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Abstract The study of molluscan immune systems, and in particular those of bivalve 

molluscs (clams, oysters, scallops, mussels, etc.) has experienced great growth 

in recent decades, mainly due to the needs of a rapidly growing aquaculture 

industry to manage the impacts of disease and the application of -omic tools 

to this diverse group of invertebrate organisms. Several unique aspects of 

molluscan immune systems highlighted in this chapter include the importance 

of feeding behavior and mucosal immunity, the discovery of unique levels of 

diversity in immune genes, and experimental indication of transgenerational 

immune priming. The development of comparative functional studies using 

natural and selectively bred disease-resistant strains, together with the potential 

but yet to be fully developed application of gene-editing technologies, should 

provide exciting insights into the functional relevance of immune gene family 

expansion and molecular diversi�cation in bivalves. Other areas of bivalve 

immunity that deserve further study include elucidation of the process of 

hematopoiesis, the molecular characterization of hemocyte subpopulations, and 

the genetic and molecular mechanisms underlying immune priming. While the 

most important aspects of the immune system of the largest group of molluscs, 

gastropods (e.g., snails and slugs), are discussed in detail in Chap. 12, we also 

brie�y outline the most distinctive features of the immune system of another 

fascinating group of marine molluscs, cephalopods, which include invertebrate 

animals with extraordinary morphological and behavioral complexity.
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 An Introduction to Bivalve Molluscs

 Evolution and Life Cycle

The phylum Mollusca includes eight taxonomic classes comprising more than 
85,000 living species, and 60,000 additional species documented by fossil 
records (Fig.  1). This ranks molluscs as the second most abundant phylum of 
animals after arthropods and before chordates (Ponder and Lindberg 2008). 
Molluscs are successful invertebrates characterized by a broad morphological 
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Fig. 1 Simpli�ed tree of life of molluscs (above) and bivalves (below), based on Bieler et  al. 
(2014) and the Tree of Life web project (http://tolweb.org/Mollusca/2488). The number of species 
currently registered in the NCBI Taxonomy database for each taxon (data retrieved in December 
2017) is displayed between brackets
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and physiological diversity. They are extraordinarily well adapted to adverse 
environmental conditions and, starting from the early radiation that occurred in 
the Late Cambrian era, they have colonized almost all ecological niches: from 
terrestrial habitats over 3000 meters above sea level to deepsea hydrothermal 
vents, coping with extreme levels of heavy metals, pH, temperature, CO2, methane, 
and sul�de (Plazzi and Passamonti 2010)

Bivalvia represent the second largest class within the phylum Mollusca, with 
over 5000 recognized species, mostly adapted to marine environments. Although 
the phylogenetic relationship among the different groups of bivalves and, more gen-
erally, of all molluscs have been the subject of debate for decades (Kocot et al. 2011; 
Smith et al. 2011; Sigwart and Lindberg 2015), recent studies tried to reorganize the 
bivalve tree of life into six major lineages, as shown in Fig. 1 (Bieler et al. 2014). 
Brie�y, the authors recognized the primitive and relatively small group of 
Protobranchia, the large groups of Pteriomorphia (comprising oysters, mussels, and 
scallops, among others), Palaeoheterodonta (mostly freshwater clams and mussels), 
Imparidentia (the largest and most diverse group of bivalves, comprising over 2500 
clam species), and two additional small groups with peculiar morphological fea-
tures, i.e., Archiheterodonta and Anomalodesmata.

Bivalves can be protandric hermaphrodites (oysters in the genera Magallana 
and Crassostrea), simultaneous hermaphrodites (scallops in the genus Pecten), and 
rhythmical consecutive hermaphrodites (oysters in the genus Ostrea). As exempli-
�ed in Fig. 2, the general life history of the majority of molluscan bivalve species 
starts during the main spawning season when adult animals with mature gonads 
release oocytes and spermatozoa in the water column and external fertilization 
occurs (Pechenik 2010). Bivalve larvae are planktonic (free-living) and remain in 
the water column for days to weeks, depending on the species and the environ-
mental conditions. During larval development, the molluscan embryo becomes a 

Fig. 2 Life cycle of a bivalve, as exempli�ed for the Mediterranean mussel, Mytilus galloprovincialis
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planktonic (free swimming) trochophore larva. The late trochophore is the phylotypic 
stage, de�ned as the ontogenetic stage, characterized by maximum similarity among 
the species within a phylum (Xu et al. 2016a). After a few days, the primordium of 
the shell appears and the bands of cilia used by larvae to feed and swim develop into 
the velum, a characteristic organ of the veliger stage. Then, larvae develop a foot, 
characteristic of the pediveliger stage, and undergo metamorphosis. Once meta-
morphosis is complete, their body plan and physiological aspects resemble those of 
the adult form and the larvae will settle out of the water column where, depending 
on the species, they might attach to a substrate, lie on a substrate and swim, or bury 
themselves in sediments (Balseiro et al. 2013). When adults become mature, gameto-
genesis occurs, with modalities that depend on the species, geographic region, water 
depth, and season (Shumway and Parsons 2006).

 Anatomy and Physiology of Bivalves

Although the adult anatomy of molluscs can greatly differ from one taxon to another, 
they share a general basic plan derived from a hypothetical shared ancestor (Fig. 3). 
This includes a soft oval body with bilateral symmetry, a muscular foot, a mantle—
which secretes the shell (absent or internalized in some groups) or the spicules—
and a feeding organ formed by chitinous sharp structures, called radula (absent in 
bivalves).

Overall, this shared body plan results in a great morphological diversity of 
bivalve groups adapted to different ecological niches, as shown in Fig. 4 (Ruppert 
et al. 2004). Bivalve shells consist of two, sometimes symmetric, hinged valves. 

Fig. 3 Anatomy of the hypothetical common ancestor of all molluscs. (Author: KD Schroeder—
Archimollusc-en.svg from Wikimedia Commons—License: CC-BY-SA 3.0)
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The shell is produced by secretory cells in the epithelium of the mantle or pallium, 
with contributions from the hemocytes (blood cells) (Mount et al. 2004). Bivalve 
shells are formed mainly of conchiolin, which is composed of protein-hardened 
calcium carbonate (aragonite or calcite) and has three layers: the outer layer (perio-
stracum), a middle layer, and the inner layer, which is often nacreous and in some 
cases has exceptional economic value. The mantle encloses a chamber surrounding 
the bivalve body called the mantle or pallial cavity, which is in direct contact with 
the environment when the shell is open. Organs that have direct contact with the 
pallial cavity include the gills (or ctenidia), the osphradia (chemical sensors), and 
the openings of the nephridia, gonads, and digestive system. The space between the 
mantle and the shell constitutes the extrapallial cavity (Ruppert et al. 2004).

The movement of shell valves is controlled by one, two, or (rarely) three adduc-
tor muscles that control shell closure and keep it tightly shut when needed, and by 
an elastic ligament that acts as a spring, allowing the shell to open when muscles are 
relaxed. Some bivalves also possess a pair of siphons (inhalant and exhalant) used 

Fig. 4 Examples of diversity in the basic anatomy of different bivalve lineages. (a) Anatomy of 
Mytiloida (Pteriomorphia): Mytilus uguiculatus (external) and Mytilus galloprovincialis (internal). 
(b)  Anatomy of Ostreoida (Pteriomorphia): Ostrea edulis. (c)  Anatomy of Pectinoida 
(Pteriomorphia): Placopecten magellanicus. (d) Anatomy of Archiheterodonta: Cardites �orida-

nus (external) and Astarte borealis (internal). (e) Anatomy of Palaeoheterodonta: Anodonta cyg-

naea. (f) Anatomy of Mactroidea (Imparidentia): Mactra antiquate (external) and Tresus capax 
(internal). (g) Anatomy of Myida (Imparidentia): Mya arenaria. (h) Anatomy of Anomalodesmata: 
Cardiomya reticulata (external) and Laternula elliptica (internal). (i ) Anatomy of Protobranchia: 
Solemya velum (external) and Ennucula delphinodonta (internal). To better show anatomic internal 
details, in most cases one of the valves and the mantle have been removed. (The anatomic tables 
have been taken from multiple sources, kindly provided by the Biodiversity Heritage Library)
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in the exchange of water. These systems ensure the �ow of water into the pallial 
cavity for feeding and respiration.

The gills divide the mantle cavity into distinct chambers and their cells possess 
cilia, which produce a laminar �ow of water that facilitates feeding and enhances 
respiratory gas diffusion and exchange. Gills also exhibit osmoregulatory, ion trans-
port, homeostasis, and sensorial functions (Moreira et  al. 2015). Gas exchange 
occurs mainly in the center of the gill �lament, where the hemocytes circulate 
through hemolymph vessels. Most bivalves absorb oxygen directly from water 
through their tissues and oxygen-carrying molecules such as hemocyanin have been 
identi�ed in only a few genera. As coelomates, bivalves have another characteristic 
cavity, the coelom, a small pericardial cavity enclosing the heart. Hemolymph is 
pumped throughout the body by the heart, which receives oxygenated blood from 
the gills and pumps it into the main blood vessel, a short artery that opens directly 
into the hemocoel. Bivalve molluscs have an open circulatory system, with the 
hemolymph reaching all of the organs by passive diffusion aided by the pumping 
effect of the heart, which also has excretory functions. A pair of nephridia con-
nected to the coelom extracts any reusable materials from the coelomic cavity, 
dumps additional unwanted products into it, and then excretes all of the materials 
into the mantle cavity. In bivalves, gonads are located within the connective tissue 
at the edge of the mantle, with spawning occurring directly in the mantle cavity 
(Ruppert et al. 2004).

Depending on the species, bivalves feed on suspended particles in the water col-
umn, using an inhalant opening or siphon and ctenidia (e.g., Magallana and 
Crassostrea spp. oysters); on deposits or particles on top of sediments, using an 
inhalant siphon and ctenidia (e.g., Macoma spp. clams); or on deposits in the sedi-
ments, using proboscides (e.g., Yoldia spp. clams). Many bivalves are able to pump 
large volumes of water while feeding. In bivalve species that use the ctenidia to 
feed, food particles (mainly phytoplankton) are selectively trapped in a thick layer 
of mucus covering the gills, transported with the aid of the cilia, sorted, and directed 
to the outer labial palps, where particles are further sorted on the basis of size and 
other physical and chemical characteristics. Some particles are then transferred to 
the mouth by the inner palps, while other particles are rejected in pseudofeces 
released into the pallial space. Mucus and cilia facilitate particle movement toward 
the stomach, where there is further sorting and selection of particles (Ward and 
Shumway 2004), leading to the prostyle, a mass of food and mucus. The prostyle is 
extracellularly digested by the action of the enzymes produced by the digestive 
gland. In most bivalve species, phagocytic cells have been evidenced in the tubules 
of the digestive diverticula, where they contribute to intracellular digestion of the 
selected particles reaching this organ. The remaining particles are excreted via the 
nephridia or via the gut and �nally reach the mantle cavity through the anus (Ruppert 
et al. 2004).

Although mostly a sedentary group in their adult life stages, some bivalve spe-
cies are able to move. Most bivalves rely on the foot, a muscular organ with senso-
rial abilities achieved through balance receptors, the statocysts (Williamson 1993). 
Larval pediveligers use the foot to sense and locate appropriate substrate for 
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settlement. In burrowing species such as clams, the foot is used by adults to burrow 
into the sediments. In mussels, the foot is linked to the production of byssus, an 
extremely resistant extracellular protein used to attach to the substrate (Carrington 
et al. 2015). Some species of bivalves (e.g., scallops) are also able to swim by rap-
idly opening and closing the two valves of the shell (Ruppert et al. 2004).

The nervous system of bivalve molluscs has a simple structure, organized in 
paired ganglia connected by nerve commissures within them and nerve cords along 
them in a “rope ladder structure.” The visceral cords innervate the internal organs 
and the pedal cords innervate the foot. The ganglia are divided in two groups: 
(1)  cerebral, pleural (absent in bivalves), and visceral above the esophagus; and 
(2) the pedal ganglia below. These two differentiated parts are connected by the col-
lar nerve, which surrounds the esophagus (Ruppert et al. 2004).

 Ecological and Economical Roles

Bivalve molluscs cover multiple important roles, from both ecological and socio-
economic points of view. Ecologically, bivalves have a key role in the environmen-
tal energy �ux, in the maintenance of water quality by �lter feeding and, for 
reef-building species such as oysters, in providing substrates and habitats for other 
species (Zu Ermgassen et al. 2012). Several bivalve species, and mussels in particu-
lar, have been used worldwide as sentinels for environmental pollution because of 
their sedentary and cosmopolitan nature in coastal waters, ease of sampling, ability 
as �lter feeders to concentrate pollutants, and commercial use as an important food 
staple (Campos et  al. 2012; Farrington et  al. 2016; Burgos-Aceves and Faggio 
2017). Bivalves can also concentrate pathogens and marine toxins, reaching harm-
ful levels for consumers (Visciano et al. 2016). Moreover, as exempli�ed in Fig. 5, 
bivalves constitute a major sector of world �shery and aquaculture production, with 
more than 16 million metric tons with a value of almost US$18 million produced in 
2015, representing 15% of total aquaculture production (FAO 2016).

The main purpose of the molluscan aquaculture industry is to produce food, 
although this industry also has other applications such as ecosystem restoration, 
extraction of pharmaceutical and industrial products, and ornamentation (aquaria, 
nacre, pearls). The most important cultured species of molluscs are bivalves such as 
oysters, mussels, clams, cockles, and scallops, hence the focus of this chapter on 
these species. The culture process generally starts with the “conditioning” of brood-
stock in hatcheries by feeding them nutrient-rich cultured microalgae. Spawning is 
initiated by manipulation of environmental conditions (i.e., temperature, food avail-
ability) or, in some cases, gametes are surgically harvested. Fertilization is achieved 
by mixing of sperm and eggs. Larvae are kept in the hatchery while being fed cul-
tured microalgae until they undergo metamorphosis and settle, and the small juve-
niles (also called spat) are moved out of the hatchery to a nursery and/or grow-out 
facility in open water to take advantage of the natural food supply. Grow-out culture 
technology varies depending on the species and location but can include the use of 
rope culture (mussels), cages/bags (oysters), and planting in natural beds (clams). 
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Feeding relies on natural phytoplankton production at the site, and most of the labor 
involves predator and biofouling control.

 Major Infectious Diseases Affecting Bivalve Molluscs

The commercial importance of many bivalve molluscs and efforts to manage dis-
eases that severely impact the aquaculture industry have driven much of the research 
in the immunology of these species. Bivalve aquaculture has been severely impacted 
in recent years by infectious diseases and toxins from harmful algal blooms causing 
morbidity and mortality, as well as closures of the industry due to the accumulation 
of toxins and pathogens affecting the health of human consumers (GLOBEFISH 
2017). The relevance of these diseases is highlighted by the fact that the World 
Organization for Animal Health (most commonly known as the OIE) lists six dis-
eases affecting bivalve molluscs among those with major relevance for animal 

Fig. 5 World aquaculture production from 1995 until the present day. (FAO 2016)
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protection (OIE 2017). While pathologies caused by viruses, bacteria, and parasites 
have been documented in nearly all major molluscan classes, in this chapter we will 
present an overview of the pathological agents that have so far been relevant causes 
of concern for marine aquaculture activities and most commonly used as models in 
the study of bivalve immunity, leaving a discussion of infectious agents targeting 
other molluscs to the section “An Overview of Infectious Agents with Which 
Molluscs Must Contend” in Chap. 12.

Many diseases affecting bivalves result from an accidental side effect derived 
from the transfer of aquaculture species, leading to naïve hosts (indigenous or intro-
duced) being exposed to new pathogens. Disease dynamics are heavily in�uenced 
by environmental factors, mainly temperature and salinity (Carella et  al. 2015; 
Lafferty and Hofmann 2016; Stentiford et al. 2017), which are remarkably in�u-
enced by human activities, as thoroughly discussed in the section “Challenges for 
Molluscs in the Anthropocene Epoch” in Chap. 12. The study of bivalve immunol-
ogy has bene�ted from many decades of research on host–pathogen interactions, the 
identi�cation of species displaying natural resistance to diseases, the development 
of disease-resistant strains through selective breeding, and the recent application of 
-omic tools to bivalve research (Allam and Raftos 2015; Gómez-Chiarri et al. 2015). 
Most of the research has been focused on pathogens that can be cultured (Fernández 
Robledo et al. 2014).

 Major Viral Diseases of Marine Bivalves

Although the characterization of viral diseases in bivalves has been hampered 
by the lack of cell lines from marine molluscs, recent advances in sequencing 
and the development of challenge models and disease-resistant strains have 
resulted in a better understanding of viral pathogenesis and immunity in sev-
eral commercially important marine molluscs (Arzul et  al. 2017). The best-
characterized viral disease of bivalves is caused by oyster herpesvirus  1 
(OsHV-1) and its variants (OsHV-1 Var and several microvariants, μVar). 
Massive mortalities of bivalve larvae and/or juveniles due to OsHV-1 infection 
have seriously impacted the oyster industry in Europe, but also in Mexico, the 
USA, Australia, New Zealand, China, Japan, and Korea. These infections are 
recurrent in Pacific oysters (Magallana gigas), but other species of oysters, 
clams, mussels, and scallops are affected as well (Arzul et al. 2017). As shown 
for other diseases, some strains and species of bivalves appear to be resistant to 
or tolerant of the disease, such as the Sydney rock oyster, the eastern oyster, 
and mussels (Masood et al. 2016). Susceptibility to the disease also varies with 
age, size, and genetics within a species, and several selectively bred lines of 
Pacific oysters with increased resistance have been developed (Dégremont 
et al. 2015). In contrast to herpesviruses infecting vertebrates, both inter- and 
intraspecies horizontal transmission of OsHV-1 have been shown, with more 
tolerant individuals or species acting as disease carriers and reservoirs (Arzul 
et al. 2017).
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Morphological and genomic characterization has led to the classi�cation of this 
large enveloped virus as a member of the Malacoherpesviridae (Mushegian et al. 
2018). The function of most of the 124 ORFs found in the OsHV-1 viral genome is 
unknown, mostly because of lack of homology with sequences with known function 
(He et al. 2015; Arzul et al. 2017). Infection of oysters with OsHV-1 causes reduced 
feeding and swimming in larvae. High levels of viral replication are observed 
mainly in connective tissues, leading to changes in tissue and cellular architecture, 
including dilation of the digestive tubules, nuclear chromatin margination and pyc-
nosis, and damage to the cytoskeleton and organelles. The disease is also character-
ized by massive in�ltration of hemocytes. High levels of mortality occur within 48 h 
postinfection in susceptible animals (He et al. 2015; Young et al. 2017).

Exposure of oysters to the virus through experimental challenges indicates that 
the viral particles infect the host through the digestive gland and/or other mucosal 
surfaces, probably exploiting hemocytes to reach target tissues (Segarra et al. 2016; 
Morga et al. 2017). The virus is able to rapidly (within 1 h) infect and initiate repli-
cation in hemocytes. The formation of viral particles has not been observed in 
hemocytes, however, suggesting that these cells impede completion of the viral 
cycle, as observed in vertebrate macrophages infected with other herpesviruses 
(Morga et al. 2017). Viral infection leads to activation of the integrin pathway in the 
host cells, followed by activation of the actin pathway, indicating that the virus 
exploits these pathways to enter the cell and eventually deliver the viral genome into 
the nucleosome. Proteomic and metabolomic studies in challenged oysters show 
that OsHV-1 causes substantial alterations in central carbon metabolism and gly-
colysis (Warburg effect) in the host, as well as alterations in lipid metabolism and a 
characteristic fatty acid signature indicative of lipolysis. These metabolic alterations 
increase the availability of substrates for virion synthesis and assembly. They can 
also lead to increased in�ammation and pathology through the activation of immune- 
responsive gene 1 protein/cis-aconitic acid decarboxylase (IRG1/CAD), a protein 
linking cellular metabolism with immunity, activation of the respiratory burst, 
increased permeabilization of the mitochondrial membrane, and reduced ATP pro-
duction (Corporeau et al. 2014; Young et al. 2017).

 Major Bacterial Diseases of Marine Bivalves

With a few exceptions (detailed below), mass mortalities caused by bacterial patho-
gens in bivalves are observed in larvae and, less often, in juveniles in hatcheries and 
nurseries (Travers et al. 2015). Experimental challenges with bacterial pathogens, 
however, are commonly used to study immune responses in bivalves because of the 
ability to perform culturing and ease of isolation and characterization (Gómez- 
Chiarri et al. 2015). A wide variety of Vibrio spp., including several belonging to the 
V. splendidus, V. harveyi, and V. tubiashii/coralliilyticus clades, have been isolated 
from outbreaks in bivalve hatcheries. In general, early signs of infection of bivalve 
larvae by pathogenic vibrios include decreased feeding and damage to the velum, 
followed by widespread necrosis of tissues and rapid mortality (Travers et al. 2015). 
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Strains of V.  aestuarianus, V.  splendidus, V.  crassostreae, and others are often 
detected during summer mortality events in juvenile and adult Paci�c oysters, also 
associated with infection with OsHV-1. Mass mortalities are, in general, seen dur-
ing the spawning season and other conditions of stress (De Decker et al. 2011). The 
genomes of many of these pathogenic vibrios have been sequenced, facilitating the 
identi�cation of mechanisms of virulence (Travers et al. 2015; Gómez-Chiarri et al. 
2015). Examples of virulence factors involved in vibriosis include a variety of 
metalloproteases, hydrolases, cytotoxins, siderophores, the type III secretion sys-
tem, and an OmpU from V. tasmaniensis LGP32, which is involved in internaliza-
tion of the bacteria into M.  gigas hemocytes (Travers et  al. 2015; Le Roux 
et al. 2016).

Two bacterial pathogens of bivalves—Aliiroseovarius crassostreae and Vibrio 

tapetis—are notable for their ability to colonize the periostracal lamina of the inner 
side of bivalve shells. These pathogens cause Roseovarius Oyster Disease (ROD, 
also called Juvenile Oyster Disease) in the eastern oyster Crassostrea virginica and 
Brown Ring Disease in Ruditapes spp. clams, respectively. Susceptible bivalves 
respond to the presence of the pathogen in the inner side of the shell and the pallial 
cavity by producing conchiolin mixed with melanin and other quinones with anti-
microbial action, resulting in pathognomonic brown deposits that surround the edge 
of the mantle (Travers et al. 2015). Little is known about mechanisms of virulence 
in ROD, but it is likely that formations of polar �mbriae and bio�lm on the shell of 
oysters by A.  crassostreae are involved in the disease (Boardman et  al. 2008). 
Virulence factors identi�ed in the genome of A. crassostreae include a hemolysin/
cytotoxin and a putative type IVA secretion system (T4ASS) (Kessner et al. 2016). 
The metabolic demand of the chronic infections derived from an unsuccessful 
immune response in susceptible animals may contribute to mortality (Paillard et al. 
2014; McDowell et al. 2014).

A few selected bacterial pathogens have been associated with sporadic episodes 
of mortality in adult bivalves, most notably Nocardia crassostreae and several intra-
cellular Rickettsia-like organisms (RLOs). Little is known, however, about mecha-
nisms of virulence and host immunity in these diseases (Travers et al. 2015; Zannella 
et al. 2017).

 Major Parasitic Diseases of Marine Bivalves

 Haplosporidian Parasites
Protistan parasites constitute the largest cause of adult bivalve morbidity and mor-
tality. Among the most devastating groups of protozoan parasites of bivalve mol-
luscs are several parasites belonging to the phylum Haplosporidia (Arzul and 
Carnegie 2015). In particular, the haplosporidians Bonamia ostreae, B. exitiosa, and 
Haplosporidium nelsoni have been well known for decades for causing signi�cant 
economic and ecological losses, mainly in Europe and the USA. The growth of the 
bivalve aquaculture industry has led to the recent identi�cation of many other hap-
losporidian parasites affecting a variety of bivalves. Most of the outbreaks caused 
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by the best-known representatives of this phylum, B. ostreae and H. nelsoni, have 
been observed in adult oysters. While species from the genus Bonamia are only 
known to affect oysters, have a direct mode of transmission, and are mostly intracel-
lular, other haplosporidian taxa have representatives affecting a wide variety of 
bivalve hosts, are transmitted through intermediate hosts, and are typically extracel-
lular. Many aspects of the life cycle of these parasites are unknown, as they cannot 
be maintained in culture. However, it is presumed that infective stages of H. nelsoni 
enter the host through the epithelial lining of the gill, developing into multinucle-
ated plasmodia, which are seen in all tissues in heavily infected oysters. Depending 
on the haplosporidian species, sporulation occurs in the epithelium of the digestive 
diverticula or in connective tissues of the host, leading to the development of sporo-
cysts, which are thought to eventually burst upon death of the host, releasing spores 
into the environment. Sporulation of H. nelsoni has rarely been observed in C. virgi-

nica, indicating that this oyster may be an atypical host. Oysters that have survived 
outbreaks of H. nelsoni and B. ostreae show increased resistance to these diseases, 
a fact that has been exploited in the development of selectively bred disease- resistant 
strains (Arzul and Carnegie 2015; Morga et al. 2017).

 Cercozoan Parasites
Several Marteilia spp. (Cercozoa, Paramyxida) have been responsible for �at and 
Sydney rock oyster epizootics in Europe and Australia. These parasites affect a 
diversity of molluscan hosts, including oysters, clams, and mussels, and disease 
pathogenesis varies depending on the Marteilia spp. and the host. Clinical signs of 
the disease may include nodules (a gross manifestation of an encapsulation response) 
and, in many of the species, necrotic damage to the digestive gland. As other 
Paramyxean parasites, Marteilia spp. show a characteristic cell-within-cell develop-
ment by budding. Therefore, most aspects of their complex life cycle, pathogenesis, 
mechanisms of virulence, and modes of transmission remain a mystery, since efforts 
to culture these parasites or transmit the disease using cohabitation challenges have 
been unsuccessful (Carrasco et al. 2015).

