposing blots for up to 24 hours to a Storm PhosphorI-
mager imaging plate (GE Healthcare Life Sciences), we
analyzed differential expression by comparison of band
intensities between the two membranes. We did not,
however, normalize the data, as we failed to see any sig-
nal from the Gapdh gene, though the same amount of
each PCR product was loaded on both membranes.

HPLC

Aphids were challenged by abdominal puncture with tri-
ple-0 needles dipped in a solution of Gram-negative
bacteria (E. coli strain Top10), Gram-positive bacteria
(M. luteus) or fungal spores (A. fumigatus). For each
microbial treatment, five hemolymph samples from 50
aphids each were collected at four times points (t = 0, 6,
12 and 18 hours).
Hemolymph was flash-extracted by centrifuging (1

minute, 10,000 g, 4°C) live aphids through a 1 ml pip-
ette tip and directly into 40 μl 0.1% trifluoractetic acid
contaning 10 μl of saturated phenylthiourea (PTU) for
phenoloxidase inhibition. Resulting samples were highly
similar to pure hemolymph samples obtained by leg
bleeding (>95% band identity by silver-stained SDS-
PAGE).
After initial collection, tips were removed and the

samples were centrifuged for 5 minutes at 15,000 g. Fol-
lowing addition of 70 μl trifluoractetic acid 0.1%, the
supernatant sat for 1 hour at 4°C to allow for protein
precipitation prior to a final 10-minute centrifugation at

15,000 g to recover peptides. Samples were evaporated
and stored at -20°C until use in HPLC. Chromatography
was performed on standard peptide C18-300Å reverse
phase columns using water acetonitrile gradients [126].
For retention time standardization, PTU served as an
internal standard, and samples were analyzed by area-
normalization to unchallenged sample peaks (retention
time = 14 minutes, preceding PTU).

Additional file 1: Supplementary methods for the gene expression

study and supplementary tables and figures. Table S1: pea aphid

immune and stress gene list. Table S2: samples for quantitative PCR

expression study. Table S3: primers for quantitative PCR expression study.

Table S4: relative expression of recognition and signaling genes. Table S5:

relative expression of response genes. Table S6: gut EST library statistics.

Table S7: list of selected ESTs from the subtracted library. Figure S1:

maximum likelihood phylogenies of selected immune and stress gene

families. Figure S2: alignments of putative antimicrobial peptides

megourin and penaeidin. Figure S3: survival curves for experimental

infections associated with quantitative PCR study.
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