 Perkinsozoan Parasites
Perkinsosis is caused by a variety of species belonging to the genus Perkinsus (phy-
lum Perkinsozoa, superphylum Alveolata). The �rst Perkinsus spp. to be character-
ized, Perkinsus marinus, was identi�ed in the 1940s as the cause of mass mortalities 
of eastern oysters in the Gulf of Mexico. As is the case for haplosporidian parasites, 
many other species have been described with the growth of the bivalve aquaculture 
industry, including P. olseni, P. chesapeaki, P. mediterraneus, P. beihaiensis, P. hon-

shuensis, and P. qugwadi. While the geographic range of P. marinus seems to be 
limited mainly to that of C. virginica in North America, other Perkinsus spp., such 
as P.  olseni, have a wider geographic and host range. Therefore, Perkinsus spp. 
affect oysters, clams, scallops, cockles, and mussel species in Australia, New 
Zealand, Asia, America, and Europe (Reece et  al. 2017). These parasites have a 
direct life cycle with four described life stages: trophozoites, hypnospores (or pre-
zoosporangia), zoosporangia, and bi�agellated spores (Soudant et  al. 2013). The 
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disease is transmitted horizontally, infecting the host through the epithelia of the 
digestive tract and mantle after the parasites are brought into the pallial cavity and 
ingested through feeding. Although Perkinsus spp. can cause relatively rapid mor-
tality with few clinical signs in the most susceptible individuals within a population, 
it is most frequently manifested as a chronic disease in adult bivalves. Signs of 
disease are characterized by severe hemocytic in�ltration of tissues, a decrease in 
gametogenesis and the condition index and, in some individuals, death by occlusion 
of vascular sinuses, tissue necrosis, and/or emaciation. In some host species, such as 
Ruditapes spp. clams infected by P. olseni, the chronic response is characterized by 
granuloma-like formations, which can be visibly detected as nodules at the base of 
gills. Parasites are transmitted to other hosts after being released to the water through 
diapedesis, in feces, or at the death of the host (Soudant et al. 2013; Ruano et al. 
2015). Clonal cultures of most Perkinsus spp.  are available, allowing for the char-
acterization of putative virulence factors through genetic, genomic, and proteomic 
studies (Gómez-Chiarri et  al. 2015; Hasanuzzaman et  al. 2016; Fernández-Boo 
et al. 2016). Some interesting examples of mechanisms of virulence potentially con-
tributing to the ability of P. marinus to survive within the hemocytes of the eastern 
oyster (Alavi et  al. 2009) include antioxidant enzymes, such as superoxide dis-
mutases (Schott and Vasta 2003; Schott et al. 2003; Asojo et al. 2006; Fernández- 
Robledo et al. 2008) and ascorbate-dependent peroxidases (Schott et al. 2003), and 
a natural resistance–associated macrophage protein (NRAMP) (Lin et  al. 2011). 
Exposure of P. marinus to oyster tissue homogenates or pallial �uid in vitro modu-
lates the production of serine proteases and the expression of genes coding for anti-
apoptotic proteins, heat shock proteins, and proteinase inhibitors (Soudant et  al. 
2013; Pales Espinosa et al. 2014). Another interesting feature of Perkinsus spp.  may 
be the presence of a relic plastid with no photosynthetic capabilities (Fernández 
Robledo et al. 2011) and the ability to secrete several fatty acids, including arachi-
donic acid (Soudant et al. 2013). Differences in resistance to or tolerance of infec-
tion by Perkinsus spp. have been documented within and between bivalve species, 
and selectively bred lines with moderate resistance to or tolerance of P. marinus are 
available (Proestou et al. 2016).

 Quahog Parasite Unknown
The protist Quahog Parasite Unknown (Labyrinthulomycetes, Stramenopiles), bet-
ter known as QPX, causes an opportunistic disease in the quahog Mercenaria mer-

cenaria in the northeast and mid-Atlantic regions of the USA (Burge et al. 2013). 
The disease caused by QPX is characterized by the presence of areas of massive 
focal in�ammation, visibly manifested as nodules commonly observed at the edge 
of the mantle or the base of the siphon. Differences in susceptibility to QPX infec-
tion have been observed between clam populations from different geographic loca-
tions (with clams originating south of Virginia being more susceptible than northern 
clams) and lines of clams derived from survivors of disease outbreaks. Resistance is 
probably due to a combination of factors, including adaptation to local conditions, 
as well as selection for molecules involved in more effective immune responses 
against the parasite (Wang et al. 2016b). QPX is a saprophyte that secretes a thick 
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mucus layer while in tissues of the clam that appears to protect the parasite from 
the immune response of the host. Putative virulence factors include a variety of 
hydrolytic enzymes and proteases, antioxidants, polysaccharide production, and 
factors involved in recognition, such as lectins. The expression of many of these 
putative virulence factors—in particular, genes that may be involved in the forma-
tion of the protective mucus layer—are signi�cantly regulated by temperature 
(Rubin et al. 2017).

 Metazoan Parasites
Some metazoan parasites have been documented in marine bivalves, including the 
copepod Mytilicola intestinalis (a parasite of mussels) and the trematode 
Schistosoma mansoni (a parasite of humans that also infects snails). Trematode 
infections are common in molluscs, which act as intermediate hosts. This complex 
host–parasite interplay is modulated by pattern recognition and effector molecules, 
as thoroughly reviewed by other authors (Zhang and Loker 2004; Adema et  al. 
2010; Pila et al. 2017) and discussed in detail in the section “Disease-Transmitting 
Snails” in Chap. 12.

 A General Overview of Bivalve Immunity

 Feeding: An Aspect Not to Be Overlooked

Invertebrates, including molluscs, lack the acquired response in a narrow sense 
(Criscitiello and de Figueiredo 2013), but they possess a potent and ef�cient cellular 
and humoral innate immune system, physical barriers such as the shell and the 
mucus, and behavioral avoidance. This innate response involves, as its major play-
ers, circulating hemocytes and a broad range of diverse molecular effectors. A gen-
eral overview of immune defenses in bivalves is depicted in Fig. 6. One of the �rst 
lines of defense of bivalves against pathogens derives from their ability to sense the 
environment and sort particles during feeding (Ben-Horin et al. 2015). As described 
in the section “Anatomy and Physiology of Bivalves”, bivalves are �lter feeders, 
and the surfaces of the mantle and the gills are exposed to large volumes of water 
containing microbes and plankton. Bivalves are able to distinguish non-nutritious or 
potentially harmful particles on the basis of size, physical, and chemical cues, and 
reject (expel) these particles using mucociliary mechanisms. Bivalves are also able 
to shut down feeding and keep the valves tightly closed under unfavorable environ-
mental conditions (e.g., low oxygen or blooms of an undesirable phytoplankton 
species). Although the speci�c roles of sensing and behavioral responses in disease 
resistance and immunity have not been well studied, some recent evidence indicates 
that these may be an interesting avenue for further study. For example, it is thought 
that oysters accumulate relatively less domoic acid (a toxin produced by the harmful 
algae Pseudo-nitzschia spp.) than mussels, in part because oysters ingest fewer algal 
cells (Mafra et al. 2010). There is also evidence that feeding behavior is responsible 
for increased resistance to the parasite P. marinus observed in some selectively bred 
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families of eastern oysters, with oysters from resistant families removing (�ltering) 
fewer algal cells from the water when mixed with P. marinus than susceptible oysters 
(Ben-Horin and Proestou personal communication).

 Mucosal Immunity: An Important Yet Understudied Topic

Mucosal immunity constitutes the next barrier to infection on those tissue surfaces 
in contact with the external environment, while maintaining tolerance of nonharm-
ful commensal microbes and innocuous substances. Mucosal immunity represents 
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(Troost 2010). Left: Lateral view of the ventral side of an oyster, showing the pallial (P) and extra-
pallial (EP) cavities. Right: Micrographs illustrating examples of cellular responses in different 
immune compartments. (a–c) Examples of mucosal immune responses. (d) Example of a systemic 
immune response (see below for more details). When the two shell valves (SV) characteristic of 
bivalves open to allow for feeding, water is pumped through the gills (G) and particles are selected 
to be either rejected or brought into the gut (central panel). Cells in the mucosal epithelium of the 
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the edge of the shell valve from the environment (left panel) and producing conchiolin (Co, in the 
drawing on the right and the arrowhead in (b). Hemocytes (H) can migrate into the pallial and 
extrapallial cavities (a and b), the gut  (c), and the blood sinuses (d) to recognize, capture, and 
digest particles and pathogens. (a) Immuno�uorescence image of a section of oyster gill (G) tissue, 
showing hemocytes labeled in green  (H). Shown in blue are cell nuclei stained with Hoestch. 
(b) H&E-stained sections of a challenged oyster showing degeneration and erosion of the mantle 
associated with hemocytic in�ltration (arrows) and the presence of conchiolin (arrowheads) (scale 
bar = 100 μm) (Gomez-Leon et al. 2008). (c) Immuno�uorescence image of a section of oyster gut 
showing the digestive epithelium  (DE), with hemocytes labeled in green  (H). The presence of 
mucus (M) and algal food (F) can be observed in the gut lumen (GL). Shown in blue are cell nuclei 
stained with Hoestch. (d) Big-defensin labeling in hemocytes (arrow) at the edge of a blood vessel 
in Paci�c oysters challenged with V. anguillarum (Rosa et al. 2011)
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an important, but understudied, �rst line of immune defense, extending the defensive 
role of mucus beyond that of a simple physical barrier (Allam and Pales Espinosa 
2016) in all molluscs, as detailed in the section “Molluscan Immunity Begins at the 
Mucosal Surface, an Immunologically Active Site That Remains Understudied” in 
Chap. 12. This aspect seems to be of primary importance in bivalves, as their life is 
tightly linked to aquatic environments. Indeed, bivalves can overcome an experi-
mental pathogen challenge by bath exposure but cannot overcome experimental 
challenge with smaller amounts of the same pathogen if exposed by injection. 
Pathogens able to bypass these initial barriers to infection (either by surviving inside 
phagocytic cells or by directly migrating through epithelial junctions) then trigger a 
systemic immune response. In general, for both mucosal and systemic immunity, 
the recognition of nonself (in the form of microbe-associated molecular patterns 
(MAMPs)) by lectins and other pattern recognition receptors (PRRs) and opsonins 
in hemolymph (see section “Recognition, Agglutination, and Opsonization”), and 
by sentinel cells (most probably hemocytes), present in the tissues, triggers signal-
ing transduction cascades and the release of cytokines (see section “Signaling and 
Regulatory Pathways”), leading to humoral immune responses (see section 
“Humoral Immune Effectors”) and cellular immune responses (see section “Cellular 
Immune Responses”) that vary according to the nature and location of the immune 
stimuli. A �ne regulation of the immune response is achieved through the neuroen-
docrine immunomodulation (NEI) regulatory network (see section “Connections 
with the Neuroendocrine System”), a cross talk between the nervous, endocrine, 
and immune systems that maintains homeostasis and tunes innate immune response 
in all animals.

In particular, mucosal immune responses include (a) the production of humoral 
defense factors secreted into the mucus covering the epithelium of tissues in either 
the pallial or the extrapallial space; (b) chemotaxis and the transepithelial migration 
of hemocytes into the pallial and extrapallial spaces, followed by phagocytosis and 
intracellular killing; (c)  phagocytosis and intracellular digestion by cells in the 
digestive epithelium; and, if needed, (d) an encapsulation response in the extrapal-
lial cavity characterized by the secretion of conchiolin and antimicrobial products 
and activation of the prophenoloxidase cascade (see section “The Phenoloxidase 
Cascade”) (Allam and Raftos 2015; Allam and Pales Espinosa 2016; Zannella et al. 
2017). Systemic immune defenses include (a) recognition, opsonization, phagocy-
tosis, and intracellular killing by circulating hemocytes and other, yet to be identi-
�ed, phagocytic cells within tissues; (b)  killing in plasma through secretion of 
humoral effectors and activation of an ancient complement system and the pheno-
loxidase system; and, if needed, (c)  an encapsulation response that leads to 
granuloma- like formations, grossly visible as nodules in extreme cases.

 Hemocytes: Key Cellular Players in Bivalve Immune Response

Hemocytes are a key component of the bivalve immune system. These cells are 
present in all cavities of bivalves, circulating in the hemolymph (which bathes all 
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tissues) and migrating into the pallial and extrapallial spaces. Different types of 
hemocytes have been described in molluscs on the basis of morphological charac-
teristics (see section “A Short Journey in the ‘Immune System’ of Cephalopods” for 
a brief comparative overview between bivalve and cephalopod hemocytes and the 
section “Hemocytes Play a Central Role in Molluscan Immune Responses: Some 
Basics Regarding Their Morphology and Origins” in Chap. 12 for a broader discus-
sion), and their roles in both physiological processes (e.g., digestion and shell for-
mation) and immune functions (e.g., phagocytosis, synthesis of immune effectors, 
and modulation of immune responses) are well known (Cheng 1984; Ordás et al. 
2000; Goedken and De Guise 2004; Costa et al. 2009b; Wang et al. 2017c; Ivanina 
et al. 2017).

The lack of speci�c cell markers, however, has so far prevented detailed charac-
terization of the functionality and mechanism of action of speci�c cell populations; 
thus, recent efforts dedicated to the development of these markers are particularly 
exciting (Donaghy et al. 2009; Sekine et al. 2016; Allam and Pales Espinosa 2016). 
Moreover, the location of the hematopoietic organ and the process of hematopoiesis 
and maturation into distinct hemocyte populations are still controversial topics (Pila 
et  al. 2016; Dyachuk 2016). While the hematopoietic organ in gastropods is the 
amoebocyte-producing organ (Jeong et  al. 1983) and that in cephalopods is the 
white gland (Cowden and Curtis 1973), a variety of tissues in different species and 
developmental stages have been proposed as hematopoietic organs in bivalves. 
These include an irregularly folded structure in the gills (Jemaà et al. 2014) and 
unspeci�ed locations within the mantle and gills (Song et al. 2016) of adult oysters, 
the mantle edge of mussel larvae (Balseiro et al. 2013), the connective tissues and 
gill epithelium of recently settled larvae from the �at oyster Ostrea edulis (Xue and 
Renault 2001), and a ring structure around the dorsal side of the embryo in oyster 
trochophore larvae (Song et al. 2016).

 Expansion and Molecular Diversification: The Bivalve Immune 
System Is Not as “Simple” as We Thought

Exploration of molluscan genomes has revealed massive expansion and functional 
divergence of gene families involved in immune recognition and opsonization 
(detailed in section “Recognition, Agglutination, and Opsonization”), adhesion 
(syndecan, protocadherin), acute phase responses (hsp70), signal transduction (see 
section “Signaling and Regulatory Pathways”), cytokine production (see section 
“Production of Cytokines”), apoptosis (see section “Apoptosis and Autophagy”), or 
oxidation and antioxidation (cytochrome p450, superoxide dismutase) (Zhang et al. 
2012a; Simakov et al. 2013; Albertin et al. 2015; Murgarella et al. 2016; Sun et al. 
2017; da Silva et al. 2017; Mun et al. 2017; Du et al. 2017). Many of these immune 
gene family expansions are lineage (bivalve) speci�c (Zhang et al. 2015; McDowell 
et  al. 2016). The mechanisms (i.e., gene duplications, rearrangements, polymor-
phism, etc.) and functional relevance of these gene expansions and divergence are 
still being studied, but there are indications that gene diversity may be responsible 

Immunity in Molluscs: Recognition and E�ector Mechanisms, with a Focus on Bivalvia

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

https://doi.org/10.1007/978-3-319-76768-0_12
https://doi.org/10.1007/978-3-319-76768-0_12
https://doi.org/10.1007/978-3-319-76768-0_12


for a certain level of species speci�city in bivalve immune responses (see Chap. 12, 
section “Expansion and Diversi�cation of Innate Immune Gene Families” for a 
comparative overview of a few speci�c cases).

 Evidence of “Immunological Memory” in Bivalves

The plasticity of bivalve immune responses is also evidenced by indications that 
the immune system can be primed, leading to short-term memory. For example, 
scallops and oysters showed enhanced pathogen-speci�c phagocytosis upon a sec-
ondary challenge and upregulation of expression of genes involved in phagocytosis 
and hematopoiesis (Zhang et  al. 2014d; Wang et  al. 2015b; Green et  al. 2015; 
Pinaud et al. 2016; Wang et al. 2017a). Recent experiments have further indicated 
that experimentally infected juvenile oysters can mount a long-lasting antiviral 
immune memory, persisting for at least 5 months, which protects them from sub-
sequent viral infections (Lafont et  al. 2017). Furthermore, transgenerational 
immune priming has been demonstrated in bivalves (Green et al. 2016). The spe-
ci�c mechanisms involved in these two types of priming are still unclear, but the 
switch from cellular to humoral response and epigenetic regulation are believed to 
play crucial roles. An in-depth discussion of the relevance of this poorly under-
stood phenomenon in molluscs is provided in the section “Immune Priming” in 
Chap. 12. The role of maternal transfer has been also studied as a part of the innate 
immune response in molluscan larvae, making transgenerational immune priming 
possible. Bivalve oocytes possess signi�cant antibacterial, lysozyme, and agglutinat-
ing activities against pathogens, and several immune factors have been identi�ed in 
embryos (Wang et al. 2015b).

 How Do Environmental Factors Affect the Bivalve Immune 
Response?

Bivalves are poikilotherm species living in highly diverse and variable environ-
ments. Consequently, immune responses are heavily affected by environmental con-
ditions, such as temperature, salinity, dissolved oxygen, pH, and pollution. 
Therefore, an extensive body of knowledge has been built about the potential effect 
of environmental stress and pollution on immune parameters in these organisms and 
other molluscan groups—in particular, in connection with human activities, as dis-
cussed in detail in the section “Challenges for Molluscs in the Anthropocene Epoch” 
in Chap. 12. For example, exposure of bivalves to environmental toxins of natural 
origin, like those derived from harmful algal blooms or toxic cyanobacteria, has 
been shown to affect the phagocytic responses of bivalves, generally leading to 
immunosuppression (Hégaret et al. 2011; Soudant et al. 2013; Queiroga et al. 2017). 
Exposure of oyster hemocytes to pollutants such as TBT in vitro and in vivo reduces 
their production of ROS and phagocytic activity (Soudant et al. 2013), and exposure 
of bivalve hemocytes in  vitro to nanomaterials leads, in general, to decreased 
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phagocytic activity, increased antioxidant levels, and increased apoptosis, indicating 
immunotoxicity (Rocha et  al. 2015). The effects of environmental stressors on 
bivalve immunity, however, depend on the evolutionary history of the bivalve species 
and the history of exposure to different environmental conditions between popula-
tions within a species.

 Recognition, Agglutination, and Opsonization

 The Role of Lectins in Immune Recognition

A critical step of innate immune responses against an infectious challenge is the 
immediate recognition of the “nonself” carbohydrate moieties on the surface of 
potential pathogens and parasites, such as viral envelope glycoproteins, bacterial 
lipopolysaccharides and exopolysaccharides, and various surface glycans on eukary-
otic parasites (Boehm 2012). These surface structures encode vast information that is 
“decoded” by the hosts’ carbohydrate-binding proteins (lectins) (Vasta and Ahmed 
2008) which, upon binding to the recognized ligand, can immobilize the infectious 
agents and activate downstream signaling pathways, leading to their uptake and 
intracellular killing by phagocytic cells. Furthermore, lectin-mediated activation of 
the complement system can also promote phagocytosis and killing of potential 
pathogens (Fujita et al. 2004; Vasta et al. 2007) (see section “Evidence of an Ancient 
Complement System in Bivalves?”). Thus, lectins are critical components of innate 
immune mechanisms as both recognition and effector factors—functions that are 
facilitated by the oligomerization of lectin peptide subunits, leading to increased 
avidity for the multivalent glycan ligands typically found on the microbial surface 
(Taylor and Drickamer 2003; Vasta et al. 2007). On the basis of the identi�cation of 
unique amino acid sequence motifs and the structural fold of the carbohydrate recog-
nition domain (CRD), and the requirement of divalent cations or a reducing environ-
ment for ligand binding, lectins have been classi�ed into several major families. 
These include C-type lectins (CTLs), FTLs, RTLs, HTLs, PTLs, XTLs, I-type lec-
tins, pentraxins, galectins (formerly S-type lectins), �colins, and others (Vasta et al. 
2007). Members of several lectin families such as CTLs, RTLs, FTLs, peptidogly-
can-binding proteins, �colins, pentraxins, and galectins have been implicated in 
immune surveillance and homeostasis (Vasta and Ahmed 2008) (Fig. 7).

Unlike immunoglobulins (Igs) and Ig superfamily members such as DSCAM 
(Yue et al. 2016) and FREPs (Zhang et al. 2004), which generate recognition diver-
sity by genetic mechanisms, lectins are typically described as “hard wired” in the 
germline (Vasta et al. 2007). Therefore, given the great diversity of potential infec-
tious agents present in the aquatic or terrestrial environments that molluscs inhabit, 
how their innate immune systems are able to cope with these infectious challenges is 
an outstanding question that remains to be fully addressed (Harvell et  al. 1999). 
However, the complexity of the lectin repertoires in organisms that lack the typical 
Ig-mediated adaptive immunity, such as molluscs, strongly suggests that a wide vari-
ety of molecular topologies can be effectively recognized in surface carbohydrate 
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moieties common to diverse microbial pathogens, leading to activation of effector 
mechanisms that can kill and eliminate them for successful innate immune protec-
tion (Vasta et al. 2007, 2012a; Vasta and Ahmed 2008). A discussion of the best-
characterized lectin families identi�ed in molluscs follows below.

 C-Type Lectins
Together with the S-type lectins (currently known as galectins; see below) C-type 
lectins (CTLs) were the �rst two families to be rigorously de�ned by the presence 
of unique sequence motifs in their CRDs (Drickamer 1988). CTLs are characterized 
by the CTL-like domain (CTLD) of the unique structural fold and the requirement 
of Ca2+ for ligand binding. The CTLD can be structurally diversi�ed and associated 

AU12

Fig.  7 Typical structural fold of four of the most important lectin families with functions in 
immune recognition in bivalve molluscs. (a) C-type lectin with bound carbohydrate ligand (PDB 
accession ID: 2MSB). (b)  R-type lectin with bound 4-sulfated GalNAc (PDB accession ID: 
1DQ0). (c) F-type lectin with bound fucose (PDB accession ID: 1 K12). (d) Galectin with bound 
LacNAc (PDB accession ID: 1KJL)
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with a variety of lectin and nonlectin domains constituting “mosaic” or “chimeric” 
proteins endowed with multiple functional properties (Zelensky and Gready 2005; 
Pees et al. 2016). In mammals, this highly heterogeneous lectin family is currently 
subdivided into 17 groups based on their domain organization (Zelensky and Gready 
2005; Vasta and Ahmed 2008; Pees et al. 2016). CTLs participate not only in the 
initial step of pathogen recognition via the CRD but also in various antimicrobial 
effector functions, including pathogen recognition, opsonization, and activation of 
the complement cascade (Vasta et al. 2007). In invertebrate taxa, CTLs are also key 
factors in carbohydrate-mediated recognition of the infectious challenge, but also in 
effector roles such as immobilization, phagocytosis, clearance, and encapsulation of 
the infectious agent. Furthermore, they have also been implicated in nodule forma-
tion, in the activation of the prophenoloxidase/melanization cascade, and in other 
functions, including direct antimicrobial activity and regulation of antimicrobial 
peptide (AMP) expression (Vasta et al. 2007; Vasta and Ahmed 2008; Wang et al. 
2014b; Pees et al. 2016; Zhao et al. 2016b). Numerous studies have been conducted 
in various mollusc species, aimed at investigating the potential role of CTLs in 
immune defense, and their roles in recognition, agglutination/immobilization, and 
opsonization of bacterial pathogens have been �rmly established (Zheng et al. 2008; 
Zhu et al. 2008; Jing et al. 2011; Huang et al. 2013a; Zhang et al. 2014b; Mu et al. 
2014; Martins et al. 2014; Chovar-Vera et al. 2015; Huang et al. 2015b; Yang et al. 
2015). In general, the CTL repertoire in any single species appears to be highly 
diversi�ed and complex, and the temporospatial expression and localization of 
CTLs includes hemocytes, plasma, and pallial mucus, as well as organs and tissues 
relevant to immune responses such as the mantle, gills and gut. Additionally, infec-
tious challenge experiments have revealed that in most cases their expression is 
modulated by exposure to potential pathogens (Zhu et  al. 2008; Mu et  al. 2014; 
Martins et al. 2014; Chovar-Vera et al. 2015). The report that molluscs can express 
components of the complement system (see section “Evidence of an Ancient 
Complement System in Bivalves?”) (Li et al. 2015a; Wang et al. 2017b) has sug-
gested that CTLs may function not only as pathogen agglutinins and opsonins but 
also in activating the complement cascade with further antimicrobial activity.

 R-Type Lectins
The R-type lectins (RTLs) are lectins characterized by a CRD of unique structure, 
consisting of three lobes arranged around a threefold axis CRD (β-trefoil), in which 
each lobe may contain a carbohydrate-binding site (Cummings and Schnaar 2017). 
This structure is found in RTLs from higher plants as well as in hydrolases from 
prokaryotes, mammalian glycosyltransferases, and macrophage mannose receptors 
(Cummings and Schnaar 2017). RTLs with binding preference for α-D-galactose/
GalNAc moieties and a very similar amino acid sequence have been isolated from 
the mussels Crenomytilus grayanus (CGL) (Jakób et  al. 2015; Chernikov et  al. 
2017a, b), Mytilus galloprovincialis (Mytilectin-1) (Hasan et al. 2016; Terada et al. 
2016), Mytilus trossulus (MTL) (Chikalovets et al. 2016), and Mytilus californianus 
(García-Maldonado et al. 2017). The RTL known as MytiLec-1 displays the typical 
β-trefoil structure (Terada et al. 2016), whereas two additional isoforms (MytiLec-2 
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and -3) identi�ed in the same mussel species contain an additional pore-forming 
aerolysin-like domain (Hasan et al. 2016; Terada et al. 2016). The structure of CGL 
was resolved recently and shows a similar β-trefoil structure (Jakób et  al. 2015). 
RTLs from mussels can recognize and agglutinate both Gram-positive and Gram- 
negative bacteria in a carbohydrate-dependent manner, display bacteriostatic activity, 
and also show antifungal activity by binding to and inhibiting hyphal growth (Jakób 
et al. 2015; Hasan et al. 2016; Terada et al. 2016; Chernikov et al. 2017a, b). It is 
noteworthy that mytilectins and CGL also show immunomodulatory activity for 
mammalian macrophages, and proapoptotic/antitumoral activity by binding to glo-
botriose [Gb3; Galα(1,4)Galβ(1,4)Glcα1] on the cell surface glycolipids such as glo-
botriaosyl ceramide (Chernikov et al. 2017a, b)—properties that have revealed their 
promise as effective diagnostic and therapeutic agents and have already led to the 
computational design of an arti�cial lectin named Mitsuba-1 (Terada et al. 2017).

 F-Type Lectins
F-type lectins (FTLs) are the most recent lectin family to be identi�ed (Odom and 
Vasta 2006), and they are characterized by a fucose recognition domain (F-type 
lectin domain; FTLD) that displays a novel β-barrel jellyroll fold (“F-type” fold), 
and unique carbohydrate- and calcium-binding sequence motifs (Bianchet et  al. 
2002). FTLs may exhibit single, double, or greater multiples of the FTLD and are 
widely distributed in nature (Bianchet et al. 2002; Odom and Vasta 2006; Bianchet 
et al. 2010). Like the CTLs, FTLs may display FTLDs combined with other struc-
turally and functionally distinct domains, yielding lectin subunits of pleiotropic 
properties even within a single species (Bianchet et al. 2002; Odom and Vasta 2006; 
Bianchet et al. 2010; Vasta et al. 2012a). Although the F-type fold is distinctive for 
FTLs, it is not unique to these lectins, as other proteins with various functions also 
display the FTLD fold (Bianchet et al. 2002). Interestingly, although a phylogenetic 
analysis of FTLD sequences from viruses to mammals has revealed consistency 
with the taxonomy of extant species, the surprisingly discontinuous distribution of 
FTLDs within each taxonomic category suggests not only an extensive structural/
functional diversi�cation of FTLs along evolutionary lineages but also that they 
have been subject to frequent gene duplication, secondary loss, lateral transfer, and 
functional co-option (Bianchet et al. 2002; Bishnoi et al. 2015).

In addition, FTLs are unique in the extraordinary sequence variability (isoforms) 
that can be expressed in a single individual as a result of genetic mechanisms of 
diversi�cation in ligand recognition, characterized in detail in the so-called bindins, 
proteins involved in gamete recognition in the Paci�c oyster, M. gigas (Springer 
et al. 2008; Moy et al. 2008; Moy and Vacquier 2008). In addition to their roles in 
gamete recognition, oyster FTLs also mediate microbial recognition in innate 
immune responses. FTLs can display single or tandemly arrayed CRDs of distinct 
speci�city in a single subunit (Odom and Vasta 2006; Bianchet et al. 2010), and can 
potentially cross-link the recognized pathogens to the endogenous glycans on the 
surface of the host’s phagocytic cells (Odom and Vasta 2006). In this regard, the 
expression of CvFBL4 in C. virginica hemocytes is dramatically upregulated upon 
LPS challenge, suggesting that FTLs may function in pathogen recognition in the 
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oyster’s innate immune response (Saito and Vasta unpublished data). Moreover, 
PmF-lectin from the pearl oyster (Pinctada fucata martensii) is an FTL highly 
expressed in the hemocytes and gill that is signi�cantly upregulated by experimen-
tal challenge with Vibrio sp. (Wang et al. 2011a). The identi�cation of FTLs in both 
the shell matrix and mantle tissue proteins of the blunt-gaper clam, Mya truncata, 
has led to the proposal that during the shell biomineralization process, FTLs secreted 
by the mantle may carry out immune defense functions and are later incorporated 
into the shell matrix (Arivalagan et al. 2016). It is noteworthy that the highly diversi-
�ed FTL repertoire found in the common periwinkle (Littorina littorea), a gastro-
pod, has been rationalized as an immune defense system (Gorbushin and Borisova 
2015). However, in contrast to other expanded lectin and lectin-like gene families, 
this connection has not been hypothesized yet in bivalves.

 H-Type Lectins
H-type lectins (HTLs) are lectins initially identi�ed in gastropods such as the 
Roman snail Helix pomatia as abundant proteins in the albumin gland secretion that 
coats the fertilized oocytes before the eggs are laid underground (Uhlenbruck and 
Prokop 1966). This unique localization as perivitelline active factors, their presence 
in the snail’s hemolymph, and their strong binding to several streptococci strains 
and other potentially pathogenic bacteria led to the proposal that their role was to 
protect the snail eggs and adults from infection, as part of the innate immune defense 
(Uhlenbruck and Prokop 1966). Their shared speci�city for N-acetylgalactosamine 
(GalNAc) and the human blood group  A led to their use as typing reagents 
(Uhlenbruck and Prokop 1966). Recent structural studies revealed that HTLs are 
characterized by hexameric organization of peptide subunits that display a 
β-sandwich fold. Although other snail species from the genus Helix and the garden 
snail Cepaea hortensis also produce similar lectins (Sanchez et al. 2006), to date, no 
functional information has been collected yet about HTLs in bivalves, other than the 
fact that they do not represent an expanded gene family (Gerdol 2017).

 Galectins
Galectins are β-galactosyl-binding lectins that require a reducing environment for 
binding activity but, unlike CTLs and some FTLs, do not require Ca2+ (Vasta and 
Ahmed 2008; Vasta et al. 2012b). Although galectins are structurally conserved and 
taxonomically widely distributed, they display a remarkable functional diversity by 
participating in developmental processes, cell adhesion and motility, regulation of 
immune homeostasis, and recognition of glycans on the surfaces of viruses, bacte-
ria, and protozoan parasites (Vasta 2009). On the basis of their primary structure and 
subunit organization, mammalian galectins are classi�ed as “proto,” “chimera,” and 
“tandem-repeat” types (Vasta and Ahmed 2008; Vasta 2009; Vasta et  al. 2012b). 
Prototype galectins contain one CRD per subunit and are usually homodimers of 
noncovalently linked subunits. The chimera-type galectins have a single C-terminal 
CRD, like the prototype, and a non-CRD N-terminal domain that mediates the 
formation of trimers and pentamers. In contrast, the tandem-repeat galectins, in 
which two CRDs are joined by a linker peptide, are monomeric.
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Molluscan galectins are less diversi�ed that those in mammals but also show 
different domain organizations, carbohydrate speci�city for blood group oligosac-
charides, and upregulation of expression by infectious challenge, a feature that sup-
ports their proposed role in innate immune responses (Tasumi and Vasta 2007; Feng 
et al. 2013, 2015; Kurz et al. 2013; Vasta et al. 2015). In contrast to vertebrates, the 
identi�cation and characterization of galectins in aquatic molluscs has been rela-
tively recent, with most of the studies being aimed at the identi�cation of their 
transcripts or proteins in diverse tissues and cell types, including hemocytes, and the 
assessment of their expression upon environmental or infectious challenge (Yamaura 
et al. 2008; Yoshino et al. 2008; Song et al. 2010, 2011; Zhang et al. 2011a; Bao 
et al. 2013; Dheilly et al. 2015; Bai et al. 2016). In the eastern oyster, C. virginica, 
however, the galectins CvGal1 and CvGal2 have been characterized in their detailed 
molecular, structural, and functional aspects (Tasumi and Vasta 2007; Feng et al. 
2013, 2015; Kurz et al. 2013). As a result, unique features of the galectin repertoire 
of aquatic molluscs have become apparent, such as their domain organizations, as 
well as structural and functional aspects (Vasta et al. 2015). CvGal1 and CvGal2 
carry four canonical galectin CRDs (Tasumi and Vasta 2007; Feng et  al. 2013, 
2015), a domain organization that does not conform to any of the galectin types 
described in vertebrates (Vasta and Ahmed 2008; Vasta et al. 2012b). Since then, 
galectins have been identi�ed in an increasing number of aquatic mollusc species, 
including both bivalves and gastropods, and can be classi�ed, in the vast majority of 
cases, into the 2-CRD and 4-CRD types (Vasta et al. 2015). As revealed by a phylo-
genetic analysis, these galectin types are ancient, as they were already present in the 
most recent common ancestor of both bivalves and gastropods (Vasta et al. 2015). 
From the functional standpoint, CvGal1 can recognize microbial pathogens and 
parasites and promote their phagocytosis, but it can also selectively bind to phyto-
plankton components, suggesting its participation in uptake of microalgae (Tasumi 
and Vasta 2007). Furthermore, recent studies suggest that the protozoan parasite 
P. marinus has adapted to subvert the oyster’s innate immune/feeding recognition 
mechanisms to gain entry into the host cells by being preferentially recognized by 
CvGal1 and CvGal2 over algal food or bacterial pathogens (Tasumi and Vasta 2007; 
Feng et al. 2013, 2015; Kurz et al. 2013; Vasta et al. 2015).

 Fibrinogen-Related Domain–Containing Proteins

A class of proteins containing a C-terminal �brinogen-related domain (FReD), and 
similar to vertebrate �colins, has gained a signi�cant amount of attention in mol-
luscs. Because of their important role in the resistance of the snail B. glabrata to 
trematode infection, together with their somatic sequence diversi�cation (Adema 
et al. 1997; Adema 2015; Gordy et al. 2015), a subclass of FReD-containing pro-
teins (which also contain one or two immunoglobulin-like domains), named 
�brinogen- related proteins (FREPs), have been studied as one of the �rst examples 
in support of immune memory in invertebrates (Milutinović and Kurtz 2016). 
Unlike �brinogen chains, these lectin-like molecules are primarily involved in 
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immune recognition and are not linked to coagulation (Hanington and Zhang 2011). 
While these immune properties have been extensively documented in snails since 
the 1990s (as reported in detail in the section “Expansion and Diversi�cation of 
Innate Immune Gene Families” in Chap. 12), the �rst studies of FReD-containing 
proteins in bivalve molluscs are quite recent.

The �rst indications pointing toward an involvement of bivalve FReD-containing 
proteins in immune recognition came from the upregulation of AiFREP in the scal-
lop Argopecten irradians in response to V.  anguillarum but not to Micrococcus 

luteus infections. The recombinant protein could agglutinate Gram-negative and 
Gram-positive bacterial cells, con�rming AiFREP as a reasonable soluble PRR can-
didate (Zhang et al. 2009b). Years later, AiFREP-2 was functionally characterized in 
the same species, con�rming and to some extent even extending the marked recog-
nition properties of these two scallop proteins (Yang et  al. 2014). Very similar 
results were obtained in Magallana hongkongensis, where the recombinant protein 
ChFCN could selectively bind different bacterial species, agglutinate Escherichia 

coli cells, and enhance hemocyte phagocytosis in vitro (Xiang et al. 2014b). Puri�ed 
M. galloprovincialis transcripts encoding FReD-containing proteins were upregu-
lated in mussels by multiple challenges and could similarly improve the phagocytic 
rate of hemocytes (Romero et al. 2011). Indirect indications supporting the immune 
involvement of FReD-containing proteins have been also collected from transcip-
tomic studies in QPX-infected M. mercenaria (Wang et al. 2016b) and V. splendi-

dus–infected Mytilus edulis hemocytes (Tanguy et al. 2013).
Early sequence database mining approaches revealed that FReD-containing proteins 

are part of a large multigene family in Mytilus spp. (Gorbushin and Iakovleva 2011), and 
it is now well recognized that the genome of several bivalve species encodes more than 
100 such genes, which are, for the most part, expressed in the hemocytes, gills, and 
digestive gland (Zhang et al. 2015; Huang et al. 2015a; Gerdol and Venier 2015). Bivalve 
FReD-containing proteins are characterized by a simpler domain organization than snail 
FREPs, as they lack N-terminal immunoglobulin domains, which are thought to play a 
fundamental role in somatic mutation (Gerdol 2017). Comparative genomics analyses 
have further revealed that the Ig–FReD domain combination is exclusively found in 
heterobranch gastropods (Gorbushin et al. 2010). In most cases, bivalve proteins contain 
a single FReD associated with a coiled coil region, which probably allows oligomeriza-
tion (Skazina and Gorbushin 2016). In addition, while the process of somatic mutation 
in snail FREPs is supported by experimental evidence, no data have been provided yet 
to sustain a similar mechanism in bivalve FReD-containing proteins, which are however 
characterized by a relevant sequence diversity. This topic has been investigated in detail 
in M. gigas, where the occurrence of polymorphisms in �ve of these transcripts was 
originally attributed to allelic recombination or somatic diversi�cation (Zhang et  al. 
2012b). However, the large number of FReD genes in bivalves suggest that some of 
these variants might be the result of recent duplications or interindividual sequence 
variability, mirroring the evolutionary patterns observed for C1q domain–containing 
(C1qDC) proteins and other expanded PRR families (Huang et al. 2015a).

The remarkable immune properties of FReD-containing proteins, together with 
their remote sequence similarity with vertebrate �colins, suggest that these secreted 
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PRRs are somehow involved in the lectin pathway of the bivalve complement 
system (see section “Evidence of an Ancient Complement System in Bivalves?”) 
(Gerdol and Venier 2015; Wang et al. 2017b). However, de�nitive proof in support 
of this hypothesis remain to be collected, in particular for what concerns the iden-
ti�cation of mannose-binding protein-associated serine proteases (MASPs)—
essential mediators of the complement system, which have not been identi�ed yet 
in molluscs.

 C1q Domain–Containing Proteins

 Some Insights into the Massive Gene Family Expansion of C1q 
Domain–Containing Proteins
Although the outstanding binding potential of the C1q domain allows high func-
tional versatility in the recognition of different ligands, no metazoan taxa seem to 
have exploited these properties to the same extent as bivalve molluscs. The genomes 
of these animals encode several hundred secreted proteins containing this conserved 
domain at their C-terminal end, collectively known as C1q domain–containing 
(C1qDC) proteins. The immune properties of the C1q domain, whose structural fold 
is exempli�ed in Fig. 8, have been well documented from the study of the vertebrate 

Fig.  8 Left: Three-dimensional structure of the three chains of the human C1q globular head 
(PDB accession ID: 2WNU; C1qa, C1qb, and C1qc chains are colored in orange, red, and blue, 
respectively). Right: Prototypical organization of vertebrate C1qDC proteins: a single protomer, 
comprising a signal peptide  (SP), followed by a variable region  (V, which might be absent in 
bivalve molluscs), a collagen region (usually replaced by a coiled coil domain in bivalve molluscs), 
and the globular C-terminal C1q domain. Promomers can assemble into trimers  (b) and form 
higher-order bouquet-like structures (c). (Source: Thanasupawat et al. 2015)
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complement system, where it is the major structural unit in the three chains of the 
C1q complex. However, the �rst indications pointing toward a similar role in 
molluscs only surfaced in 2004, with the isolation of a sialic acid–binding lectin 
from the garden snail Cepaea hortensis (Gerlach et al. 2004).

In bivalves, C1qDC proteins were �rst tentatively linked to pathogen recogni-
tion because of their high sequence diversity, exempli�ed by the identi�cation of 
168 different transcripts in M. galloprovincialis which, for the most part, strikingly 
displayed hemocyte speci�city (Gestal et  al. 2010; Gerdol et  al. 2011), and the 
presence of over 300 genes in the Paci�c oyster genome (Gerdol et  al. 2015b). 
While most vertebrate C1qDC proteins, including those involved in the comple-
ment system, contain a central collagen region required for oligomerization 
(Fig. 8), about half of the oyster C1qDC proteins contain a coiled coil region, pos-
sibly exerting a function homologous to that of collagen. A relevant number of the 
other members of this gene family, however, lack oligomerization motifs and con-
tain only an N-terminal signal for secretion followed by a globular head C1q 
domain, identifying the sgC1q subfamily. Surprisingly, just a few gene products 
have shown an association with additional domains; among these, the most notable 
example is provided by proteins containing multiple consecutive C1q domains 
(Gerdol et al. 2015b).

Another interesting �nding was that such a massive expansion and diversi�ca-
tion event occurred in Pteriomorphia and Heterodonta but not in the two other 
major subclasses, Palaeoheterodonta and Protobranchia, which possess only a 
few C1qDC genes, like most other protostomes (including nonbivalve molluscs). 
This lineage- restricted expansion event might have had important biological 
implications in mussels, clams, oysters, and scallops, providing these marine 
organisms with an unparalleled array of recognition molecules to be potentially 
used in microbe- associated molecular pattern (MAMP) recognition (Gerdol et al. 
2015b). Another key piece in the puzzle of the evolution of bivalve C1qDC pro-
teins was provided by the genome of the Manila clam, Ruditapes philippinarum. 
Indeed, most of the sequences 1589 C1qDC genes found in this clam appear to 
be unrelated to those found in oyster, thereby suggesting that the astounding 
molecular diversity in the two species derives from independent evolution (Mun 
et al. 2017).

 Functional Studies Are Progressively Revealing the Immune 
Functions of C1q Domain–Containing Proteins
Genomic investigations are, however, insuf�cient in the absence of a functional 
characterization to link this expansion event to improved immune functions. 
Con�rmations, in this sense, have been provided by different experimental 
approaches, i.e., gene expression studies that have evidenced the upregulation of 
oyster C1qDC transcripts in response to Rickettsia-like organisms and revealed 
their implication in the response to Brown Ring Disease, P.  olseni, and QPX 
infections in clams (Xu et al. 2012; Leite et al. 2013; Allam et al. 2014; Wang 
et  al. 2016b). Experimental challenges have further demonstrated that many 
bivalve C1qDC genes are induced by infection with various Gram-positive and 
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Gram- negative bacteria, as well as by fungi (Kong et al. 2010; Gestal et al. 2010; 
Li et al. 2011a; Gerdol et al. 2011; Jiang et al. 2015), but also by direct stimulation 
with LPS, PGN, β-glucan, and polyI:C (Wang et al. 2012a, b, 2015a; Yang et al. 
2012), altogether reinforcing their role as PRRs. The indications collected from 
gene expression studies were later con�rmed by the binding properties of C1qDC 
recombinant proteins toward LPS, PGN, polyI:C, mannan, β-1,3-glucan, and 
yeast glucan (Wang et al. 2012a, 2015a; Jiang et al. 2015) as well as toward live 
bacteria (Wang et al. 2015a; Zhao et al. 2016a; Huang et al. 2016).

From a functional point of view, an oyster recombinant C1qDC protein was 
capable of signi�cantly inhibiting the growth of Gram-positive and Gram-negative 
bacteria (He et al. 2011), and others displayed strong agglutinating activity toward 
Gram-positive bacteria, Gram−negative bacteria, and fungi, with a certain degree of 
selectivity (Kong et al. 2010; Wang et al. 2012a). Some studies have tried to better 
elucidate the mode of action of bivalve C1qDC proteins and their connection with 
other molecular components of the immune system. For example, the bactericidal 
properties of mussel hemolymph appear to be mediated by a C1qDC serum opsonin 
that binds bacterial D-mannose, promoting the phagocytic action of hemocytes 
(Pezzati et al. 2015). Similarly, a protein isolated from the scallop Azumapecten far-

reri is capable of enhancing the phagocytosis of invading E. coli cells (Wang et al. 
2012b), and an oyster LPS-binding C1qDC protein could sensibly boost this activ-
ity toward E. coli and V. splendidus (Jiang et al. 2015). Furthermore, other recombi-
nant proteins are able to interact with heat-aggregated human IgGs and IgMs (Wang 
et al. 2015a), providing novel and stimulating insights into the possible involvement 
of these components in the activation of the prototypical complement system of 
bivalve molluscs (see section “Evidence of an Ancient Complement System in 
Bivalves?”).

Although bivalve C1qDC proteins were initially considered as hemocyte- speci�c 
products, it is now clear that they are broadly expressed in all main tissues, with a 
particular prevalence in the gills or in the digestive gland (Gerdol et al. 2015b), leav-
ing some open questions concerning their involvement in functions other than 
immune recognition. In fact, the extreme diversi�cation and binding properties of 
these proteins would allow, in line of principle, additional physiological functions, 
which are progressively starting to emerge.

 Evidence of an Ancient Complement System in Bivalves?

 A Brief Description of the Complement System
Despite the highly divergent evolutionary strategies adopted by metazoans to 
develop an ef�cient immune system in highly diverse life environments, complex 
molecular machinery of the utmost importance in pathogen recognition and clear-
ance is surprisingly conserved in nearly all animals. This protein complex, able to 
enhance recognition and removal of microbial cells by recruiting the main players 
of the vertebrate immune system (phagocytic cells and immunoglobulins), has been 
named the “complement” system.
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The complement system can be potentially activated by different biochemical 
pathways, which involve components of both innate and adaptive immunity, and has 
thereby been de�ned as a functional link between these two major branches of the 
immune system (Dunkelberger and Song 2009). In vertebrates, the different routes 
that can lead to complement activation involve either the binding of C1q to antigen- 
complexed M or G immunoglobulins (the classical pathway), the recognition of 
MAMPs by mannan-binding lectins (MBLs) and ficolins (the lectin pathway), 
or the direct recognition of MAMPs by C3b following spontaneous C3 hydrolysis 
(the alternative pathway) (Fig. 9). Overall, complement activation triggers, through 
a proteolytic cascade, the opsonization of invading microbes, their lysis by the 
action of the membrane attack complex (MAC), and the recruitment of phagocytic 
cells for their �nal elimination.

Fig. 9 Overview of the complement system in bivalves and comparison with vertebrates. The 
vertebrate molecular players are shown in black and the bivalve homologous components are indi-
cated in red, whenever needed. Components that are absent in bivalves (namely, the membrane 
attack complex and antigen-complexed immunoglobulins) are struck through. (Edited from 
Bohlson et al. (2014))
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 The Conserved “Core Components”: C2 and C3
With the exception of Ecdysozoa, the near universal conservation of two core molecu-
lar components of the complement system—C3 and C2/factor B—suggest that a pro-
totypical complement system was present in the common ancestor of all metazoans 
(Smith et al. 1999; Pinto et al. 2007). Accordingly, genes encoding these two highly 
conserved elements are also readily identi�able in most bivalve genomes and tran-
scriptomes (Moreira et al. 2012a; Zhang et al. 2014c; Gerdol and Venier 2015). Their 
�rst formal description was provided in the grooved carpet shell, Ruditapes decussa-

tus (Prado-Alvarez et al. 2009). The C3 component of the razor clam Sinonovacula 

constricta was strongly upregulated in hemocytes and digestive gland upon bacterial 
challenges. In addition, the serum of S. constricta was activated by LPS and bacteria, 
con�rming that the function of the bivalve protein was highly homologous to verte-
brates (Peng et al. 2016). Further con�rmation was recently provided by the use of 
polyclonal antibodies directed toward three distinct fragments of the Paci�c oyster C3 
protein, homologous to the α, β, and γ chains obtained in vertebrates from the proteo-
lytic cleavage of the C3 precursor. The observation of a single band recognizable in 
serum under non-reducing conditions, as opposed to the presence of three distinct 
bands of 110, 60, and 30 KDa under reducing conditions, pointed out that bivalve C3 
molecules are processed by serum proteases in a similar fashion to what happens in 
animals with a canonical complement system (Wang et al. 2017b).

The bivalve complement system might also involve thioester-containing proteins 
(TEPs), accessory complement proteins that share a high degree of similarity with 
C3/C4/C5 and promote opsonization of invading microbes and their elimination by 
phagocytosis in other invertebrates (Blandin et  al. 2008; Bou Aoun et  al. 2010). 
TEPs have been functionally characterized only in the scallop A. farreri, where they 
possess a highly variable central region produced by the alternative splicing of six 
mutually exclusive exons. This sequence variation appears to cover a key role in the 
speci�city of the immune response to be triggered, as the amount of the isoforms 
produced largely varies on the basis of the type of challenge and the sex of the speci-
mens (Zhang et al. 2009c). A very recent study went into the subject in depth, evi-
dencing that like C3, scallop CfTEP undergoes fragmentation due to the action of 
endogenous serum proteases (Xue et al. 2017b).

 Present Uncertainties and Future Directions
The absence of immunoglobulins rules out the existence of the classical pathway 
of the complement system in animals lacking an adaptive immune system, which 
include bivalve molluscs. At the same time, the remote homology between vertebrate 
C1q, �colins, and MBLs, and similar sequences in invertebrate organisms, further 
complicates the interpretation of the functional overlap between the lectin pathway 
of the complement system between vertebrates and invertebrates. However, the high 
diversi�cation of C1qDC proteins might potentially provide a very broad potential 
of recognition toward MAMPs, even in absence of immunoglobulins. At the same 
time, while no bona �de sequence that is homologous to vertebrate MBLs or �co-
lins is present in molluscs, both C-type lectins and FReD-containing proteins (see 
sections “The Role of Lectins in Immune Recognition” and “Fibrinogen- Related 
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Domain (FReD)-Containing Proteins”) underwent massive expansion and diver-
si�cation events similar to C1qDC proteins. This further reinforces the idea that 
bivalves possess an astoundingly complex arsenal of soluble PRRs, which are pos-
sibly part of a complement lectin pathway. However, it is presently unclear how 
their recognition signals would converge to C3, as no clear homologs to MASP-1, 
MASP-2, C1r, and C1s serine protease, required for downstream activation of C3 in 
vertebrates, are present in bivalves (Gerdol and Venier 2015).

Altogether, these reports support the existence of a prototypical complement sys-
tem in bivalve molluscs, therefore expanding the taxonomic distribution of this 
ancient immune defense system to Lophotrochozoa, in addition to echinoderms, 
horseshoe crabs, tunicates, and amphioxus. However, many uncertainties remain 
about the modes of activation of this system, and some of the hypothetical molecu-
lar players that are expected to be involved still remain to be identi�ed. The mecha-
nism of regulation of the complement system in oysters in response to LPS has been 
hypothesized in a recent study. The authors suggested that 12 serine protease 
domain–containing proteins might somehow play a key role in complement activa-
tion, and they further identi�ed some possible C3 receptors containing integrin α/β 
domains and similar to ascidian C3 receptors (Wang et al. 2017b).

Finally, it is presently dif�cult to assess whether the �nal outcome of this process 
is simply the opsonization of pathogenic cells, which would facilitate their elimina-
tion by the recruitment of phagocytic cells, or whether it also involves lytic compo-
nents functionally homologous to the membrane attack complex. As will be 
discussed in section “Lysozymes, BPIs and Other Pore-Forming Molecules,” while 
the constituents of the terminal pathway of the complement system appear to have 
been speci�cally developed in the vertebrate lineage, it is possible that other diver-
gent pore-forming molecules function in a similar manner, sometimes combining 
MAMP-sensing and pore-forming properties within the same protein precursor.

 Toll-Like Receptors

 Structure and Function of Toll-Like Receptors
Toll-like receptors (TLRs) are metazoan immune receptors, which have found major 
evolutionary success. Because of their ability to recognize a broad range of ligands, 
TLRs are important players of the innate immune system of both vertebrate and 
invertebrate animals, functioning as MAMP sensors either on the plasma membrane 
or in endosomal compartments. The recognition properties of TLRs are provided by 
several extracellular leucine-rich repeats (LRRs), which can be organized either in 
a single cysteine cluster (scc) or in a multiple cysteine cluster (mcc) con�guration, 
whereas the transduction of the immune signal occurs thanks to an intracellular TIR 
(Toll–interleukin receptor) domain (Fig. 10). This conserved signaling module is 
separated from the extracellular LRRs by a short transmembrane α-helical domain, 
which anchors TLRs to cell membranes.

The prototypical Toll protein of the fruit �y Drosophila melanogaster, after 
which all TLRs are named, is a multifunctional protein, acting both as a primary 
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determinant of embryonic dorsal–ventral polarity and as the receptor for the proin-
�ammatory cytokine Spätzle. However, most of the TLRs described so far in verte-
brates function exclusively as immune receptors by directly recognizing LPS, PGN, 
foreign nucleic acids, and other MAMPs without the mediation of cytokine-like 
molecules. While the organization of TLRs has long been considered to be similar 
to that of Drosophila, genomic studies have progressively unearthed some impor-
tant peculiarities that strikingly differentiate arthropods from all other animals. In 
particular, echinoderms have developed an arsenal of immune receptors that are 
potentially capable of recognizing a very broad range of invading microorganisms 
(Buckley and Rast 2012).

 The Emerging Role of Toll-Like Receptors in Bivalve Molluscs
Besides echinoderms, the massive expansion of the TLR repertoire by gene duplica-
tion involved other phyla, including molluscs (Gerdol et al. 2017), as most notably 
evidenced by the identi�cation of 83 TLR genes in the genome of the Paci�c oyster 
(Zhang et al. 2015). However, the genomic expansion of the bivalve TLR gene fam-
ily occurred independently from that of sea urchins, as it mostly targeted a group of 
phylogenetically distinct genes. Because of the high molecular diversi�cation of 
bivalve TLR sequences, a novel uniform nomenclature has been recently suggested 
to avoid confusion in the discussion of the functional properties of these receptors 
(Zhang et al. 2015; Gerdol et al. 2017). Thus, it has been suggested that bivalve 
receptors should be categorized as P-type, sPP-type, or twin-type (in the case of 
mccTLRs), or as V-type or sP-type (in the case of sccTLRs) (Fig. 10). V-type TLRs, 
present in hundreds of members in the sea urchin genome, include only a few 
sequences in bivalve molluscs, where most TLRs are ascribable to the sP-type 
expanded group (Gerdol et al. 2017).

Fig. 10 (a) Structure of the human Toll-like receptor 4 dimer (blue) bound to bacterial lipopoly-
saccharide (red) through its extracellular LRR domains. The transmembrane region is shown sche-
matically. (Image courtesy of RCSB PDB, http://pdb101.rcsb.org/motm/143). The intracellular 
TIR domain is shown on the inner side of the cell membrane. (b) Schematic domain organization 
of single cysteine cluster (scc), multiple cysteine cluster (mcc), and twin-TIR mcc Toll-like recep-
tors found in bivalve molluscs
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CfToll-1 was the �rst TLR to ever be described in bivalve molluscs, providing 
the �rst pieces of evidence in support of the possible involvement of these receptors 
in bivalve immune recognition. Indeed this TLR, identi�ed in the scallop A. farreri 
and pertaining to the P-type subfamily, is mildly upregulated by LPS challenges, 
pointing out a role in the detection of Gram-negative bacteria (Qiu et  al. 2007). 
Following this initial report, several gene expression studies have implicated TLRs 
in the immune response to different types of microbes and associated pathologies. 
For example, a single TLR was strongly modulated in QPX-infected M. mercenaria 
(Perrigault et  al. 2009) and in P.  marinus–infected C.  virginica oysters (Tanguy 
et al. 2004). Finally, TLRs have been also reported to be upregulated in response to 
V. alginolyticus challenges in different marine clam and mussel species (Moreira 
et al. 2012b; Martins et al. 2014).

These observations encouraged the design of targeted functional experiments 
aimed at identifying the microorganisms recognized by bivalve TLRs and their pos-
sible ligands. The most signi�cant studies have been carried out in (1) M. gigas, 
where a TLR was found to be strongly induced by V. anguillarum challenges (Zhang 
et al. 2011c) and a second one (CgTLR6) displayed binding ability toward Gram- 
positive and Gram-negative bacteria, further revealing af�nity to LPS and PGN but 
not to mannan (Wang et al. 2016b); (2) Hyriopsis cumingii, where three different 
TLRs, responsive to distinct microbial challenges, have been identi�ed, pointing 
out a remarkable functional specialization (Ren et  al. 2013, 2014; Zhang et  al. 
2017); (3) the noble scallop, Mimachlamys nobilis, where an sccTLR responded to 
V. parahaemolyticus, LPS, and PolyI:C challenges in hemocytes (Lu et al. 2016); 
and (4) M. galloprovincialis, where the upregulation of the P-type TLR MgTLR-i 
could be observed in response to Vibrio spp. and M.  luteus but not to Fusarium 

oxysporum injection (Toubiana et al. 2013). The high selectivity of TLRs, in terms 
of both transcriptional responsiveness and binding potential, has been further con-
�rmed by the transcriptional analysis of the entire complement of oyster TLR genes, 
which often responded to just a single pathogenic challenge in a highly speci�c 
manner (Zhang et al. 2015).

One of the most praiseworthy studies aimed at clarifying the placement of these 
receptors in the molecular networks of immune signaling targeted four different 
sccTLRs in M. gigas and permitted demonstration of their participation in the acti-
vation of nuclear factor kappa  B (NF-κB). The �nding that oyster sccTLRs are 
localized both on the plasma membrane and in late endosomal vesicles was equally 
important, as it revealed a possible role of TLRs also in the modulation of immune 
response upon phagocytosis of invading microbes (Zhang et al. 2013a). Although 
only little effort has so far been put into the identi�cation of the effector molecules 
whose production is controlled by TLRs, preliminary results clearly point toward a 
key role of TLR signaling in the regulation of AMP and lysozyme production 
through a MyD88-dependent pathway (see section “Canonical TLR Signaling”).

The experimental data collected so far con�rm that the fundamental role of TLRs 
in the bivalve immune response to invading microorganism appears to be supported 
by overwhelming evidence. However, one might wonder whether this large family 
of receptors has acquired additional physiological roles due to neofunctionalization, 
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as has been suggested for other bivalve recognition protein families. While evidence 
in support of this hypothesis still remains scarce, some reports hint that TLRs might 
be modulated by other stimuli, i.e., biotoxins (Detree et al. 2016b), abiotic stress 
(Zhang et al. 2015), and variations of pH (Xing et al. 2017).

 Other Membrane-Bound Immune Receptors

 Peptidoglycan Recognition Proteins
Peptidoglycan recognition proteins (PGRPs) are a class of well-characterized PGN- 
binding molecules that, in the fruit �y D. melanogaster, comprises both membrane- 
bound and secreted members. Membrane-bound PGRPs are directly involved in 
MAMP recognition during infections by Gram-negative bacteria and activate the 
Immune de�ciency (IMD) signaling cascade (Royet and Dziarski 2007). On the 
other hand, secreted PGRPs cooperate with Gram-negative Binding Proteins 
(GNBPs) in the extracellular environment, triggering the prophenoloxidase cas-
cade, which leads to the activation of Toll signaling (see section “Canonical TLR 
Signaling”) and melanization (see section “The Phenoloxidase Cascade”). While 
PGRPs are also present in vertebrates, they are not anchored to the plasma mem-
brane and they mostly exert bactericidal/bacteriostatic activity in the extracellular 
environment (Montaño et al. 2011).

PGRPs have been functionally characterized in detail in arthropods and verte-
brates, but nearly no information is available for the other major animal phyla. In 
bivalve molluscs, genome and transcriptome screenings show the presence of both 
membrane-bound and secreted PGRPs, even though large margins of uncertainty 
remain about their functional overlap with arthropods and vertebrates. First, there is 
no evidence in support of an extracellular pathway homologous to that of the 
Drosophila prophenoloxydase proteolytic cascade, and the absence of Spätzle-like 
proteins make it highly doubtful that secreted PGRPs participate in TLR activation 
in bivalves (see section “The Phenoloxidase Cascade”). Second, the high sequence 
divergence between bivalve PGRPs and those from other organisms does not allow 
similarity-based functional inference (Gerdol and Venier 2015).

The �rst report of PGRPs in bivalve molluscs, in the form of a short secreted 
protein, dates back to 2007, when an inducible gene product was identi�ed in the 
scallop A. farreri following Gram-positive and Gram-negative bacterial challenges 
(Su et  al. 2007). This �nding was later con�rmed in M.  galloprovincialis, 
Bathymodiolus azoricus (Martins et  al. 2014), and H.  cumingii, where broad- 
spectrum antibacterial activity and lytic activity toward both Lys-PGN and DAP- 
PGN were demonstrated (Yang et al. 2013c). Furthermore, another study reported 
the modulation of the expression of two secreted short PGRPs in Solen grandis, in 
particular, in response to PGN but not LPS (Wei et al. 2012), con�rming previous 
results concerning PGN speci�city obtained in the bay scallop (Ni et  al. 2007). 
Finally, another secreted PGRP molecule from M. gigas displays a unique domain 
architecture, as it combines the PGN-binding domain with a G-type lysozyme 
domain, which could potentially enable the coexistence of bacterial recognition and 
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killing properties in the same molecule (Itoh and Takahashi 2009) (see section 
“Lysozymes, BPIs and Other Pore-Forming Molecules”). Overall, the vast majority 
of the studies that have targeted bivalve secreted PGRPs so far are seemingly con-
cordant in attributing to them functional properties more similar to those of verte-
brate PGRPs than to those of arthropods. Their cooperation with GNBPs and their 
involvement in the activation of TLRs seem unlikely at this point.

Interestingly, while no membrane-bound PGRP has been functionally character-
ized yet in bivalves, at least two proteins of this type are present in the Mediterranean 
mussel transcriptome. Together with the contemporary identi�cation of some con-
served intracellular mediators, this prompted researchers to hypothesize the possi-
ble existence of an IMD-like pathway (see section “Other Immune Signaling 
Pathways”) (Gerdol and Venier 2015). While this hypothesis still awaits experimen-
tal con�rmation, a recent study carried out in B. azoricus identi�ed �ve paralogous 
PGRP genes, which were connected to the regulation of bacterial endosymbiosis in 
gills (Détrée et al. 2017).

 Recently Discovered Receptors
Besides TLRs and PGRPs, only a very few other cases of PRRs anchored to the 
extracellular surface of bivalve immune cells have been studied so far. The most 
relevant are the Nimrod-like receptor (CgNimC) and LRR and Ig domain–contain-
ing proteins (LRRIGs), both identi�ed in M. gigas. The former receptor has been 
implicated in the recognition of Gram-negative bacteria because of its relevant 
upregulation in response to Vibrio spp. challenges and LPS binding. Further func-
tional assays established that CgNimC plays a fundamental role in regulating the 
phagocytic rate of hemocytes toward invasive Gram-negative bacteria (Wang et al. 
2015d). On the other hand, the two LRRIgs genes identi�ed in the genome of 
M. gigas encode large proteins bearing extracellular LRRs (like TLRs), coupled 
with an immunoglobulin-like domain, a transmembrane domain, and a short unchar-
acterized cytosolic C-terminal domain. Immunoglobulin-like domains are abundant 
in bivalve genomes, and their marked immunological properties have been well 
de�ned in vertebrates and, partly, also in invertebrates (e.g., gastropod FREPs; see 
Chap. 12, section “Defense-Associated Humoral Components”). LRRIGs can bind 
a broad range of MAMPs and are upregulated in hemocytes in response to various 
types of challenges. Furthermore, they can modulate the expression of cytokine-like 
factors (i.e., TNF and IL-17) and promote hemocytic phagocytosis of Vibrio cells, 
thereby reinforcing their position as key regulators of immune response in oysters 
(Wang et al. 2017a; Huang et al. 2018).

 Cytosolic Pattern Recognition Receptors

In comparison with the impressive amount of literature produced about soluble and 
membrane-bound PRRs, it is perhaps surprising that only a handful of studies have 
so far taken into account the possible involvement of cytosolic receptors in the 
immune system of bivalves. Most of the molecular players described below have 
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been identi�ed just at the sequence level and therefore emerge as interesting targets 
for future functional investigations.

Different intracellular PRRs are potentially capable of recognizing MAMPs 
present in the cytosol. These receptors have a dual function in: (1) directly detecting 
the presence of pathogens (e.g., viruses) in the cellular space; and (2)  indirectly 
detecting microbes in the extracellular environment from their degradation products 
(e.g., peptidoglycan components). In summary, this system works in a synergistic 
manner with membrane-bound PRRs, thereby reinforcing the immune response 
through the combination of converging signaling routes derived from the intracel-
lular and extracellular environments.

 NACHT–Leucine-Rich Repeat Proteins and Bacterial Sensing
NACHT–leucine-rich repeat (NACHT-LRR) proteins (NLRs) act as sensors of the 
two major peptidoglycan-derived bacterial components, muramyl dipeptide (MDP) 
and γ-D-Glu-meso-diaminopimelic acid (iE-DAP) in the cytosol (Fritz et al. 2006). 
These MAMPs can be translocated inside the cytoplasm whenever bacteria pres-
ent in the extracellular environment are attacked by antimicrobial effectors, or 
they can be released as a consequence of the digestion of phagocytosed bacterial 
cells. Activated NLRs oligomerize, recruiting adaptor molecules that can modulate 
immune response, cell death, or survival. Vertebrate NLRs are also responsible for 
the assembly or in�ammasomes—large macromolecular complexes involved in the 
modulation of in�ammation—which are however unlikely to exist in invertebrate 
animals (Latz et al. 2013).

In spite of the great expansion of NLRs in many metazoans, no such receptor has 
ever been functionally characterized in molluscs. The typical tripartite domain 
architecture of NLRs comprises C-terminal leucine-rich repeats required for ligand 
binding, a central NACHT domain, which regulates oligomerization, and an 
N-terminal death fold domain (DFD), whose type (DEATH, DED, CARD, or PYD) 
determines the recruitment of speci�c downstream signaling adaptors. Although the 
single NLR-like protein identi�ed in M.  galloprovincialis displays a CARD/
NACHT/LRR domain combination, it bears limited sequence homology with bona 
�ne vertebrate NLRs, leaving its possible involvement in immunity a matter of 
speculation (Gerdol and Venier 2015).

 RIG-Like Receptors: Fundamental Receptors of Viral Infection
While NLRs are mainly employed in bacterial sensing, a series of other receptors 
collectively known as RIG-like receptors (RLRs) cover an analogous function in the 
sensing of viruses. Upon activation, these helicase-like molecules trigger the antivi-
ral response through the their N-terminal caspase recruitment domain (CARD) 
(Yoneyama and Fujita 2007). RLRs are capable of recognizing a broad range of 
dsDNA viruses, thanks to the mediation of DNA-dependent RNA polymerase III, 
which uses viral DNA as a template for the generation of 5′  triphosphate single- 
stranded RNAs, which are ef�ciently recognized by the helicase domain of RLRs.

Consistently with the expected rapid evolution of antiviral defense mecha-
nisms in the continuous race to arms between the host and the pathogen, this 
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molecular machinery diverged signi�cantly among animal groups (Paro et  al. 
2015). Bona �de RLRs were long thought to be exclusively present in vertebrates. 
However, following early reports of RLR-like genes in the genomes of cnidarians 
(Zou et al. 2009), a RLR highly responsive to poly(I:C) stimulation was also iden-
ti�ed in M. gigas (Zhang et al. 2014e). De�nitive proof about the involvement of 
RLRs in antiviral immunity was provided in a study demonstrating that the RLR 
CgRIG-I-1 was upregulated in response to OsHV-1 infection in Paci�c oyster 
larvae, and that it could directly bind poly(I:C). The identi�cation of the key adap-
tor protein IPS-1/MAVS (see section “Other Immune Signaling Pathways”), 
brought convincing evidence in support of the existence of an RLR-mediated sig-
naling pathway activated in response to dsDNA viruses, closely matching that of 
vertebrates.

Another important aspect in the context of viral sensing is the possible involve-
ment of Dicer, the main antiviral molecule in the cytosol of insect cells, which lack 
RLRs. In particular, only one out of the two Dicer gene copies present in the genome 
of Drosophila (Dicer-2) can process dsRNAs to produce siRNA (Lee et al. 2004), 
whereas the single mammalian Dicer gene is mostly involved in the production of 
miRNAs and only in some cell types can it generate siRNAs (Maillard et al. 2013). 
While the preferential substrates of this catalytic helicase in bivalves are presently 
unknown, all molluscs bear a single-copy Dicer gene (Rosani et al. 2016).

 Stimulator of Interferon Genes: A Major Hub for Microbial Sensing 
in the Cytosol
The third major intracellular sensor of microbial infections is the Stimulator of 
Interferon Genes (STING). Unlike NLRs and RLRs, STING is a multifunctional 
protein, which can act either as a direct MAMP sensor or as a signaling adapter col-
lecting infection signals derived from several pathogenic agents (Burdette and 
Vance 2013). This broad spectrum of recognition is guaranteed by the interaction 
with different cytosolic cofactors, whose presence in molluscs is mostly uncon-
�rmed and sometimes even unlikely due to lineage-speci�c gene losses and high 
sequence divergence (Gerdol and Venier 2015).

In vertebrates, the dimerization and migration of STING from the endoplasmic 
reticulum membrane to the perinuclear region is a fundamental step for the subse-
quent activation of interferon response and in�ammation (Ishikawa et al. 2009) (see 
section “Lysozymes, BPIs and Other Pore-Forming Molecules”). Although only a 
few reports have documented the existence of STING in bivalve molluscs (Gerdol 
and Venier 2015; He et al. 2015), the peculiar domain architecture of this molecule 
suggests a different subcellular localization and mode of action. Indeed, all lophotro-
chozoan STING molecules lack transmembrane domains and present a duplicated 
STING globular domain associated with a TIR domain; this structure could poten-
tially enable self-dimerization upon ligand binding and the activation of down-
stream immune signaling through TIR–TIR heterotypic interactions. At the same 
time, it might imply important functional differences in comparison with verte-
brates, including the interaction with different and presently unknown alternative 
MAMP cosensors.
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In any case, the main functional property of the STING globular domain, i.e., 
the ability to bind cyclic dinucleotides in the cytosol, is expected to be retained. 
The most relevant ligands of STING are cyclic diguanylate (c-di-GMP) and cyclic 
guanosine monophosphate–adenosine monophosphate (cGAMP). While the former 
is a second messenger directly produced by bacteria, the latter is synthetized by 
cyclic GMP–AMP synthases (cGAS) whenever foreign DNA is detected in the 
cytoplasm, playing a fundamental role in the detection of both bacterial and viral 
nucleic acids (Ablasser et al. 2013). Although the importance of the cGAS/STING 
complex in activating the antiviral response has been only recently uncovered, it is 
certainly noteworthy that bivalve genomes display a signi�cant expansion of cGAS-
like genes in comparison with gastropods, which would suggest improved compe-
tence for viral detection (Gerdol 2017).

 Signaling and Regulatory Pathways

MAMPs of various natures, such as glycoproteins, components of cell walls and 
membranes, and exogenous nucleic acids can be recognized by the broad array of 
bivalve PRRs described in the previous sections, activating a cascade of intracellu-
lar events that eventually result in cell response to the perceived stimulus. Multiple 
signal transduction pathways, mostly based on protein–protein interactions and 
modi�cations (e.g., kinase-mediated phosphorylation), regulate the timing and 
intensity of the immune response, as well the cellular fate (death or survival).

 Canonical Toll-Like Receptor Signaling

 The Essential Role of MyD88 in Immune Signal Transduction
The main signal transduction pathway reported to mediate the immune responses of 
bivalve species is TLR/NF-κB signaling (Fig. 11), which is deeply intertwined with 
other accessory networks that will be described in the section “Other Immune 
Signaling Pathways.” The recognition of ligands by the extracellular LRR domains 
of TLRs leads to their dimerization, which in turn activates key transcription fac-
tors, enabling the production of AMPs, lysozymes, interleukins (ILs), and other 
immune effectors against bacterial, fungal, and viral pathogens. The �rst essential 
step of TLR-mediated signal transduction involves the recruitment of TIR-DC 
adaptor proteins, which in vertebrates are primarily the myeloid differentiation 
primary response protein  88 (MYD88) and the TIR-domain-containing adapter- 
inducing interferon-β (TRIF) (O’Neill and Bowie 2007).

Because of the lack of a TRIF homolog, the TLR signaling in bivalves is essen-
tially a MyD88-dependent pathway, even though the possible involvement of 
alternative evolutionarily conserved TIR-DC adapters cannot be excluded (Gerdol 
et al. 2017). The fundamental signaling mediator MyD88 is characterized by an 
N-terminal death domain, required for perpetrating signal transduction, and by a 
C-terminal TIR domain that interacts upstream with the cytosolic TIR domain of 
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TLRs. The upregulation of MyD88 transcripts has been documented in different 
bivalve species in response to various bacterial MAMPs (Toubiana et al. 2013; 
Ren et al. 2016; Xin et al. 2016a) and OsHV-1 infection in oysters (Renault et al. 
2011; Du et al. 2013). The multiple MyD88 genes identi�ed in the genomes of 
M. gigas and M. yessoensis indicate an expanded gene family (Zhang et al. 2015; 
Ning et al. 2015), possibly linked with the diversi�cation of TLRs (see section 
“Toll-Like Receptors”). Some MyD88-like proteins lack the N-terminal death 
domain and are therefore thought to function as negative regulators (Xu et  al. 
2015b), together with the sterile alpha and armadillo motif containing protein 
(SARM), an evolutionarily conserved negative regulator of TLR signaling, as 
well as an intermediary of apoptosis and antiviral innate response (Belinda et al. 
2008; Panneerselvam and Ding 2015).

Fig.  11 Vertebrate canonical Toll-like receptor (TLR) signaling and comparison with that of 
bivalve molluscs. Unidenti�ed components in bivalves are struck through and elements whose 
presence is uncertain are indicated by question marks. In particular, the low similarity between 
vertebrate and molluscan TLRs leaves the binding speci�city of bivalve TLRs, for the most part, 
unknown. The homo- or heterodimerization of TLRs following ligand binding, either in the extra-
cellular environment or in the endosomal compartment, recruits adaptor proteins, which propagate 
immune signals. Only MyD88, among the vertebrate adaptors, has been identi�ed so far in 
bivalves. The recruitment and activation of IRAK kinases and the IKK complex results in the 
migration of the NF-κB and possibly IRF transcription factors to the nucleus, where they regulate 
the production of proin�ammatory cytokines and antimicrobial peptides. (Edited from Wang 
et al. 2014c)
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 Toll-Like Receptor–Mediated Signal Transduction: From the Cell 
Membrane to the Nucleus
All of the expected elements of canonical MyD88-dependent TLR signaling have 
been identi�ed in the transcriptomes of M. gigas (Zhang et al. 2011c), M. gallopro-

vincialis (Toubiana et al. 2014), and Saccostrea glomerata (Ertl et al. 2016), and 
even physically mapped to A. farreri bacterial arti�cial chromosomes by �uores-
cence in situ hybridization (Wang et al. 2011b; Zhao et al. 2015). These approaches 
highlighted a remarkable similarity with the immune signaling system of deutero-
stomes and a less signi�cant overlap with arthropods. The immune role of such 
molecules has been con�rmed by the assessment of their upregulation following 
immune stimulation trials and a detailed functional characterization in several 
bivalve species. While many accessory factors take part in this elaborate signaling 
network, either as positive or negative regulators, or as molecular switches to acti-
vate connected pathways, we will discuss below only the main molecular players 
(Fig. 11).

The second intracellular step of the MyD88-dependent TLR signaling involves 
the interaction between MyD88 and the Interleukin-1 receptor-associated kinases 
(IRAK)-1/-4 complex, with the subsequent recruitment of the TNF receptor- 

associated factor 6 (TRAF6). The two IRAK proteins identi�ed in mussels (both 
homologous to IRAK-4) were strongly overexpressed in hemocytes following bac-
terial challenges (Toubiana et al. 2014), similarly to the soft shell clam Mya are-

naria IRAK-4-like transcript, responsive to V. splendidus challenges (Mateo et al. 
2010). The turnover of IRAK kinases is regulated by the Toll interacting protein 
TOLLIP, characterized as an acute phase protein in M.  yessoensis (Zhang et  al. 
2015) but present with steady expression levels in M. galloprovincialis (Toubiana 
et al. 2014). TRAF6 is one of the key components of the pathway, as it regulates the 
activation of the IKK complex together with the Transforming growth factor acti-

vated kinase-1 (TAK1). TRAF6 responds to Gram-positive and Gram-negative, as 
well as to LPS challenges in the scallop A. farreri and in the mussel M. galloprovin-

cialis (Wang et al. 2011b; Toubiana et al. 2014). Very limited functional information 
has been collected so far about TAK1, the associated proteins TAB1/2, and the com-
ponents of the Inhibitor of kappa-B kinase (IKK) complex, in bivalves. Most nota-
bly, an IKK-like sequence has been characterized in oyster and connected to the 
activation of NF-κB (Escoubas et al. 1999). As a major difference with vertebrates, 
only a single IKKα/β homolog is present in M. galloprovincialis. The IKK complex 
�nally phosphorylates the Inhibitor of nuclear factor kappa-B (IKβ), which is then 
ubiquitinated and targeted for proteasomal degradation. This process allows the 
entering of the NF-κB or Rel transcription factors in the nucleus, ultimately enabling 
the transcription of the target effector genes.

After the initial characterization of an IKβ homolog in M. gigas (Montagnani 
et al. 2008), three paralogous genes were identi�ed in this species. All of them were 
positively regulated by MAMP and heat-killed bacteria stimulation (Zhang et al. 
2011e; Xu et al. 2015a). Similarly, M. galloprovincialis possesses at least two IKβ 
genes, which both experienced moderate to strong upregulation in response to bac-
terial challenges (Toubiana et  al. 2014). IKβ homologs were also found to be 
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responsive to various types of challenges in A. farreri, Cyclina sinensis, Meretrix 

meretrix, P.  fucata, R. philippinarum, S. glomerata, and S. grandis (Zhang et  al. 
2009a; Green and Barnes 2009; Wang et al. 2011b; Yang et al. 2011b; Moreira et al. 
2012a; Lee et al. 2013; Liu et al. 2014; Gao et al. 2016). In this respect, a contrasting 
result was obtained in A. irradians, as IKβ was downregulated following V. anguil-

larum challenges (Mu et al. 2010). The consensus of studies further seems to indi-
cate widespread expression of these inhibitors in all adult tissues, even though most 
experimental studies have been focused on expression dynamics in hemocytes.

 Nuclear Factor Kappa B: A Key Regulator of Immune Response
Nuclear factor kappa B (NF-κB) family members, sharing a domain architecture 
similar to human p100/p105 or to p65, have been identi�ed in multiple bivalve spe-
cies, where they are present as single-copy genes (Li et al. 2015b). The �rst func-
tional con�rmation of the involvement of bivalve NF-κB homologs in immune 
response came from the observation that the overexpression of the oyster gene in 
Drosophila cell lines was able to induce the expression of a NF-κB reporter gene 
(Montagnani et al. 2004). This molecule could be further placed within the TLR- 
mediated MyD88-dependent circuitry thanks to RNAi studies in C. sinensis (Gao 
et al. 2016). Furthermore, the A. farreri homolog controls the expression of AMPs, 
providing direct evidence in support of its involvement in the production of effector 
molecules (Oyanedel et al. 2016). Overall, compelling evidence demonstrates the 
MyD88-dependent inducibility of NF-κB in the acute phase of response to various 
bacterial and viral MAMPs in bivalves, supporting the role of these transcription 
factors in regulating the expression of proin�ammatory factors, effector molecules, 
and cytokines involved in fundamental aspects of bivalve immunity (Wang et al. 
2011b; Huang et al. 2012; Toubiana et al. 2014; Li et al. 2015b; Gao et al. 2016). 
However, signi�cant differences in the magnitude of this response exist among spe-
cies which might, to some extent, even explain the different interspecies susceptibil-
ity to disease, as evidenced by the comparative analysis of shallow-water and 
deepsea mussels (Martins et al. 2014).

 Other Immune Signaling Pathways

 Role of the Mitogen-Activated Protein Kinase Cascade in Immune 
Signaling
While the processes outlined above cover the main signaling pathway from MAMP 
sensing to the activation of nuclear factors, some components of the TLR/NF-κB 
signaling found in vertebrates and invertebrates alike represent a bridge to other 
signaling pathways (O’Neill and Bowie 2007; Brown et al. 2011). Most notably, 
TRAF6 can interact with MEKK1 thanks to mediation by the Evolutionarily con-

served signaling intermediate in Toll pathways adapter (ECSIT), which is also 
found in bivalves (Toubiana et al. 2014; Lin et al. 2017), activating the mitogen- 
activated protein kinase (MAPK) cascade. In essence, the MAPK signaling is a 
phosphorylation cascade activated by many immune and nonimmune signals (e.g., 
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growth factors, cytokines, bacteria, viruses, oxidative stress), which modulates vari-
ous cell processes. This important signaling cascade activates classical MAP kinases 
(ERK, p28, JNK), whose concerted action can determine alternative cellular fates, 
including cell survival and proliferation, differentiation, or death. The successful 
use of commercial antibodies targeting MAPK components evidenced the remark-
able conservation of this pathway in all animals (Canesi et al. 2002; Bettencourt 
et al. 2009). Sequences denoting MAPK proteins have been identi�ed in different 
mussel and oyster species (Martins et al. 2014; Zou et al. 2015; Gerdol and Venier 
2015; Wang et al. 2017a) and p38, JNK, and ERK kinases in particular have been 
speci�cally linked to bivalve immune response (Sun et al. 2016; Qu et al. 2016, 
2017a). Ultimately, MAPK signaling results in the activation of AP-1, a heterodi-
meric transcription factor composed of Jun and Fos subunits. The immune role of 
bivalve AP-1 has been so far mostly inferred from gene expression data collected in 
C. hongkongensis and R. philippinarum (Xiang et al. 2014a; Wu et al. 2015; Qu 
et al. 2015a). Regardless of the alternative activation of the IKK complex or of the 
MAPK cascade downstream of MyD88, the two signaling branches extensively 
communicate with each other, as TAK1 can phosphorylate (and activate) MAPKs, 
and MEKK1 can phosphorylate (and activate) the IKK complex (Moustakas and 
Heldin 2003).

 Interferon-Responsive Factors
Another alternative signaling route potentially activated upon the interaction 
between TLRs and intracellular adaptors would lead to the activation of Interferon- 

Responsive Factors (IRFs), a class of transcription factors that enable the expres-
sion of interferons and other proin�ammatory cytokines. However, this typical 
vertebrate pathway implies the mediation of TRIF (instead of MyD88) and RIP 
kinase  1 (instead of IRAKs) which both lack convincing homologs in bivalves 
(Meylan et al. 2004). Bivalve IRFs have been linked to resistance to infections in 
H. cumingii (Wang et al. 2013a) and to the transcriptional activation of genes with 
ISRE elements in the pearl oyster P. fucata and the mussels Bathymodiolus plati-

frons and Modiolus modiolus (Huang et al. 2013b, 2017a). However, since the exis-
tence of MyD88-independent TLR signaling seems unlikely in bivalves, these 
IRF-like molecules are probably related to other signaling routes originated from 
cytosolic PRRs, which will be described in detail below.

 Is an Immune Deficiency–Like Pathway Present in Bivalve Molluscs?
The possible presence of a bivalve immune de�ciency (IMD)–like pathway involved 
in the recognition of Gram-negative bacteria and homologous to that found in 
Drosophila (Lemaitre and Hoffmann 2007) has been long hypothesized. In this 
case, the immune signals would originate from membrane-bound PGRPs and be 
transduced in the cytosol by signaling molecules that are partially shared with the 
vertebrate tumor necrosis factor receptor (TNFR) signaling pathway. These include 
dFADD and DREDD/Caspase-8, which are both present in bivalves (Gerdol and 
Venier 2015), but also the IKK complex and MAPK pathway, which can be acti-
vated by the cross talk between TNFR and TLR signaling. Crucially, however, the 

M. Gerdol et al.

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450



key IMD adaptor molecule is lacking and no functionally homologous component 
has been identi�ed yet in bivalves (Gerdol and Venier 2015). Taking into account 
the relevant sequence divergence between the intracellular domain of arthropod and 
molluscan membrane-bound PGRPs (see section “Other Membrane-Bound Immune 
Receptors”), the identity of the hypothetical key mediator of the IMD-like pathway 
in these animals remains presently unknown.

 Signaling Pathways Activated in Response to Microbial Sensing 
in the Cytosol
The interconnected signaling pathways presented so far act at the crossroads with 
the cytosolic PRRs described in section “Cytosolic Pattern Recognition Receptors,” 
which share several signal transducers with the TLR/NF-κB/MAPK/IRF circuitry, 
thereby resulting in the activation of the same transcription factors and in the pro-
duction of similar effector molecules. Among these, the signaling by NLRs would 
hypothetically involve the mediation of receptor-interacting serine/threonine pro-

tein kinase 2 (RIPK2) for the recruitment of TAK1 and the consequent activation of 
the IKK complex (Nembrini et al. 2009). However, the lack of a bivalve RIP2K 
homolog points out that a bivalve NLR-based cytosolic MAMP–sensing system, if 
it exists, should be based on molecules that are divergent from their vertebrate func-
tional homologs.

In vertebrates, STING stimulates the phosphorylation of IRF3 through the 
action of the TANK-binding kinase 1 (TBK1) (Tanaka and Chen 2012), the gene of 
which has been recently characterized in M.  gigas. The oyster homolog was 
strongly upregulated in response to V. alginolyticus and OsHV-1 infections and, 
most importantly, its direct interaction with STING was demonstrated by co-IP stud-
ies, thereby con�rming a mode of signal transduction similar to those in vertebrates 
(Tang et al. 2016).

RLRs, key sensors of viral nucleic acids (see section “Cytosolic Pattern 
Recognition Receptors”), require the IFN-beta promoter stimulator (IPS-1, also 
known as CARD adaptor inducing IFN-beta, or CARDIF, and Virus induced sig-

naling adaptor, or VISA) to induce the expression of interferon and in�ammatory 
cytokines via IRFs or NF-κB (Fredericksen et al. 2008). This adapter has remained 
elusive for a long time in invertebrates, until the very recent discovery of the M. gigas 
homolog CgMAVS. The functional characterization of the oyster protein con�rmed 
its primary role in antiviral response, as (1) CgMAVS could be strongly upregulated 
in response to viral infections; (2)  the interaction between the CARD domain of 
CgRIG-I-1 and CgMAVS was demonstrated by yeast two-hybrid and co-IP; (3) an 
interaction was similarly demonstrated with the downstream signaling adapter 
TRAF6; and (4)  the inactivation of CgMAVS by RNAi in infected oyster spat 
determined a remarkable increase in mortality (Huang et al. 2017b). The demon-
strated interaction with TRAF6 would imply the activation of NF-κB. However, 
the most important MAVS interactor in vertebrates is another member of the 
TRAF family, TRAF3, which can recruit TBK1, activating IRF3. The �rst mol-
luscan TRAF3 homolog was recently identi�ed in the freshwater mussel Anodonta 

woodiana. Although the physical interaction with MAVS and RLRs has not been 
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demonstrated yet, bacterial and viral challenges triggered the overexpression of this 
molecule, supporting its involvement in RLR-mediated signaling (Qu et al. 2017c).

Altogether, these functional studies, supported by the identi�cation of nearly all 
of the required signaling molecules in sequence databases (Philipp et  al. 2012; 
Green et al. 2015; Ren et al. 2017b), as well as by the observation of their signi�cant 
upregulation in response to experimental OsHV-1 infection in oysters (He et  al. 
2015), highlight that bivalve molluscs are equipped with a well-developed molecular 
system for viral sensing in the cytosol.

 Production of Cytokines

 Elusive Regulators of the Molluscan Immune System
The complex signaling machinery described in detail in the previous sections ulti-
mately leads to the production of effector molecules that are used to kill or to reduce 
the pathogenicity of invading microbes (see section “Humoral Immune Effectors”) 
or to regulate immune response at a cellular level (see section “Cellular Immune 
Responses”) and at a systemic level. Cytokines are small glycoproteins with regula-
tory immune functions, which are the most important regulators of metazoan immu-
nity, as they activate signaling elements leading to the expression of other cytokines, 
antiviral effectors, and other immune-related genes. Their action is very fast and 
powerful in the ampli�cation of the immune response despite an extremely low 
concentration in body �uids. Furthermore, many cytokines have a pleiotropic effect 
and a somewhat redundant function (Nicola 1994). Despite the essential and long- 
known role of cytokines in vertebrates, their existence in invertebrate animals was 
long debated until the �rst molecules with a cytokine-like activity were �rst identi-
�ed (Beschin et al. 2001; Herpin et al. 2004). Moreover, as explained in section 
“Other Membrane-Bound Immune Receptors,” one of the most studied cytokines in 
the D. melanogaster model, Spätzle (Parker et al. 2001), is not present in bivalves 
and therefore TLRs are likely to act in a vertebrate-like fashion, by directly binding 
MAMPs with their extracellular LRR domains. Despite the availability of genomic 
sequence data, interferon-like factors remain elusive in all invertebrates, seemingly 
supporting the idea that vertebrate and invertebrate cytokines have a different evo-
lutionary origin, despite sharing a similar mode of action and a quite conserved 
intracellular signaling machinery. For the most part, molecular studies on molluscan 
cytokines are limited to evolutionarily conserved factors, readily identi�able by 
sequence similarity.

 Structurally Conserved Cytokines: Interleukin-17, Macrophage 
Migration Inhibitory Factor, and Allograft Inflammatory Factor-1
The �rst bivalve cytokine to be identi�ed was interleukin-17, produced at signi�-
cant levels in oyster hemocytes in response to bacterial exposure (Roberts et  al. 
2008). IL-17 sequences have been subsequently isolated in many bivalve species or 
detected as highly responsive transcripts to bacterial challenges and abiotic stimuli 
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(Wu et al. 2013; Moreira et al. 2014; Xin et al. 2015, 2016b). Genomic studies have 
further revealed that oyster IL-17 proteins are the product of a multigenic family, 
which comprises at least �ve members (Li et al. 2014). Although IL17 signaling 
requires further study in bivalves, homology-based inference suggests that because 
of its conserved structure (Fig. 12), the binding of IL17 to its receptor stimulates 
downstream CIKS/CIKSL proteins via SEFIR–SEFIR domain interactions and, 
subsequently, TRAF proteins related to both MAPK and NF-κB signaling (Rosani 
et al. 2015).

The macrophage migration inhibitory factor (MIF) and the allograft in�amma-
tory factor-1 (AIF-1) are two other proin�ammatory cytokines that have been iden-
ti�ed in bivalves by sequence similarity. The former is a CD74 ligand, which 
stimulates the acute phase response. Despite the clear difference between bivalve 
and vertebrate circulating immune cells, the M. galloprovincialis MIF displays a 
well conserved three-dimensional fold (Parisi et  al. 2012) (Fig.  12). In contrast 
with expression data collected in mussels, the A. farreri MIF sequence was upregu-
lated upon bacterial challenges in a study that also provided an important con�r-
mation about the functional conservation this molecule, as the recombinant protein 
could induce �broblast migration (Li et al. 2011b). In addition, single nucleotide 
polymorphisms of MIF have been connected with increased resistance to Vibrio 
spp. infections in M. meretrix (Zou and Liu 2016). AIF-1, on the other hand, is 
activated in macrophages upon tissue injury. In O. edulis, AIF-1 was upregulated 
in the hemocytes and mantle of oysters affected with heavy bonamiosis (Martín-
Gómez et al. 2014), and its expression could be induced in M. gigas with multiple 
immune challenges (Zhang et al. 2013b). From a functional point of view, the simi-
larity between vertebrate and bivalve AIF-1 proteins is remarkable. Indeed, the 
oyster homologs could stimulate phagocytosis in the granulocyte hemocyte sub-
population and a clear involvement in tissue damage could be also established (Li 
et al. 2013a).

Fig. 12 Structure of two of the evolutionarily conserved cytokines found in bivalve molluscs. 
(a)  Human macrophage migration inhibitory factor (MIF) trimer (PDB accession ID: 1MIF). 
(b) Human interleukin-17 dimer (PDB accession ID: 4HR9)
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 Tumor Necrosis Factor-α: A Cytokine Acting at the Crossroads 
Between Immunity and Apoptosis
Following the identi�cation of a tumor necrosis factor α (TNF-α) in disk abalone 
(De Zoysa et al. 2009), this multifunctional immune modulator was also described 
in M. gigas, C. hongkongensis, and O. edulis (Martín-Gómez et al. 2014; Sun et al. 
2014; Qu et al. 2017b). Oyster TNF-α transcripts are upregulated in response to 
immune challenges and bonamiosis and modulate phagocytosis and apoptosis in 
hemocytes. Furthermore, TNF-α recombinant proteins could induce the expression 
of NF-κB reporter genes in human cell lines. In bivalve molluscs, the conserved 
function of this cytokine, which acts at the crossroads between the immune system 
and the apoptotic machinery, is supported by the identi�cation of conserved acces-
sory factors, i.e., TTRAP (Yang et al. 2011a) and lipopolysaccharide-induced TNF 

factor (LITAF), a positive regulator of TNF-α transcription (Zhu and Wu 2012; 
Yang et al. 2013a). As mentioned in section “Other Immune Signaling Pathways,” 
TNF-α would exert its function through a signaling pathway partially shared with 
the arthropod IMD pathway, which includes the key evolutionarily conserved com-
ponents dFADD and DREDD (Gerdol and Venier 2015). The transduction of 
immune signal inside the cell is enabled by the binding of TNF-like molecules to 
their receptors, collectively known as TNFRs. Functional tests carried out in many 
bivalve species support the involvement of bivalve TNFRs in the establishment 
of immune response, despite their limited homology with vertebrate receptors (Li 
et al. 2009; Su et al. 2011; Xing et al. 2016; Xiang et al. 2016). Another cytokine 
involved in the regulation of cell death, the TNF-related apoptosis-inducing ligand 
(TRAIL), is ubiquitously expressed in various tissues in H. cumingii and Magallana 

ariakensis. The few experimental pieces of evidence collected so far point toward 
the involvement of the MAPK pathway in the activation of this cytokine and also 
suggest the involvement of caspase 3 as a downstream effector (Yang and Wu 2010; 
Yang et al. 2013b).

 New Opportunities for Cytokine Studies in Bivalves
Many divergent molecules with a cytokine-like function in bivalve molluscs have 
only been recently identi�ed or still remain to be uncovered. An important example 
is provided by myticin C, a long-known mussel antimicrobial peptide, which has 
also been shown to bear chemotactic properties, stimulating hemocyte migration 
and morphological changes (Balseiro et al. 2011). The discovery of a class II helical 
cytokine in M.  gigas with remote homology with vertebrate IFN-like molecules 
further stimulates research efforts directed at the discovery of novel cytokines in 
bivalves. CgIFNLP was upregulated in response to poly(I:C) stimulation and the 
recombinant protein could sensibly enhance both apoptosis and phagocytosis in 
oyster hemocytes (Zhang et al. 2015).

In the vertebrate IFN signaling, the activation of IFN receptors stimulates the 
activity of downstream Janus kinases (JAK) and, consequently, the migration of the 
Signal transducer and activator of transcription (STAT) to the nucleus, with the con-
sequent expression of IFN-stimulated genes (ISGs). This signaling pathway, whose 
presence in bivalves had been already assessed by a number of transcriptomic studies 
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(Philipp et al. 2012; Green et al. 2014, 2015), has been conclusively implicated in 
the regulation of immune response by CgIFNLP through its newly isolated receptor 
(Zhang et al. 2016b).

 Connections with the Neuroendocrine System

The neuroendocrine immunomodulation (NEI) regulatory network encompasses 
the complex cross talk between the nervous system, the endocrine system, and the 
immune system to maintain homeostasis and to modulate innate immune response 
in all animals (Fig. 13). Although NEI appears to be simpler in invertebrates than in 
vertebrates, it is highly conserved and represents an ef�cient regulatory mechanism 
(Hartenstein 2006). From this point of view, molluscs are of particular interest, as 
they are the most primitive animals with a complete NEI system and there is evi-
dence that points to hemocytes as a connecting link between the immune and the 
nervous system (Liu et al. 2017b). While cephalopods have long been considered as 
privileged molluscan models for the study of NEI because of their well-developed 
nervous system and amenability for laboratory research (Di Cosmo and Polese 
2016), in recent years bivalve molluscs have been the subject of an increasing num-
ber of studies (Song et al. 2015; Wang et al. 2017a). The main components of the 
NEI are the cholinergic, catecholaminergic, and nitric oxidase systems, together 
with the action of the neuropeptides.

Fig. 13 Cross talk between the nervous, endocrine, and immune systems in response to an exter-
nal stimulus. (Original Source: Di Prisco and Polese 2015)
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 The Cholinergic and Catecholaminergic Neuroendocrine Systems
The cholinergic neuroendocrine system can be activated by pathogens and tends to 
negatively regulate the immune response on a long time scale. The main component 
of the cholinergic nervous system is acetylcholine (ACh), whose concentration has 
been shown to signi�cantly increase in the hemolymph of scallops upon stimulation 
with LPS or TNF-α (Shi et al. 2014). Acetylcholinesterase-like enzymes and mus-
carinic receptors of Ach have been detected in the hemocytes and other tissues of 
bivalve molluscs. Strikingly, the A. farreri acetylcholinesterase is thought to con-
tribute to the rebalancing of the immune system following immune response in 
A. farreri (Shi et al. 2012). As a further con�rmation in support of the existence of 
the cholinergic anti-in�ammatory pathway in this animal group, the expression of a 
novel muscarinic acetylcholine receptor was regulated by LPS stimulation in 
M. gigas. The activation of this receptor seems to be crucial for the production of 
TNF and for the regulation of apoptosis in hemocytes (Liu et al. 2016b). Moreover, 
the subunits of the nicotinic acetylcholine receptor of A. farreri were subjected to a 
similar induction in response to LPS and TNF-α (Shi et al. 2015).

The catecholaminergic neuroendocrine system is mainly composed of catechol-
amines (dopamine, norepinephrine and epinephrine), their metabolic enzymes, and 
receptors. Catecholamines are among the �rst neurotransmitters to appear during the 
ontogenesis of molluscs to regulate cell proliferation, differentiation, and neurogen-
esis. In adults, the synthesis and release of catecholamines has been reported in the 
hemocytes, mantle, and gills. The �rst important evidence supporting the involve-
ment of this system in the modulation of both the cellular and humoral immune 
response was provided by the observation of the induction of the alpha-1 norepineph-
rine receptor in response to LPS in M. gigas. This receptor could in turn modulate the 
expression of TNF and induce phagocytosis and apoptosis of hemocytes (Liu et al. 
2016c). Furthermore, the catecholaminergic system is markedly activated after acute 
heat and bacterial stress in oyster larvae (Liu et al. 2017a).

 Nitric Oxide, Neuropeptides, and Open Challenges 
in Neuroendocrine Immunomodulation Studies
NO synthase (NOS) is a fundamental enzyme for the production of nitric oxide 
(NO), a key signaling molecule involved in multiple processes, including immune 
defense. Unlike vertebrates, molluscs display only a single NOS isoform, point-
ing toward the existence of a unique prototypical enzyme that combines the func-
tions of the three vertebrate isoforms. Recently, the mutual modulation between 
norepinephrine and nitric oxide during immune response has been demonstrated 
in scallops (Jiang et al. 2014), showing the intimate linkage among all of these 
regulatory systems.

Neuropeptides include a diverse class of cell signaling molecules. These mole-
cules are produced and released by neurons, and their mechanism of action occurs 
through a regulated secretory pathway. As in vertebrates, various neuropeptides 
identi�ed in molluscs could potentially play important roles in immune regulation. 
Although 74 possible neuropeptide genes have indeed been identi�ed in the oyster 
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genome (Zhang et al. 2012a), neuropeptide studies in the context of immunity are 
still lacking in bivalves.

As a �nal consideration about the regulation of NEI function in molluscs, the 
action of microRNAs also needs to be taken into account. In fact, several miRNAs 
(named NeurimmiRs) are highly responsive to acetylcholine and norepinephrine 
stimulation in oyster hemocytes. The in  silico–predicted targets for NeurimmiRs 
comprise over 300 genes with functions in cell death, immunity, and response to 
stimulus, which might therefore explain the observed decrease in phagocytosis and 
late apoptosis/necrosis in stimulated hemocytes (Chen et al. 2015). One of the identi-
�ed miRNAs was subjected to further studies, which evidenced its role in repressing 
acetylcholine production and choline uptake in hemocytes (Chen et al. 2016).

 Humoral Immune Effectors

 Antimicrobial Peptides

Because of their fundamental role as a �rst line of defense in the molluscan innate 
immune system and potential biotechnological applications, antimicrobial peptides 
(AMPs) have been the subject of a considerable number of molecular studies. The 
�rst pioneer studies, targeting the hemolymph of mussels, provided the impetus for 
the characterization of novel antimicrobial compounds, using classical biochemical 
methods. This �eld of research is growing thanks to the application of in silico data- 
mining approaches, and bivalves have been one of the most extensively exploited 
sources of AMPs in the animal kingdom over the past 20 years.

 Defensins, Mytilins, and Myticins: Main Players in Hemocyte- 
Mediated Immune Response
The story of antimicrobial research in bivalve molluscs dates back to 1996, when 
several novel cysteine-rich peptides similar to arthropod defensins were extracted 
from the active fraction of hemolymph in the marine mussels M. edulis and M. gal-

loprovincialis (Hubert et al. 1996; Charlet et al. 1996). Two novel peptides, con-
taining eight cysteine residues arranged in a slightly different pattern, were named 
mytilins and displayed signi�cant activity mostly directed against Gram-positive 
bacteria (Charlet et  al. 1996). Mytilins and defensins exert their antimicrobial 
action following the recruitment of a specialized subpopulation of circulating 
hemocytes to the site of infection, where they are intracellularly released from 
granules (Mitta et al. 2000b, c). Although these AMPs are clearly involved in the 
intracellular killing of bacterial cells phagocytosed by hemocytes, they also appear 
to secondarily participate in the systemic immune response when released in the 
hemolymph (Mitta et al. 2000d). A few years later, a new class of AMPs named 
myticins was identi�ed in M. galloprovincialis plasma and hemocytes. These pep-
tides displayed only limited antimicrobial properties in comparison with defensins 
and mytilins but shared eight conserved cysteine residues and high hemocyte 
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speci�city (Mitta et al. 1999). Although the antimicrobial activity of myticins is 
rather weak and it can be only attained at acidic pH (Martinez-Lopez et al. 2013; 
Domeneghetti et al. 2015), they might have alternative potential roles both as anti-
viral agents and as chemokine/cytokine–like molecules (Balseiro et  al. 2011; 
Novoa et al. 2016).

Molecular and genetic studies revealed that these mussel AMPs are produced as 
secreted pre-propeptides. The highly cationic charge of the central mature peptide 
region is balanced by an acidic C-terminal extension of the precursor protein, 
which is likely removed after its release from hemocyte granules. It was also 
revealed that these AMPs pertain to multigenic families that share a similar archi-
tecture, as they all comprise four exons and three introns, with �xed exon/intron 
boundaries (Mitta et al. 2000a). An aspect of mussel hemocyte-speci�c AMPs that 
has revealed somewhat counterintuitive patterns concerns unpredictable �uctua-
tions in gene expression in response to bacterial challenges (Mitta et al. 2000a) and 
signi�cant intraspeci�c variation, suggesting that genome–environment interactions 
play a major role in regulating AMP production (Li et al. 2010).

A few years after the original discovery of AMPs in mussel hemocytes, defensin- 
like AMPs with eight cysteines were also identi�ed in circulating immune cells in the 
Paci�c oyster, together with a second isoform mainly expressed in the mantle edge 
(Gueguen et al. 2006; Gonzalez et al. 2007a). Over the years, many other sequences 
labeled as “defensin” or “defensin-like” AMPs have been isolated in different bivalve 
species. Besides their structural differences, summarized by the presence of either 
three or four disul�de bonds, these AMPs are also often characterized by different 
spectra of activity, preferential tissues of expression, and accessory functions. 
For example, a foot-speci�c defensin-like peptide has been linked to byssogen-
esis in zebra mussels (Xu and Faisal 2010), whereas a gill-speci�c peptide with 
marked activity against Gram-positive bacteria has been isolated from gills extracts 
of C. virginica (Seo et al. 2005). Clam and freshwater mussel defensins display a 
spectrum of activity and tissue speci�city similar to those of Mytilus AMPs, but they 
are reportedly upregulated following bacterial challenges (Peng et al. 2012; Wang 
et  al. 2015c). These reports suggest that different cysteine-rich peptides currently 
classi�ed with the same label could have slightly different biological properties 
depending on the species of origin.

From a structural point of view, all of the aforementioned defensin-like AMPs 
(including mytilins and myticins) share a common structural motif, the cysteine- 
stabilized α-helix β-sheet (CS-αβ) fold (Fig.  14). This conserved and successful 
compact domain consists of an α-helix and two antiparallel β-sheets, whose orienta-
tion and reciprocal position in the 3D space are �xed by intramolecular disul�de 
bridges (Yang et al. 2000; Gueguen et al. 2006). Crystallographic studies reveled 
that, in spite of a negligible primary sequence homology and a slightly different 
position of cysteine residues, defensins and mytilins share not only the same struc-
tural fold but also similar hydrophobic and hydrophilic areas (Roch et al. 2008). 
Although the 3D structure of myticins has not been experimentally determined yet, 
modeling approaches have unequivocally evidenced that they are also likely to 
adopt a CS-αβ fold (Domeneghetti et al. 2015).
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 Other Cysteine-Rich Antimicrobial Peptide Families
In recent years, data-mining approaches have led to the identi�cation of macins, an 
additional group of bivalve AMPs in the CS-αβ peptide superfamily. Originally 
identi�ed in other metazoan phyla, macins were �rst described as a multigenic family 
in M. galloprovincialis (Gerdol et al. 2012) and later reported in other bivalve spe-
cies. Although the functional signi�cance of the complex cysteine array of macins 
is still poorly understood, these peptides are of great interest because of their role in 
wound healing, in addition to bacterial killing, and their widespread expression 
across all main tissues.

In comparison with canonical defensins, big defensins pertain to a structurally 
different but evolutionarily widespread class, also comprising vertebrate β-defensins. 
The characterizing six-cysteine array of big defensins is located in the C-terminal 
domain of these AMPs, and it is coupled with an N-terminal α-helical domain 
whose presence is also required for antimicrobial action. Big defensins have been 
isolated in many different bivalve species and, while all studies have evidenced the 

Fig. 14 Experimentally 
determined three- 
dimensional structures of 
M. galloprovincialis 
MGD2 defensin, mytilin B, 
and M. gigas defensin. The 
in silico–predicted 
structure of 
M. galloprovincialis 
myticin C is also reported. 
The conserved cysteine- 
stabilized α-helix β-sheet 
fold, comprising an α-helix 
followed by two 
antiparallel β-sheets, is 
easily detectable
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inducible expression of these AMPs, contrasting reports have been produced 
concerning the main tissues of expression (Zhao et  al. 2010; Rosa et  al. 2011; 
Gerdol et al. 2012; Li et al. 2012; Wang et al. 2014a; Yang et al. 2016). A more 
precise indication concerning the localization of big defensins has been provided by 
immuno�uorescence studies carried out in A.  irradians, which have evidenced a 
prominent abundance in the gill and mantle epithelia, strongly implicating a role in 
mucosal immunity (González et al. 2017).

The remarkable diversity of bivalve cysteine-rich AMPs is not limited to pep-
tides with a known structure but also involves novel cysteine arrays and unknown 
disul�de connectivities. The �rst example is that of mytimycin, an antifungal pep-
tide identi�ed in mussel hemolymph extracts (Charlet et al. 1996). Like the other 
AMPs stored in granules, this peptide is produced as an inactive precursor, whose 
C-terminal extension contains an EF-hand domain. The mature peptide region can 
vary in terms of both the number and the arrangement of cysteine residues (Sonthi 
et al. 2011). More recently, three additional plausible AMP families—myticusins 
(Liao et al. 2013), mytichitins (Qin et al. 2014), and CRP-I (Gerdol et al. 2015a)—
have been identi�ed in Mytilus spp. but promising preliminary results still await a 
detailed functional characterization.

 Improved Strategies Are Required to Discover Novel Antimicrobial 
Peptide Families
Although different molecules with heterogeneous evolutionary origins, amino acid 
compositions, and three-dimensional structures can act as antimicrobial agents, nearly 
all known bivalve AMPs pertain to a single large category, i.e., AMPs rich in cysteine 
residues engaged in disul�de bonds. This re�ects the overwhelming prevalence of 
the scienti�c literature on the subject, as very scant information is available about 
AMPs devoid of disul�de bonds in Bivalvia. As a striking example, no AMP with an 
amphipathic α-helical secondary structure has ever been isolated, despite their wide-
spread distribution and the important role these peptides cover in the innate immune 
system of other protostomes (Giangaspero et al. 2001). While it is possible that this 
lack of information mirrors a major shift toward the use of cysteine- rich AMPs in 
molluscs compared with other metazoans, other explanations are possible. For exam-
ple, in silico similarity-based discovery methods are biased toward conserved disul-
�de arrays, whereas α-helical or linear AMPs do not necessarily present a primary 
sequence similarity signi�cant enough to allow BLAST- or pro�le- based detection.

Some evidence supporting the involvement of peptides enriched in particular 
amino acids in bivalve immune response �rst surfaced with the report of short, 
secreted proline-rich peptides (CgPrp), which were found to be coexpressed with 
defensins in circulating hemocytes in M.  gigas, synergistically enhancing their 
activity (Gueguen et  al. 2009). A second, unrelated AMP was constitutively 
expressed in multiple tissues of the same species, and it was named molluscidin. 
This cationic peptide, similar to an AMP isolated in abalones, contained a series of 
dibasic repeats and exhibited broad-spectrum antimicrobial activity (Seo et  al. 
2013). The third and most recent case of linear cationic AMPs comprises myticalins 
and modiocalins from marine mussels pertaining to the Mytilus spp. and Modiolus 
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spp. genera, respectively. These AMPs, identi�ed thanks to an in silico approach, 
display a broad spectrum of activity against Gram-positive and Gram-negative 
bacteria. Myticalins are produced as pre-propeptides and display a gill-speci�c pattern 
of expression, suggesting a possible function as modulators of the microbial com-
munities associated with this important �ltrating tissue (Leoni et al. 2017).

The last major category of AMPs comprises peptides generated by fragmentation of 
larger precursors with various nonantimicrobial functions. Two important examples are 
provided by an antibacterial peptide isolated from Anadara kagoshimensis, which is a 
fragment of hemoglobin I (Chen et al. 2017b) and by the N-terminal highly cationic 
fragment of the histone H2B (named molluscin), which appears to modulate the bacte-
rial community in the gills of oysters and possibly other bivalves (Seo et al. 2011). 
Histone H4 may also have a role in bivalve immunity (Nikapitiya et al. 2013).

 Sequence Hyperdiversity as an Effective Weapon to Fight Microbial 
Infection
In addition to interspecies variability, several bivalve AMPs are characterized by 
an unusually high degree of intraspeci�c diversity. For example, the diversity of 
myticin C was �rst observed by denaturing gradient gel electrophoresis (DGGE), 
because of the presence of unique characteristic band patterns in individual mus-
sels (Costa et al. 2009a). It was later found out that this variability also matched 
nucleotide variation at the mRNA level and that about 8% of the codons within 
the myticin C sequence evolved under strong positive selection (Pallavicini et al. 
2008; Padhi and Verghese 2008). This high level of polymorphisms has been also 
observed in other (but curiously not in all) mussel AMPs with targeted massive 
parallel sequencing (Rosani et al. 2011). Similar considerations are also valid for 
oyster and clams defensins, whose sequence variability can be linked to relevant 
directional selection pressures (Schmitt et al. 2010; Wang et al. 2015c). It is still not 
entirely clear whether this remarkable sequence diversity is due to a high number 
of paralogous genes, high allelic variability, RNA editing, or all of these factors 
combined. Furthermore, evidence collected from both oysters (Rosa et al. 2015) and 
mussels (Leoni et al. 2017) strongly hints that complex phenomena of gene pres-
ence/absence variability might partially explain the extreme diversi�cation of anti-
microbial effectors. Certainly, the presence of such a diversi�ed arsenal of AMPs, 
apparently driven by selective forces, suggests that amino acid variations might 
have been evolutionarily exploited to broaden the spectrum of action of these mol-
ecules, endowing bivalve populations with effective weapons to face the challenge 
of microbial infection.

 Lysozymes, Bactericidal/Permeability-Increasing Proteins, 
and Other Pore-Forming Molecules

 Lysozymes
The term “lysozymes” is used to collectively describe a group of heterogeneous and 
widespread proteins involved in the animal innate immune system, which display 

Immunity in Molluscs: Recognition and E�ector Mechanisms, with a Focus on Bivalvia

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852



strong lytic action against bacteria. Although all lysozymes share a similar structural 
fold, they largely diverge in their primary sequence, which can therefore be used for 
classi�cation purposes within three main classes: chicken-type (C-type), goose-
type (G-type), and invertebrate-type (I-type) lysozymes (Callewaert and Michiels 
2010). From a genomic perspective, it is now clear that genes encoding all three 
major lysozyme types can be simultaneously present in the same species, some-
times with several different variants, which might cover slightly different biologi-
cal functions (Gerdol and Venier 2015). In spite of their remarkable primary 
sequence divergence, all lysozymes share the same glycoside hydrolase enzymatic 
activity, which catalyzes the hydrolysis of peptidoglycan and, to a lesser extent, 
chitin. As PGN is a main component of the bacterial cell wall in Gram-positive 
bacteria but not in Gram-negative bacteria, lysozymes display stronger activity 
against the former.

The �rst studies on bivalve lysozymes were conducted on I-type sequences, with 
the puri�cation of chlamysin in the Arctic scallop, Chlamys islandica (Nilsen et al. 
1999). Highly similar sequences, implicated either in immune response or in diges-
tive processes, were later reported in several other bivalve species (Matsumoto et al. 
2006; La Peyre et al. 2010; Yue et al. 2011; Ren et al. 2012). The isolation of the 
complete gene sequence of bivalve I-type lysozymes allowed in-depth phylogenetic 
analyses, which revealed a remote homology between this class of enzymes and 
vertebrate C-type lysozymes, hinting at an evolutionary origin from a common 
ancestor (Bachali et al. 2002). The discovery that different I-type paralogous genes 
in hydrothermal vent mussels play a crucial role not just in antimicrobial response 
but also in the management of symbiotic communities (Detree et al. 2016a) is one 
of the most signi�cant recent developments in bivalve lysozyme research.

In comparison, bivalve C-type lysozymes have been the subject of little scienti�c 
attention, with only a handful of studies reported so far. Following its initial identi-
�cation in M. galloprovincialis (Venier et al. 2009), this enzyme was characterized 
as an inducible gene product, capable of targeting a broad range of bacteria (Wang 
et al. 2013c).

The presence of G-type lysozymes, previously thought to be taxonomically 
restricted to vertebrates, was demonstrated in 2007 in the scallop A. farreri (Zhao 
et al. 2007). In the following years, G-type lysozymes have been genetically and 
partly also functionally characterized in scallops and mussels (He et  al. 2012a; 
Wang et al. 2013c; Li et al. 2013b), evidencing that paralogous gene copies might 
have acquired a specialized function in either digestive or immune functions. As a 
unique known case in nature, a chimeric protein combining a C-terminal G-type 
lysozyme domain with an N-terminal PGRP domain has been identi�ed in M. gigas. 
This protein, which might combine bacteria binding and lytic properties, was induc-
ible in hemocytes in response to Marinococcus halophilus and V. tubiashii exposure 
(Itoh and Takahashi 2009).

More recently, a fourth type of lysozyme was identi�ed in veneroid clams. This 
novel antibacterial protein surprisingly shared signi�cant similarity with lysozymes 
produced by bacteriophages to break the PGN chains of the infected bacterial cell 
walls and release mature phages (Ding et  al. 2014). An interesting comparative 
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study shed some light on the origin of this gene, revealing its co-option from viruses 
by horizontal gene transfer in two major bivalve groups, Heterodonta and 
Palaeoheterodonta. Following this event, the newly acquired sequences underwent 
complex genomic rearrangements, which overall contributed to increased antibacterial 
potential (Ren et al. 2017a).

 Bactericidal/Permeability-Increasing Proteins
While lysozymes mainly target Gram-positive bacteria, a similar antibiotic action is 
exerted toward Gram-negative bacteria by Bactericidal/permeability-increasing 
proteins (BPIs), strong pore-forming agents found in nearly all metazoans. The 
speci�city of action of BPIs is given by the recognition of LPS. The biological prop-
erties of M. gigas BPI (reminiscent of its vertebrate homologs) and its pattern of 
expression (broad distribution in different epithelia) suggested a role as a �rst line 
of defense in oyster mucosal immunity (Gonzalez et  al. 2007b). Further genetic 
investigations revealed the presence of a second oyster gene copy, which displayed 
a slightly different expression pattern and functional specialization (Zhang et  al. 
2011d). Although the expression of BPIs can be positively regulated by LPS and 
bacterial challenges in oysters and ark shells (Zhang et al. 2011d; Mao et al. 2013), 
the molecular networks underlying this mechanism are still unknown. However, 
they are likely to be dissimilar to those involved in the production of lysozymes, 
which appear to be mostly downregulated under the same experimental conditions 
(Li et al. 2008; Ren et al. 2012), with some notable exceptions (He et al. 2012a; 
Wang et al. 2013c).

 Might Pore-Forming Molecules Provide a Connection 
with the Complement System?
The possible connections with MAMP sensing by secreted and membrane-bound 
PRRs and maybe even with the primitive bivalve complement system remain to be 
fully elucidated. Because of the absence of convincing homologs of the molecu-
lar components of the terminal lytic pathway of the complement system, other 
pore- forming molecules are likely to cover a similar function in bivalve molluscs. 
While both lysozymes and BPIs could be involved, other options remain to be 
investigated.

A fascinating possibility is provided by different recently described cases. The �rst 
one, described so far only in the Mediterranean mussel, involves a protein containing 
a Membrane Attack Complex/Perforin (MACPF) domain structurally similar to that 
of C6/C7/C8/C9 proteins (Estévez-Calvar et al. 2011). Despite the negligible primary 
sequence similarity with these complement components, its upregulation strongly 
suggested an involvement in innate immune response. This observation gained even 
more importance with the report of over a dozen different similar gene products in the 
mussel transcriptome, which in some cases encode proteins where the perforin-like 
domain is associated with a PGN-binding ApeC domain (Gerdol and Venier 2015). 
The second class of molecules that might act as functional homologs to the comple-
ment terminal pathway are mytilectins (see section “The Role of Lectins in Immune 
Recognition”). Indeed, some mytilectins display a C-terminal aerolysin-like 
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pore-forming domain, which could be employed in the lysis of microbial cells 
(Gerdol and Venier 2015). While both the Ricin B/aerolysin and ApeC/MACPF 
domain combinations could potentially result in highly ef�cient and concerted rec-
ognition and killing of invading pathogens, further functional assays will clearly be 
needed to investigate the possibility that these molecules are involved in pathogen 
recognition and clearance in mussels and other bivalve species.

 Proteases and Protease Inhibitors

 An Overview on the Role of Proteases and Their Inhibitors 
in the Bivalve Immune System
Several important immune processes are regulated by the concerted action of prote-
ases and their inhibitors, which might act either on endogenous proteins, by cleav-
ing regulatory subunits and enabling their biological activity of their targets, or on 
exogenous proteins produced by invading microbes and parasites, leading to their 
inactivation and degradation. Some of the fundamental immune processes described 
in other sections, such as the complement system (see section “Evidence of an 
Ancient Complement System in Bivalves?”), the prophenoloxidase cascade leading 
to melanization (see section “The Phenoloxidase Cascade”), and apoptosis (see 
section “Apoptosis and Autophagy”), are essentially governed by a cascade of pro-
teolytic activations, initially triggered by the recognition of MAMPs by PRRs. 
Although the molecular players involved in such cascades have been comprehen-
sively characterized in some invertebrates, such as in the case of melanization in 
insects (Tang 2009) or hemocyte clotting in horseshoe crabs (Iwanaga et al. 1998), 
the nature of such proteases has not been entirely clari�ed in bivalve molluscs.

This can be partly explained by the lack of speci�c studies on the subject, but 
also �nds a justi�cation in the fact that these molecules pertain to large and multi-
functional families of proteases involved in a multitude of other cellular processes, 
often not linked with immune response. As an example, while the core components 
of the bivalve complement system, as well as a remarkable number of lectin-like 
molecules, have been characterized in bivalves, no MASP-like proteases has been 
identi�ed with certainty (see section “Evidence of an Ancient Complement System 
in Bivalves?”), leaving a huge gap of knowledge about the link between MAMP 
recognition in the extracellular environment and the activation of C3, even though 
several similar uncharacterized serine proteases are present in bivalve genomes 
(Wang et al. 2017b). Similarly, the nature and speci�city of action of the bivalve 
prophenoloxidase-activating enzymes (see section “The Phenoloxidase Cascade”) 
and the identity of the proteases involved in the process of activation of AMPs (see 
section “Antimicrobial Peptides”) still remain uncertain. Big defensins, CRP-I, 
mytimycins, and myticalins, for example, possess a dibasic cleavage site, which 
could be potentially cleaved off by proprotein convertases (Gerdol et  al. 2012, 
2015a; Leoni et al. 2017). However, other mussel AMPs such as defensins, mytilins, 
and myticins lack a clear consensus motif for propeptide cleavage and are therefore 
expected to be the substrates of other, still unknown, proteases.
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 Cathepsins
While all of the aforementioned proteases mainly exert their biological action in the 
extracellular environment, others are typically present in lysosomal compartments, 
where they aid the phagocytic processing of heterophagic and autophagic material. 
Among these, cathepsins have been the subject of multiple studies and inked to 
immune functions in bivalves, consistently with the well-known role these proteases 
have in the regulation of vertebrate immune and cell death processes (Zavasnik- 
Bergant and Turk 2006; Repnik et al. 2012). In particular, multiple cathepsins have 
been characterized in the Chinese razor clam, S.  constricta, where B-, C-, and 
L-type cathepsin were upregulated following V. anguillarum challenges in the man-
tle and, in particular, in the digestive gland (Niu et  al. 2013a, b, 2014). Similar 
observations concerning tissue speci�city and responsiveness to bacterial chal-
lenges have been also collected for a cathepsin L in Cristaria plicata (Hu et  al. 
2014), in contrast with a report from the Sidney rock oyster S. glomerata, where 
cathepsin B and L transcripts were mostly detected in hemocytes (Ertl et al. 2016).

 Serine Protease Inhibitors: The Case of Oyster Perkinsosis
The infection process of many animal pathogens is also aided by a number of prote-
ases, which target and inactivate host defense proteins and sometimes have more 
profound effects on the modulation of the host immune system (Armstrong 2006; 
Donnelly et al. 2011). In bivalve molluscs, this system has been best characterized in 
response to the parasite P. marinus, which produces proteases that speci�cally target 
defense plasma proteins, thereby impairing the immune response and creating favor-
able conditions for the establishment of infections by bacterial pathogens (Oliver 
et al. 1999; Tall et al. 1999). As a consequence, many bivalve species have developed 
large gene families of protease inhibitors to counteract the action of exogenous pro-
teases produced by protozoans and other parasites (Romestand et al. 2002).

The serine protease inhibitors of the eastern oyster, C.  virginica (CvSI) (Xue 
et al. 2009), pertain to the I84 family of serine protease inhibitors. These molecules 
have been implicated in resistance to P. marinus infections because of their high 
activity in oysters selected for increased survival in comparison with susceptible 
specimens (La Peyre et al. 2010) and their ability to inhibit the perkinsin pathogenic 
protease (Xue et al. 2006). Furthermore, a polymorphism located in the promoter 
region of the CvSI-1 gene was conclusively linked to its increased transcription and, 
consequently, to improved resistance to P. marinus (He et al. 2012b), and the expres-
sion levels of CvSI could also explain the interspecies differences in susceptibility 
to infection between C. virginica and the more resistant oyster species Crassostrea 

corteziensis (Gutiérrez-Rivera et al. 2015). Altogether, I84 serine protease inhibi-
tors are part of a highly expanded and still rapidly evolving molluscan gene family 
(Xue et al. 2017a).

 Kazal-Type Serine Protease Inhibitors and Tissue Inhibitors 
of Metalloproteinases
Kazal-type serine protease inhibitors are another large and widespread class of mol-
ecules that have been connected to immune functions in marine bivalves. These 
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molecules were reportedly upregulated in the hemocytes of the scallop A. irradians 
following tissue injury and bacterial challenges (Zhu et al. 2006). Another Kazal- 
type protease inhibitor from A.  farreri contained 12 tandemly repeated Kazal 
domains and was upregulated upon V. anguillarum challenges (Wang et al. 2008), 
and two similar but shorter proteins could be similarly induced in the hepatopan-
creas of R. philippinarum and in multiple tissues of the clam Mesodesma donacium 
under similar experimental conditions (Maldonado-Aguayo et  al. 2013; Yu et  al. 
2017). Like I84 inhibitors, Kazal-type inhibitors are produced by a multigenic fam-
ily, whose members display different substrate speci�city and sensitivity to stimula-
tion (Zhang et al. 2014a).

The third large class of immunity-related protease inhibitors that has been stud-
ied in bivalves comprises the tissue inhibitors of metalloproteinases (TIMPs). 
Cg-TIMP, �rst identi�ed in M. gigas because of its accumulation in hemocytes fol-
lowing shell injury and bacterial challenges (Montagnani et al. 2001), is activated 
through a DAMP-dependent pathway and is possibly regulated by NF-κB binding 
elements located in its promoter (Montagnani et al. 2007). The immune properties 
of TIMPs have not been investigated in other bivalve species, with the exception of 
the blood cockle Tegillarca granosa, where TgTIMP-4 is responsive to LPS, PGN, 
and V. parahaemolyticus challenges (Wang et al. 2012c).

These and other protease inhibitors might be involved in the management of 
microbial infections, as suggested by multiple reports of their upregulation from 
transcriptomic studies (Feng et al. 2010; Moreira et al. 2012a; Allam et al. 2014; 
Nikapitiya et al. 2014). However, the mode of action of just a few of these mole-
cules has been properly functionally characterized. Therefore, protease inhibitors 
remain attractive targets for the study of host–pathogen interactions, in particular in 
the context of viral infections.

 The Phenoloxidase Cascade

The recognition of MAMPs by PRRs, as well as various types of environmental 
stress, can trigger an extracellular proteolytic cascade, which leads to the conver-
sion of prophenoloxidases (ProPO)  to their active form, phenoloxidases (PO), 
copper- binding metalloproteins that catalyze the oxidation or hydroxylation of phe-
nols. Different enzyme classes (tyrosinases, catecholases, and laccases) with low 
substrate speci�city and similar activity exist in invertebrates, leading to a certain 
confusion in their unambiguous identi�cation by biochemical tests on tissue extracts 
(Luna-Acosta et al. 2017). However, the activity of PO leads to the synthesis of the 
melanin pigment. This process, unique to a few invertebrate phyla, including arthro-
pods and molluscs, enables the deposition of melanin on invading microbes, limit-
ing the spread of infection. While the molecular players involved in the regulation 
of the melanization proteolytic cascade have been extensively studied and charac-
terized in arthropods (Christensen et al. 2005; Tang 2009), limited information is 
available in molluscs (Luna-Acosta et al. 2017).
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Secreted PGRPs are the main PRRs responsible for the activation of the ProPO 
cascade in Drosophila and other arthropods (Schmidt et  al. 2008). However, as 
explained in section “Other Membrane-Bound Immune Receptors,” while extracel-
lular proteins with an N-acetylmuramoyl-L-alanine amidase domain are encoded by 
molluscan genomes, they seem to share closer similarities to those of vertebrates, 
where they play a direct bactericidal role. This divergence is in line with the major 
differences between arthropods and molluscs, which involve the interconnected 
TLR (with the lack of Spätzle; see section “Canonical TLR Signaling”) and IMD 
pathways (see section “Other Immune Signaling Pathways”).

In bivalves, the melanization process has been known for a very long time as a 
normal physiological process linked to shell deposition in pallial mantle epithelia 
(Waite and Wilbur 1976). However, increased melanization, usually followed by a 
massive rearrangement of extracellular matrix deposition and alterations in shell 
mineralization, is also among the most distinctive features of some common pathol-
ogies of the bivalve mantle tissue (see section “Major Infectious Diseases Affecting 
Bivalve Molluscs”) (Ford and Borrero 2001; Paillard 2004). Further evidence sup-
ports the involvement of the ProPO cascade in response to parasitic, bacterial, and 
viral infection, as PO activity appears to be strongly altered in M. sydneyi–infected 
Sydney rock oysters (Raftos et al. 2014; Luna-Acosta et al. 2017). Melanization is 
probably not merely an extracellular event, as it might also be implicated in the 
intracellular killing of encapsulated microbes (Butt and Raftos 2008). Moreover, the 
different rates of inhibition of PO activity in the hemocytes of M.  gigas and 
Geukensia demissa in response to P. marinus infections could be linked to the dif-
ferent degree of susceptibility of the two species to infection (Jordan and Deaton 
2005). These observations support the important role of the ProPO cascade as a 
system of defense against microbial infections in bivalve molluscs.

The existence of an extracellular ProPO cascade linked to components of the 
hemolymph has been conclusively demonstrated in M.  gigas and Perna viridis, 
where it could be induced by LPS, zymosan, and laminarin (Asokan et al. 1997; 
Hellio et al. 2007). However, a proper functional characterization of POs is still 
lacking in most bivalve species and the sequences of very few PO genes have been 
identi�ed. This is ascribable in part to the broad distribution of PO activity in dif-
ferent tissues and life stages, including the digestive gland, the mantle and shell, 
and the foot, where POs are likely to cover speci�c functions that are yet to be fully 
unveiled (Luna-Acosta et al. 2011b). For example, tyrosinases pertain to a gene 
family which underwent signi�cant expansion in bivalves and has been implicated 
in the shell mineralization process (Huang et  al. 2017c; Chen et  al. 2017a). 
However, a tyrosinase-like protein signi�cantly contributes to PO activity in 
S.  glomerata hemocytes (Aladaileh et  al. 2007) and a tyrosinase-like transcript 
whose expression level was signi�cantly overexpressed in response to bacterial 
challenges has been reported in A. farreri (Zhou et al. 2012). In the same species, 
a 576-kDa protein with PO activity, selectively inhibiting the growth of Vibrio spp. 
and Aeromonas salmonicida, has been puri�ed from hemocytes (Xing et al. 2012). 
Interestingly, a protein with a similar molecular weight (555  kDa), displaying 
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p-diphenoloxidase activity, has been obtained from the hemocytes of a different 
scallop species, A. irradians (Jiang et al. 2011). Other studies have identi�ed the 
hemocyte-speci�c PO enzyme as a laccase in M. gigas (Luna-Acosta et al. 2010, 
2011a) and R. philippinarum, where only minor tyrosinase-like activity could be 
detected (Le Bris et al. 2013).

While the function of the ProPO cascade in the bivalve immune response has 
been fully established in relation to different diseases, this topic has been the subject 
of limited molecular studies and therefore still awaits detailed investigations to clar-
ify which PRRs enable the melanization of invading microbes, both in the extracel-
lular matrix and within phagocytic cells.

 Cellular Immune Responses

 Phagocytosis

 Hemocytes Are the Main Cell Type Involved in the Phagocytic 
Process
Phagocytosis, encapsulation, and cell-mediated cytotoxicity have been extensively 
described in bivalves at a functional level and, more recently, at a genomic level 
(Schmitt et al. 2012; Soudant et al. 2013; Allam and Raftos 2015; Zannella et al. 
2017; Schultz and Adema 2017) (Fig. 15).

During the early 1900s, the pathologist Metchnikoff used marine organisms, 
among other models, to describe and hypothesize the role of phagocytosis in diges-
tion, immune defenses, and clearing of damaged cells (Gordon 2016; Schultz and 
Adema 2017). A dual role for bivalve hemocytes in digestion and immunity may be 
especially important during larval stages in bivalves, as suggested by evidence of 
phagocytic activity in early stages of larval development (Song et  al. 2016). 
Moreover, hemocytes concentrate particulate material in the connective tissues sur-
rounding the digestive glands in bivalve larvae (Dyachuk 2016). A more speci�c 
role for phagocytosis and encapsulation in disease resistance in bivalves has been 
hypothesized for Brown Ring Disease in clams, summer mortality in Paci�c oys-
ters, and QX disease (M. sydneyi) in Sydney rock oysters, based on in vitro observa-
tions of increased phagocytic function and/or upregulation of transcripts for genes 
putatively involved in phagocytosis in resistant bivalves compared with susceptible 
individuals (Allam and Ford 2006; Samain et al. 2007; Kuchel et al. 2010; Raftos 
et al. 2014).

Hemocytes are, by far, the best-studied phagocytic cells in bivalves. Flow cytom-
etry has allowed for the development of high-throughput assays for the evaluation 
of hemocyte immune parameters in bivalves, including characterization of the pop-
ulations of cells involved in phagocytosis of inert and biological particles and the 
subsequent stimulation of the oxidative burst response. Of the two major types of 
hemocytes described in bivalves on the basis of morphology, granulocytes in gen-
eral seemed to be responsible for the majority of the phagocytic response and pro-
duction of radical oxygen/nitrogen species (ROS/RNS), but this is highly dependent 
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Fig. 15 The main humoral and cellular components of the bivalve immune response to microbial 
infection. The different steps of phagocytosis and encapsulation are shown in blue. Invading patho-
gens are indicated in purple, and humoral effectors (see section “Humoral Immune Effectors”) are 
shown in green. (Source: Soudant et al. 2013)
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on the bivalve species and the nature of the stimuli (Schmitt et al. 2012; Soudant 
et al. 2013; Allam and Raftos 2015; Zannella et al. 2017; Schultz and Adema 2017). 
Moreover, differences in the timing of phagolysosome fusion between eosinophilic 
and basophilic hemocytes in deepwater mussels indicate that these two types of 
granulocytes may play different roles in phagocytosis, suggesting further de�nition 
of phagocytic capabilities within hemocyte populations (Tame et al. 2015). An addi-
tional type of hemocyte, a hemoblast-like cell, may be involved in phagocytosis, 
composing a small percentage of all phagocytic cells in a hemocyte population and 
showing low levels of oxidative burst and lysosomal enzyme activity. Differences in 
the rates of phagocytosis by hemocytes also depend on the source of hemocytes 
within an individual (i.e., circulating hemocytes versus those present in the pallial 
or extrapallial spaces). Hemocytes have the ability to migrate through the epithelia 
into these cavities and then go back into the tissues, and those collected from the 
pallial cavity appear to have higher phagocytic activity than circulating hemocytes 
(Allam and Pales Espinosa 2016). These observations indicate that different popula-
tions of hemocytes may respond to selected stimuli and show different mechanisms 
of action (Evariste et al. 2016; Bettencourt et al. 2017; Vieira et al. 2017).

Other cells thought to have phagocytic capabilities are epithelial cells, with an 
ability that may be exploited by intracellular bacteria such as the Chlamydia- and 
Rickettsia-like organisms commonly seen in the gill and mantle epithelia of marine 
bivalves and gastropods (Allam and Pales Espinosa 2016). Development of speci�c 
cell markers will help us to understand if differences in phagocytic activity between cell 
populations within bivalves are due to the presence of specialized cell populations 
and/or the context in which these responses are occurring.

 Phagocytosis in Detail: Chemotaxis, Opsonization, and Endocytosis
The process of phagocytosis involves the steps of chemotaxis, opsonization, endo-
cytosis, formation of phagosomes, phagosome–lysosome fusion, respiratory burst, 
and exocytosis. Upon infection and injury, hemocytes migrate to the site of injury 
through the process of chemotaxis. Examples of bivalve pathogens causing massive 
focal in�ltration of hemocytes at the site of infection include V. tapetis (Brown Ring 
Disease), P.  marinus, and QPX. A chemotactic and/or chemokinetic response of 
hemocytes has been observed in response to several PAMPs, including bacterial 
endotoxins and extracts from trematodes and P. marinus. The nature of the chemo-
taxis/chemokinetic response depends on the type of PAMP (Schmitt et  al. 2012; 
Soudant et  al. 2013; Allam and Raftos 2015; Zannella et  al. 2017; Schultz and 
Adema 2017).

Chemotaxis is followed by opsonization and phagocytosis. Transcriptomic anal-
ysis of Paci�c oysters in response to LPS and other immune stimuli indicates that 
phagocytosis is promoted by a variety of opsonins (Zhang et al. 2012a). Several 
PRRs have been functionally demonstrated to mediate phagocytosis induction by 
immune stimuli through several signaling pathways (see sections “Recognition, 
Agglutination, and Opsonization” and “Signaling and Regulatory Pathways”). 
For example, an extracellular superoxide dismutase (Cg-EcSOD), highly abun-
dant in oyster cell-free hemolymph, induces phagocytosis mediated by a β-integrin 
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(Duperthuy et al. 2011). Lectins from Manila clams (MCL and MCL4) stimulate 
the opsonization of P.  olseni parasite and V.  tubiashii bacterial cells and subse-
quent phagocytosis by clam hemocytes in vitro (Soudant et al. 2013; Zannella et al. 
2017). Competitive inhibition of a sialic acid–binding immunoglobulin-type lectin 
(CgSiglec-1) inhibits the stimulation of phagocytosis and apoptosis by LPS in oys-
ter hemocytes, consistent with the role of siglecs as regulators of immune responses 
(Liu et al. 2016a). Expression of genes involved in signaling pathways associated 
with integrin signaling and phagocytosis (PI3K, Rho J, MAPPK, PKC), phagosome 
maturation (Rab32), and respiratory bursts (NADPH oxidase) were upregulated 
upon secondary exposure to live V. splendidus after a primary challenge with killed 
V. splendidus (Zhang et al. 2014d).

 Phagocytosis in Detail: Respiratory Burst and Exocytosis
The process of phagosome–lysosome fusion has been functionally observed in 
deepwater mussels (Tame et al. 2015). After phagosome–lysosome fusion, a respi-
ratory burst ensues, followed by secretion of antimicrobial proteins (see section 
“Antimicrobial Peptides”) (Soudant et  al. 2013). On the basis of studies using 
enzyme activity measurements and the use of inhibitors, it appears that the mecha-
nisms for production of reactive oxygen species (ROS) and reactive nitrogen spe-
cies (RNS) are in general homologous to the ones observed in vertebrates (Soudant 
et al. 2013; Schultz and Adema 2017). The timing and extent of the respiratory burst 
in bivalve hemocytes, however, differs from those of the respiratory burst in verte-
brate models. Moreover, bivalves and other marine invertebrates also show some 
differences from vertebrates in terms of the basal (not pathogen stimulated) genera-
tion of ROS as part of energy metabolism in organelles such as the mitochondria, 
endoplasmic reticulum, and peroxisomes (Donaghy et al. 2015). Sequencing studies 
indicate that, in addition to NADPH oxidase, bivalves contain genes similar to dual 
oxidase (DUOX, involved in immunity in Drosophila), which are upregulated in 
response to pathogenic vibrios. Bivalve hemocytes also show myeloperoxidase 
(MPO) activity (Schmitt et al. 2012; Donaghy et al. 2015). Radical nitrogen species, 
such as nitric oxide and peroxinitrite, also have an important role against pathogens 
in bivalves (Villamil et al. 2007). Nitric oxide also acts as an immune regulator (see 
section “Connections with the Neuroendocrine System”), enhancing phagocytosis, 
antibacterial activity, and apoptosis in bivalve hemocytes (Song et  al. 2015). 
Expression of the single nitric oxide synthase (NOS) described in bivalve molluscs 
is modulated by immune stimuli (Song et al. 2015). In oyster hemocytes stimulated 
with zymosan, the NOS pathway is more active in hyalinocytes, while NADP oxi-
dase activity is more prevalent in granulocyes (Lambert et al. 2007).

Antioxidant and detoxi�cation enzymes are produced to protect cells from the 
toxicity of ROS and maintain redox homeostasis. Genome and transcriptome stud-
ies have led to the identi�cation of the genes for �ve superoxide dismutases (SODs)  
in the Paci�c oyster genome (He et al. 2015), two functional catalase genes in the 
oyster M. hongkongensis, and the genes coding for several glutathione peroxidases 
(GPxs) and gluthathione transferases (GSTs) (Sui et al. 2017; Wang et al. 2017a). 
Of the six known groups of superoxide dismutases, only manganese and copper/zinc 
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have been characterized so far in bivalves. Little is known, however, about the 
speci�c roles of these enzymes in immunity and disease resistance. An extracellular 
SOD from Paci�c oysters, CgEcSOD, a major component of oyster plasma, shows 
both antioxidant and PRR activities and is able to promote the phagocytosis of 
the bacterial pathogen V. splendidus (Wang et al. 2017a). The expression of Mn and 
Cu/Zn SODs is upregulated with both viral and bacterial challenge, and alleles in 
the intracellular and extracellular Cu/Zn SOD have been associated with disease 
resistance to Vibrio infection in bay scallops (Wang et al. 2013b; Song et al. 2015; 
Wu et al. 2017).

 Accessory Factors and Mechanisms of Regulation of Cell-Mediated 
Cytotoxicity
Other molecules shown to be involved in intracellular killing in the phagolysosome 
in bivalves include hydrolytic enzymes (β-glucuronidase, esterases, phosphatases, 
sulfatases, lipases), including unique versions of lysozymes showing tissue-speci�c 
patterns of gene expression (see section “Lysozymes, BPIs and Other Pore-Forming 
Molecules”) and other antimicrobial molecules (phenoloxidases, antimicrobial 
peptides; see section “Antimicrobial Peptides”) (Tanguy et  al. 2013; Zannella 
et al. 2017). Phagocytosis and encapsulation are also aided by the prophenoloxidase 
system, a complex biochemical cascade occurring mainly in the hemolymph of 
bivalves, which is activated by microbial MAMPs, exogenous proteases, and envi-
ronmental stress, leading to the formation of the antimicrobial molecule melanin 
(see section “The Phenoloxidase Cascade”)

Little is known about the process of regulation of cell-mediated cytotoxicity in 
bivalves. A potential regulator of hemocyte function, thymosin beta-4, has been 
characterized in the oysters M. hongkongensis and M. gigas, and in the gastropod 
Haliotis discus discus. Treatment of oysters with recombinant protein led to 
increased numbers of circulating hemocytes, increased bacterial clearing, reduction 
of ROS production, and increased production of antioxidant enzymes, suggesting a 
potential role in wound healing (Li et  al. 2016a). Dysregulation of the oxidative 
burst, on the other hand, may be involved in the pathogenesis of several diseases 
affecting marine bivalves. For example, oxidative stress resulting from a strong oxi-
dative burst response, characterized by a strong upregulation of oxidase genes and 
downregulation of antioxidant genes, may contribute to the pathology seen in larval 
and juvenile oysters experimentally challenged with OsHV-1 μVar (He et al. 2015; 
Young et al. 2017) or infected with the bacterial pathogen A. crassostreae (McDowell 
et al. 2014).

 Mechanisms of Evasion Adopted by Invading Pathogens
Several pathogenic and nonpathogenic vibrios, Chlamydia and Rickettsia-like 
organisms, and the protozoan parasites B. ostreae, P. marinus, and P. olseni appear 
to have evolved mechanisms to evade cell-mediated cytotoxicity in bivalves, 
exploiting that ability to survive within host tissues. Potential mechanisms used to 
evade phagocytosis and encapsulation include dysregulation of immune signaling 
through phosphorylation of p38-MAPK and induction of apoptosis of hemocytes 
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(Ciacci et al. 2017; Burgos-Aceves and Faggio 2017). Other microbes can avoid 
intracellular killing by respiratory burst pathways in bivalve molluscs (Schmitt 
et al. 2012; Soudant et al. 2013; Allam and Raftos 2015). The enzymes arginase, 
alkaline phosphatase, ascorbate-dependent peroxidase, and superoxide dismutase 
are several of the factors potentially involved in the ability of P. marinus to inhibit 
ROS production in oyster hemocytes and survive in vitro exposure to ROS (Schott 
and Vasta 2003; Schott et al. 2003; Fernández-Robledo et al. 2008) (Fig. 16). The 
parasite is also resistant to high concentrations of nitric oxide (Villamil et al. 2007). 
The natural resistance–associated macrophage protein (NRAMP) in P. marinus, 
involved in iron uptake in P. marinus trophozoites, is hypothesized to deplete iron 
in hemocytes, limiting the ability of hemocytes to mount an effective respiratory 
burst (Lin et al. 2011). Moreover, the wall of parasites such as P. olseni appears to 
be resistant to proteolysis (Montes et  al. 2002). Extracellular products from a 
pathogenic strain of V. splendidus inhibit phagocytic activity in mussel M. edulis 
hemocytes, while those of a nonpathogenic strain do not (Ben Cheikh et al. 2016). 
Some metazoan parasites such as the digenean trematodes Bucephalus sp. and 

Fig. 16 Interaction between prooxidant (orange) and antioxidant (purple) activities in the phago-
some of an hemocyte from the eastern oyster, Crassostrea virginica (blue), upon phagocytosis of 
the protozoan parasite Perkinsus marinus cell (purple). Prooxidant activities are exerted by hemo-
cytes to kill the invading microbe by exposure to ROS (red), whereas antioxidant activities are used 
by P. marinus to escape these defensive measures. AP acid phosphatase, APX ascorbate-dependent 
peroxidase, HOCl hypochloride, iNOS inductible nitric oxide synthase, MPO myeloperoxidase, 
NO  nitric oxide, Nramp  Natural Resistance–Associated Macrophage Protein, O2−  superoxide 
anion, ONOO− peroxynitrite, SOD superoxide dismutase. (Source: Soudant et al. 2013)
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Proctoeces maculatus may also modulate hemocyte function in bivalve hosts, leading 
to decreased hemocytic in�ltration in infected tissues (Carella et al. 2015).

 Encapsulation and Granuloma Formation
The processes of encapsulation and granuloma formation occur when particles or 
pathogens are too large to be engulfed by hemocytes (e.g., in infection by trema-
todes) or the phagocytosis response is unsuccessful (e.g., in infection by Perkinsus 
spp. or Nocardia spp.). In the process of encapsulation, hemocytes recruited to the 
site of infection surround and encapsulate the invading pathogen, secreting extra-
cellular matrix products to prevent dissemination of the pathogen to other tissues 
and a variety of lysosomal enzymes and antimicrobial molecules to attempt to kill 
it (Soudant et al. 2013; Allam and Raftos 2015; Carella et al. 2015). This process 
can occur within the tissues, leading to granuloma-like formation, or within the 
extrapallial space between the mantle and the inner side of the bivalve shell, leading 
to conchiolin or pearl formation (Carella et al. 2015). Examples of diseases leading 
to granuloma formation include trematode infestations, Perkinsosis in Ruditapes 
clams, QPX in the quahog M. mercenaria, and fungal infections in Sydney rock 
oysters (Soudant et al. 2013; Allam and Raftos 2015). Diseases characterized by 
conchiolin formation include Roseovarius or Juvenile Oyster Disease and Brown 
Ring Disease in Ruditapes clams (Allam and Pales Espinosa 2016). On the basis 
of morphological differences it has been hypothesized that specialized popula-
tions of hemocytes may be responsible for encapsulation (Allam and Raftos 2015). 
In Ruditapes clams infected by P. olseni, granulocytes secrete (from membrane-
bound granules) a polypeptide named p225, which surrounds encapsulated para-
sites and restricts parasite proliferation (Montes et al. 2002). Consistent with the 
importance of hemocytic in�ltration in diseases characterized by granuloma-like 
formations, transcriptomic studies have shown differential expression of genes 
involved in hemocyte migration, pathogen recognition and binding, and in�amma-
tion (McDowell et al. 2014; Allam et al. 2014; Wang et al. 2016a, b).

The process of shell formation aids in encapsulation in the extrapallial cavity, 
playing an important role in immune defenses by preventing the penetration of 
pathogens through the mantle of bivalves. The process of shell formation in bivalves 
involves the secretion of organic molecules by secretory cells in the epithelium of 
the mantle outer fold, which provide a matrix for the deposition of calcium carbon-
ate in a variety of structures, depending on the bivalve species. Hemocytes also 
play an important role in shell formation. A population of granulocytes containing 
calcium carbonate stored in granules migrate into the extrapallial space upon shell 
injury, forming aggregates at the biomineralization edge, which are incorporated 
into the shell as it forms (Mount et al. 2004; Zhang et al. 2012a; Li et al. 2016a). The 
fact that about 45% of the domains identi�ed in the shell proteome of bivalves are 
related to immune function indicate the importance of the shell in bivalve immune 
defenses (Arivalagan et  al. 2017). Among the organic compounds (1–5% of the 
total shell) that are embedded in the calcium carbonate structure that makes the 
shell, many immune-related molecules are worthy of mention, including PRRs 
such as galectin, scavenger receptor and C1q-related proteins, and effectors such as 
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phenoloxidases, proteases, and protease inhibitors (Zhang et al. 2012a; Arivalagan 
et al. 2017; Calvo-Iglesias et al. 2017). Moreover, genes coding for the shell pro-
teins are differentially expressed in oysters challenged with A. crassostreae and in 
Manila clams infected with V. tapetis. These two bacterial pathogens preferentially 
attach to the inner side of the shell in bivalves, and the diseases they cause are char-
acterized by the formation of conchiolin (McDowell et al. 2014; Allam et al. 2014).

 Apoptosis and Autophagy

 The Profound Implications of Apoptosis in Bivalve Physiology 
and Pathology
Apoptosis, a form of programmed cell death, is a highly evolutionarily conserved 
process involving two major distinct but converging pathways, the death-receptor- 
mediated pathway (an extrinsic pathway) and the mitochondrial pathway (an 
intrinsic pathway). Apoptosis plays an important role in immune responses by 
preventing the proliferation of intracellular pathogens, limiting in�ammation, and 
being involved in the activation of certain immune cells, such as neutrophils in 
vertebrates (Poon et al. 2014; Creagh 2014). On the basis of changes in apoptosis 
levels in response to a variety of environmental stimuli, apoptosis is thought to play 
key physiological roles in molluscs, such as maintenance of tissue homeostasis; 
processing and clearing of environmental pollutants; combating of bacterial, viral, 
and protistan pathogens; and adjustment to exposure to insecticides, herbicides, and 
pharmaceuticals (Kiss 2010; Moreau et al. 2015; Romero et al. 2015; Carella et al. 
2015; Zhang et  al. 2016a). The functional relevance of apoptosis modulation by 
pathogens and environmental stressors in bivalves, however, is still unclear, since the 
effect of challenge/exposure on apoptosis levels is not always consistent (Soudant 
et al. 2013). For example, exposure to Perkinsus spp. modulates apoptosis in oyster 
and clam hemocytes and tissues, but the nature of the modulation depends on the 
bivalve species and the stage of infection. Advanced stages of P. marinus infection 
in C. virginica are generally characterized by suppression of apoptosis, which is, 
on the other hand, enhanced at early stages of infection (Sunila and LaBanca 2003; 
Goedken et al. 2005; Hughes et al. 2010; Wang et al. 2017a). Interestingly, the pro-
tozoan parasite of eastern oysters P. marinus expresses many antiapoptotic genes in 
response to exposure to oyster pallial �uid, suggesting that this parasite may be able 
to regulate apoptosis in the host (Pales Espinosa et al. 2014). Basal rates of apop-
tosis in oysters also differ between the source of hemocytes, ranging from 5–25% 
in hemocytes in hemolymph to up to 50% in hemocytes within tissues (Sunila and 
LaBanca 2003; Goedken et al. 2005; Cherkasov et al. 2007; Sokolova 2009)

 Main Molecular Players in the Apoptotic Process
Although the major molecules and pathways of apoptosis appear to be conserved 
between bivalves and other species on the basis of genomic studies (Fig.  17), 
only a few of them have been characterized functionally. These include the exe-
cutioner caspase-3 and caspase-1 (caspase-7-like) from M. gigas, which appear 
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to act as intracellular LPS receptors (Xu et  al. 2016b; Wang et  al. 2017a). 
Interestingly, bivalves may possess a caspase-independent apoptotic pathway, 
hypothesized to be involved in apoptosis induced by the protozoan parasite P. marinus 
(Wang et al. 2017a).

Several gene families involved in the apoptotic process have experienced lineage- 
speci�c expansions, including tumor necrosis factors (TNF), tumor necrosis factor 
receptors (TNFRs), caspase  8, inhibitor of apoptosis proteins (IAPs), cysteine- 
aspartic proteases (caspases), and GTPase of the immune-associated proteins 
(GIMAPs) (Zhang et al. 2012a; Qu et al. 2015b; McDowell et al. 2016; Li et al. 
2016b; Wang et al. 2017a). Enhanced genetic diversity of these apoptosis pathway 
gene families may allow for more diverse but also pathogen-speci�c functional 
responses to disease and therefore increase the ability of apoptosis pathways to aid 
in stress mitigation and increase survival. For example, while oyster M. hongkon-

gensis Chcaspase8s is upregulated with bacterial challenge, M. gigas Cgcaspase8–2 
responds to viral challenge but not bacterial challenge (Wang et al. 2017a).

Two of these gene families, coding for IAPs and GIMAPs (also known in plants 
as immune-associated nucleotide-binding genes, or IANs), are of particular interest 
because of their known critical apoptosis regulatory roles in other organisms, their 
high level of transcript diversity in bivalves, and their demonstrated differential 
expression in bivalves after immune challenge. The GIMAP/IAN family has 26 
annotated members in M. gigas, similar to the predicted 26–28 GIMAPs in the east-
ern oyster, several of which are downregulated in eastern oyster juveniles after chal-
lenge with Roseovarius Oyster Disease (ROD), suggesting an upregulation of 
apoptosis (McDowell et al. 2016). The functional signi�cance of this expansion in 
bivalves is unknown, but GIMAPs are known to play key roles in regulation of 

Fig. 17 Apoptosis pathway molecules, with those identi�ed in molluscs indicated with asterisks. 
Genes identi�ed only in M. gigas are pre�xed by “Cg” and expanded gene families are shown in 
red text. Molecules that have been only preliminarily identi�ed in molluscs via the eastern oyster 
genome annotation are denoted with “-like” and genes that been implicated in caspase- independent 
mechanisms are outlined in black. (Kögel et al. 2013)
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lymphocyte survival, T-cell selection and homeostasis, phagolysosomal processing 
and membrane traf�cking in vertebrates, and pathogen resistance in the model plant 
system Arabidopsis (Weiss et al. 2013; Webb et al. 2016).

The CgIAP family represents another expanded apoptosis-related family in oys-
ters, with 48 gene members, likely the result of tandem gene duplications (Qu et al. 
2015b; Zhang et al. 2016a; Wang et al. 2017a). IAP proteins have known roles in 
apoptosis inhibition by interacting with caspases, and direct evidence of this inter-
action has been shown for CgIAP2, where its characteristic BIR2 domain directly 
interacts with Cgcaspase-2 (Zhang et al. 2011b; Qu et al. 2015b). Bacterial chal-
lenges of the Paci�c oyster with the bacterial pathogen V. anguillarum have shown 
increased gene expression over time (Zhang et al. 2011b; Qu et al. 2015b). When 
two families of Paci�c oyster with different susceptibility to ostreid herpesvirus-1 
(OsHV-1) were exposed to this virus, CgIAP expression was signi�cantly upregu-
lated in both families though with higher levels of expression in the family most 
sensitive to OsHV-1 (Zhang et al. 2016a). Another gene family with potential roles 
in apoptosis worth mentioning here is the TIR-DC family 10, characterized by the 
presence of two baculovirus inhibitor of apoptosis protein repeat (BIR) domains. 
This gene family has been found only in bivalves (Gerdol et al. 2017).

 Potential Involvement of Autophagy in Immune Response
Not much is known about the role of other forms of programmed cell death in 
innate immune responses in bivalves. Autophagy, which is involved in innate 
immunity against intracellular pathogens in vertebrates, is induced in oysters in 
response to bacterial and viral challenge, as well as environmental stimuli such 
as changes in salinity, hypoxia, toxins, or lack of nutrition (Carella et  al. 2015; 
Wang et al. 2017a). Genes in the autophagy (ATG) pathway have been described in 
Paci�c oysters, and autophagy is involved in survival after challenge with OsHV-1 
and V. aestuarianus, two pathogens commonly associated with summer mortality 
in the Paci�c oyster, M. gigas. Interestingly, while challenge with OsHV-1 led to 
induction of autophagy, challenge with V. aestuarianus resulted in inhibition of 
autophagy (Moreau et al. 2015).

 Overview of the Immune System of Other Molluscan Classes

We have so far outlined the main molecular and cellular components of the immune 
system of Bivalvia, the second largest molluscan class. Bivalves have been the sub-
ject of extensive immunological research over the past few decades, motivated by 
the high socioeconomic importance of edible species, their widespread distribution, 
and their amenability for laboratory research. The largest molluscan class in terms 
of the number of species, gastropods, has attracted considerable attention for similar 
reasons. These animals—adapted to the freshwater, marine, and terrestrial environ-
ments—present astounding morphological diversi�cation, including snails, slugs, 
limpets, nudibranchs, and others. This diversity can be correlated with the adapta-
tion of lineage-speci�c strategies for immune defense, which in some cases has led 
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to the acquisition of unique traits and advanced mechanisms, such as the somatic 
diversi�cation of FREPs. The main features of the gastropod immune system are 
presented in detail in Chap. 12.

Unfortunately, very little information is available concerning several aspects of 
the basic biology of the other molluscan classes, such as aplacophorans, monopla-
cophorans, polyplacophorans, and scafopods. Consequently, the immune systems 
of these animals and the possible peculiar survival strategies that might have been 
developed in these taxa during their evolution are presently unknown. The few data 
collected so far concern cellular immunity of chitons, where phagocytic cells 
located in circulating hemolymph, as well as in connective tissue, seem to bear 
remarkable immune recognition properties (Crichton et  al. 1973; Crichton and 
Lafferty 1975).

The exception is represented by cephalopods, which have historically attracted 
major scienti�c attention, in particular due to their complex nervous system, intel-
ligence, and learning skills. However, immune studies are also emerging, as evi-
denced by the conspicuous amount of literature produced on this subject over the 
past few years. The following sections will review the most distinctive peculiarities 
of the cephalopod immune system of these fascinating animals.

 A Short Journey in the Immune System of Cephalopods

Cephalopods (i.e., nautiluses, cuttle�sh, squid, and octopuses) comprise over 800 
living species (Sweeney and Roper 1998), about 300 belonging to Octopodidae 
(Jereb and Roper 2016) and including several species complexes (Allcock et  al. 
2011; Amor et al. 2014; Cheng et al. 2014; Sales et al. 2017). They are considered 
to rival vertebrates (Packard 1972) for physiological adaptations, complex neural 
organization, and behavior (Jereb and Roper 2005, 2010; Huffard 2013; Jereb and 
Roper 2016; Marini et al. 2017). The immune system of cephalopods consists of 
innate mechanisms and includes cellular and humoral defenses (Ford 1992; Castillo 
et al. 2015; Pila et al. 2016).

 The Highly Complex Circulatory System of Cephalopods
This molluscan taxon is the sole group of animals, other than vertebrates, to enjoy a 
fully enclosed high-pressure blood system, an example of convergent evolution 
(Wells 1983). Three hearts (one systemic and two branchial) move blood through an 
extraordinarily complex network of arteries, veins, and capillaries (Fig. 18), thus 
representing “a triumph of engineering over design” (Wells and Smith 1987). An 
overview on the physiology of the circulatory system and its development is avail-
able in a number of works (Naef 1928; Boletzky 1968; Wells 1983; Budelmann 
et al. 1997).

 Morphology and Function of Cephalopod Hemocytes
In contrast to bivalves, the circulating blood (hemolymph) in cephalopods turns 
blue when oxygenated (Wells 1983) because of the presence of hemocyanin. The 
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hemocytes—also named leukocytes (Bolognari 1949, 1951), amoebocytes, or gran-
ulocytes (Budelmann et al. 1997)—are the “key” cellular components of the immune 
system of cephalopods. In an analogy to other molluscs, the identi�cation of cellu-
lar types in cephalopods and their characterization is often contradictory, since their 
classi�cation may be biased by the technique that is utilized (Vieira et al. 2017). 
Furthermore, the variability in observed cells may re�ect the physiological status of 
the animals (Bolognesi and Fenech 2012; Locatello et  al. 2013; Castellanos- 
Martínez et al. 2014b). Attempts to develop a consensus on the nomenclature of 
hemocytes have been made for some molluscan species (Cheng 1984) but are still 
lacking for cephalopods. However, we outline their general description on the basis 
of the few reports available (Fig. 19).

Budelmann et al. (1997) described two types of cells in cephalopod hemolymph. 
The �rst type of hemocytes are round or oval cells, with an elongated V-shaped 

Fig. 18 General outline of the cephalopod circulatory system as exempli�ed for Eledone cirrhosa 
by Isgrove (1909). In coleoids (cuttle�sh, squid, and octopuses), three hearts exist: the systemic 
heart pumps oxygenated blood (red); the two branchial hearts move blood through the capillaries 
of the gills (Wells 1983). An extraordinary network of arteries (red), veins, and capillaries exist in 
cephalopods. The venous system (blue, right) is shown with the principal cephalic vein, pallial 
veins, three venae cavae, and a large perivisceral blood sinus. In Nautilus the circulatory system 
(not shown) is characterized by large venous spaces, i.e., the pericardium (Owen 1832), differently 
from what occurs in coleoids
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nucleus, known to extend large pseudopods producing amoeboid locomotion and 
capable of a phagocytic response and the secretion of pore-forming lysins and cyto-
toxic oxygen radicals by exocytosis of small granules (Budelmann et al. 1997). The 
second type include vacuolized round cells, which are relatively sessile (they do not 
display pseudopods), accumulate into large agglomerates, and are similar in size 
and shape to hemocytes. Each cell has either numerous small lysosomes or a single 
large lysosome. They are able to incorporate particles through micropinocytosis. 

Fig.  19 The different types of hemocytes identi�ed in cephalopod molluscs. Examples from 
bivalves are provided for comparison. See also Table 2 for further detail. The drawings are based 
on the original descriptions provided for mussels by Bolognesi and Fenech (2012), for oysters by 
Wang et al. (2017a), and for the cephalopods Sepia of�cinalis and Octopus vulgaris by Le Pabic 
et al. (2014a) and by Castellanos-Martínez et al. (2014b) and Troncone et al. (2015), respectively
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Vacuolized round cells are thought to correspond to the pore cells of other molluscs 
and to the monocyte–macrophage system of vertebrates (Budelmann et al. 1997).

Troncone and colleagues (2015) recognized three types of hemocytes in Octopus 

vulgaris: hemoblast-like cells, hyalinocytes, and granulocytes. According to those 
authors, the hemoblast-like cells are the smallest ones, not motile and without pseu-
dopodia. Hyalinocytes are described as variable in size, with a rounded or oval 
nucleus, and no or few granules and vacuoles of different diameters in the cyto-
plasm. The cells are capable of amoeboid movement and can form pseudopodia. 
Granulocytes are variable in size, highly amoeboid, and able to form many long 
�lopodia. Granulocytes are described as being characterized by an eccentric oval 
nucleus and numerous cytoplasmic granules of different sizes (endoplasm), while 
no granules are found in the ectoplasm (Troncone et al. 2015).

In coleoids (cuttle�sh, squid, and octopuses) the hemocytes originate from the 
white body (Bolognari 1949, 1951; Cowden 1972; Cowden and Curtis 1973), a 
multilobed organ covered by a thin layer of connective tissue surrounding, as cush-
ions, the optic lobes and located in the “orbits” in the head of the animal. White 
bodies extend between the medial external surfaces of the eyes and the skull, and 
encapsulate the “central brain.” The morphology, structure, and function of this 
organ were originally described by Bolognari (1949, 1951). A pioneering attempt to 
isolate the cellular components and to estimate their mitotic activity and culturing 
in vivo was carried out by Necco and Martin (1963). Further characterization of this 
organ in the octopus was provided by Cowden (1972), including ultrastructural 
analysis (Cowden and Curtis 1974). A functional description of the white bodies is 
also available for S. of�cinalis (Claes 1996) and for sepiolids (see below), while no 
analogous structures are known in Nautilus, to the best of our knowledge.

After histological examination, the white bodies appear as a network of connec-
tive �bers, blood vessels, and vascular varosities in which a mass of cellular strings 
is observed. These are believed to be precursors of the hemocytes (Bolognari 1949, 
1951; Cowden 1972). Leukocytes at different stages of “maturity” are identi�ed in 
the white bodies of O. vulgaris (Cowden 1972). According to the classical ultra-
structural description, the hemocytoblasts (or reticulum cells of the white bodies) 
are characterized by an abundant “rough” endoplasmic reticulum, mitochondria, 
and Golgi, and an irregular large vesicle reported to “contain some internal �brillar 
material condensed” in some areas (Cowden and Curtis 1974). These authors also 
provided a thorough description of other cellular characteristics, and of the transfor-
mation of hemocytoblasts to form primary and secondary leukoblasts, and �nally 
mature leukocytes. This last cell type appears to have a folded nucleus containing an 
abundance of condensed chromatin ... and dense extrachromosomal aggregates. The 
cytoplasm contains a number of electron-dense, rounded inclusions,” possibly 
derived from the reduction of vesicles characterizing the hemocytoblasts (Cowden 
and Curtis 1974).

Two main groups of hemocytes are recognized in cephalopods: cells containing 
many granules (granular hemocytes or granulocytes), and cells with few or no gran-
ules (agranular hemocytes, agranulocytes, or hyalinocytes). These correspond to the 
two types of cells described by Budelmann et al. (1997).
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The octopus hemocytes (sensu lato) act as immunocompetent cells in the hemo-
lymph (Ford 1992). They are involved in the recognition and elimination of poten-
tial pathogens through phagocytosis, encapsulation, in�ltration, and production of 
reactive agents with oxidizing capacity (i.e., reactive oxygen species (ROS) and 
reactive nitrogen species (RNS)). Hemocytes are also involved in scar formation, 
wound healing, and tissue repair by migrating to the site of injury, increasing in 
number and activity and forming plugs at the wound site to prevent hemolymph loss 
(Polglase et al. 1983; Féral 1988; Shaw et al. 2016; Imperadore et al. 2017).

The composition and number of hemocytes are highly variable both among spe-
cies (Le Pabic et al. 2014a) and between individuals (Malham et al. 1998, 2002; 
Locatello et al. 2013; Roumbedakis et al. 2017) in an analogy to other molluscs 
(Anisimova et  al. 2017). The number of circulating hemocytes appears variable 
among different individuals following “stressors” such as handling (Malham et al. 
1998, 2002), immune challenge (Locatello et al. 2013), or life stages (Roumbedakis 
et al. 2017). Phagocytosis is known as the primary immune response of hemocytes 
and has been reported in various species, e.g., Sepia of�cinalis (Le Pabic et  al. 
2014a), O. vulgaris (Novoa et  al. 2002; Rodríguez-Domínguez et  al. 2006), and 
Eledone cirrhosa (Malham et al. 2002).

 Molecular Immunology Studies Are Still at Their Embryonal Stage 
in Cephalopods
The humoral defense is achieved through soluble molecules (Castillo et al. 2015) 
such as opsonins, agglutinins, proteolytic enzymes, protease inhibitors, antimicro-
bials or cytotoxic compounds, phenoloxidase, and its intermediate synthesis prod-
ucts, which are in part similar to those described in detail for bivalve molluscs in the 
previous sections (Rögener et al. 1985; Lacoue-Labarthe et al. 2009; Alpuche et al. 
2010; Le Pabic et al. 2014b; Roumbedakis et al. 2017). However, as evidenced by 
recent transcriptomic approaches, a relevant fraction of lineage-speci�c genes with 
unknown function exists in cephalopods. This observation is particularly relevant 
considering large high number of unknown mRNAs identi�ed in the transcriptomes 
obtained from O. vulgaris hemocytes (Castellanos-Martínez et al. 2014a) and the 
white bodies of the sepiolid Euprymna tasmanica (Salazar et al. 2015).

Salazar and colleagues (2015) also provided a description of putative Euprymna 
immune-related genes, identifying—for example—NF-κB and components of the 
Toll signaling pathway, pattern recognition proteins, TNF-receptor-associated factors, 
and proteins denoting membrane attack complex/perforin domains, which in large 
part mirror those described in bivalves (see sections “Recognition, Agglutination, 
and Opsonization,” “Signaling and Regulatory Pathways,” and “Humoral Immune 
Effectors”).

Although the cellular and “humoral” components of cephalopods have been 
studied extensively (Castillo et al. 2015), our knowledge of cephalopod immunity is 
still in its infancy. In brief, evidence exists for (1) a possible role of the white bod-
ies as a hematopoietic and immune organ, and (2) the presence of different types 
and numbers of circulating cells after challenges. Molecular �ngerprints for the 
immune response have been so far explored only in a limited way (Collins et al. 
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2012b; Castellanos-Martínez et  al. 2014a; Salazar et  al. 2015). Preliminary evi-
dence collected over the past few years suggests that cephalopod immunity, like 
that of other molluscs (see Chap. 12, section “Molluscs Exhibit Immune Priming 
with Intermediate Degrees of Speci�city, and Involving a Plethora of Mechanisms” 
for a detailed discussion), may show some form of memory. The analysis of the 
plasticity of innate immune responses in these fascinating organisms is one of the 
most important future avenues for cephalopod science and, in particular, for immu-
nological studies.

 Bobtail Squid as a Model for the Study of Bacterial Symbiosis

The capacity of an animal’s immune system to recognize and remove nonself is 
crucial for its survival and, by tradition, this has been the context in which we have 
de�ned immune components, and even how we have designed experiments to 
understand their roles. This is easy to envision when one considers the detrimental 
presence of microorganisms to the host, either because of nutrient competition or 
tissue damage. This kind of association is, by de�nition, usually considered patho-
genic, but this is just one of the three types of symbiotic relationships an animal can 
establish with another species. The other two types are commensalism (where one 
species bene�ts and the other neither bene�ts nor gets harmed) and mutualism (a 
type of bene�cial relationship between two species, in which both obtain some type 
of bene�t). An animal can establish any one of these associations with the immense 
variety of microorganisms that share its ecological niche, i.e., bacteria, protozoans, 
helminths, fungi, or viruses. This section focuses on the major �ndings resulting 
from 30 years of study of one of these bene�cial interactions, the Euprymna scol-

opes–Vibrio �scheri symbiosis. This model has somewhat challenged our vision on 
the role of the immune system in metazoans.

The squid–Vibrio symbiosis is one of the most studied and better understood 
binomial associations between an animal and its bacterial symbionts (McFall-Ngai 
2008; Castillo et al. 2015; McAnulty and Nyholm 2017; Stabb and Visick 2013; 
Norsworthy and Visick 2015; Mandel and Dunn 2016). In addition, modern sequenc-
ing and proteomic technologies have recently allowed the identi�cation of several 
molecular players participating in the squid’s immune system (Chun et al. 2006; 
Wier et al. 2010; Collins et al. 2012a, b; Kremer et al. 2013; Salazar et al. 2015). 
The next paragraphs contain a brief description of this symbiosis, followed by spe-
ci�c information on the molecular players involved, with emphasis on the squid 
host immune components.

 Main Features of the Squid–Vibrio Symbiosis
This mutualistic symbiosis involves the squid E. scolopes, also known as the bobtail 
squid, a relatively small (adult mantle length ~3–4 cm), nocturnal sepiolid species, 
native to the Hawaiian archipelago (Berry 1912) (Fig. 20, panel b1). The symbionts 
are Gram-negative marine Proteobacteria members of the Vibrionaceae family, 
capable of producing bioluminescence by means of luciferase activity under 
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quorum- sensing conditions. The bacteria reside in the squid in a specialized bilobed 
structure called the light organ (LO) (McFall-Ngai and Montgomery 1990). The LO 
is localized on the ventral side of the animal and inside the muscular mantle, just 
above the funnel or siphon (Fig. 20, panels a1-2, b1-2). In this location, the LO is 
�ushed with ocean water during regular breathing or swimming movements of the 
mantle. Microorganisms present in the water, including V. �scheri, come in direct 
contact with the LO surface which, in response to bacterial compounds such as 
lipopolysaccharide (LPS) and peptidoglycan (PG), secretes mucus to which bacte-
ria attach and start aggregating (Nyholm et al. 2000; Foster et al. 2000) (Fig. 20, 
panel a2). Several studies have found that the mucus contains chemoattractants 
(N-acetylgalactosamine and N-acetylneurominic acid) (Altura et al. 2011; Mandel 
et al. 2012), as well as soluble antimicrobials and nitric oxide (Davidson et al. 2004; 
Kremer et  al. 2013). Together, these host-derived products are thought to favor 
V. �scheri attachment while discouraging nonsymbiont organisms from collecting at 
the site. In addition, the LO of juvenile E. scolopes is characterized by having on 
either side a pair of appendages made from densely ciliated epithelial cells where 
the mucus is held (Fig. 20, panel b2). The beating cilia help to move aggregated 
bacteria and particles toward the three open pores that serve as the entrance to the 
internal part of the LO (Nyholm et al. 2000). As V. �scheri cells enter the LO through 
a pore, they encounter a narrow, ciliated duct that eventually opens into a series of 
branched and closed-ended spaces known as crypts. Here, the bacteria reach their 
�nal place of residence. The lumen of the crypts is covered by epithelial cells with 
multiple microvilli that secrete mucus and other host molecules, and that, once the 
squid is colonized, will be in close contact with the bacterial symbionts. Not many 
V. �scheri cells are necessary to seed the LO, as it has been estimated that as few as 
3–6 cells can start the colonization of each lobe of this organ (Wollenberg and Ruby 
2009). If the bacteria colonizing the LO are capable of producing light, about 12 h 
after their arrival in the crypts, the combination of light and microbial products is 
recognized by the host and a developmental signal for a series of programmed mor-
phological changes is initiated. This program includes the following events: 
(1) apoptosis of the ciliated appendages; (2) fusion of the three pores and ducts into 
a single one; and (3) an increase in microvilli and swelling of the crypt epithelia 
(McFall-Ngai and Ruby 1991; Nyholm and McFall-Ngai 2004). The overall result 
is irreversible loss of the lateral appendages from the LO surface and physiological 
changes in internal structures over the next 4 weeks that will ensure the maintenance 
of the newly acquired symbionts (Koch et al. 2014) (Fig. 20, panel b2).

Fig. 20 (continued) on the ciliated appendages. (b1) Adult female E. scolopes squid side view; 
the transparent window allows us to see the light organ and accessory nidamental gland locations. 
(b2) Adult light organ with crypts. (b3) Host–symbiont interaction zone in adult squid consisting 
of crypt epithelial cells with microvilli and migrating hemocytes. AE  appendage epithelia, 
ANG accessory nidamental gland, BS blood sinus, CE crypt epithelia, Cr crypts, Hc hemocyte, 
IS ink sac, Le lens, LO light organ, Mu mucus, NA nidamental gland, P pore, Vf Vibrio �scheri 
bacteria, YF yellow �lters
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Fig. 20 Euprymna scolopes squid and tissues associated with bacterial symbiosis. (a1) Juvenile 
E.  scolopes squid ventral view. (a2)  Juvenile light organ with crypts and ciliated appendages. 
(a3) Host–symbiont interaction zone in juvenile squid, consisting of the surface of epithelial cells 
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Once this association between E. scolopes juvenile squid and bacteria is estab-
lished, the symbiosis will be maintained for the duration of the animal’s life (Nyholm 
and McFall-Ngai 2004). An important characteristic of this symbiosis is the diel 
rhythm, which consists, among other things, of daily expulsion of the majority (90–
95%) of the bacterial population from the LO at dawn (Lee and Ruby 1994; 
Boettcher et al. 1996; Nyholm and McFall-Ngai 1998). This thick exudate contains 
live and dead V. �scheri cells and also some host hemocytes and epithelial cells 
(Graf and Ruby 1998; Nyholm and McFall-Ngai 1998). In the 8 h following the 
emptying of the LO, the remaining population of symbionts quickly grows and 
divides inside the crypts, until they reach a density high enough to enable quorum 
sensing, thereby becoming luminescent again at night (Nyholm and McFall-Ngai 
1998). It is suggested that the squid uses this light to camou�age itself from poten-
tial predators and preys. This is suggested by the presence of several tissues in the 
LO, including a lens and a re�ector, that allow the animal to control the amount of 
light emitted, with the purpose of replicating down-welling light from the moon and 
stars. This behavior is known as counterillumination and prevents the production of 
a shadow during swimming in the water column. (Ruby and McFall-Ngai 1992; 
Jones and Nishiguchi 2004).

The Euprymna scolopes–Vibrio �scheri mutualism offers advantages over other 
animal model systems for understanding of the physiology and molecular mecha-
nisms of animal–bacterial bene�cial associations (Ruby 1999; McFall-Ngai 2008; 
Lee et al. 2009). This is mainly because this it is a binary association (Ruby and Lee 
1998; Mandel 2010), where both organisms can be cultured separately, thereby 
allowing manipulation of the bacterial introduction, and because the bacterial sym-
biont is genetically tractable and introductions of mutations and markers are modi-
�cations relatively easy to achieve (Ruby 1999; McFall-Ngai 2008; Lee et al. 2009). 
Moreover, the direct contact and interaction between the two players (host and bac-
teria) in this symbiosis occur extracellularly, meaning that the bacteria never breach 
the epithelial integrity of the host tissues. Thus, their interaction occurs via secreted 
molecules and by means of cell surface molecules both at the level of juvenile squid 
ciliated appendages (Fig. 20, panel a3) and inside the juvenile and adult LO crypt 
epithelia (Fig. 20, panel b3).

 The Fundamental Role of Hemocytes in the Establishment 
of Symbiosis
Hemocytes play a major role in the establishment and maintenance of this interac-
tion. As detailed in the previous section, these are motile cells that circulate through 
the squid vasculature and can reach sites where the bacteria are, and interact with 
them. For a review on the role of hemocytes on the squid–Vibrio symbiosis, the 
reader is directed to a recent publication by McAnulty and Nyholm (2017). The 
squid hemocytes play a pivotal role right from the initial stages of colonization. 
First, the presence of the symbiont causes the proliferation of hemocytes, the num-
ber of which peaks about 36  h postcolonization (Koropatnick et  al. 2007). 
Furthermore, these cells play an active role during the apoptotic regression of the 
LO epithelia, a behavior that is accredited to the presence of V. �scheri products 
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released in the LO crypts. Speci�cally, and in response to V. �scheri outer mem-
brane vesicles (OMV) (Aschtgen et al. 2016) and PGN-tracheal cytotoxin (TCT) 
(Koropatnick et al. 2004), squid hemocytes move from the circulation and migrate 
to the sinus space in the ciliated appendages. This migration is also accompanied by 
upregulation of transcripts involved in protein degradation, suggesting that these 
cells are involved in facilitating the apoptosis and restructuring of epithelial cells 
during the LO metamorphosis (Koropatnick et al. 2007). This process is aided by 
the activity of a matrix metalloproteinase (Koropatnick et al. 2014), as suggested by 
the upregulation of this enzyme in hemocytes and the LO tissues of symbiotic 
squids (Chun et al. 2006; Collins et al. 2012b; Schleicher et al. 2014).

In vitro studies have also shown that E. scolopes hemocytes can selectively rec-
ognize, bind, and engulf bacteria, while showing a degree of tolerance of V. �scheri 
in comparison with other marine bacteria (Nyholm and McFall-Ngai 1998; Nyholm 
et al. 2009). This recognition is modulated by unknown factors secreted by the sym-
bionts (Nyholm et al. 2009). In addition, to discriminate between bacterial species, 
hemocytes of adult squid also appear to be “trained” to tolerate the symbiont, as 
hemocytes from antibiotic-treated squids lose their symbiont recognition capacity 
and bind V. �scheri cells more readily (Nyholm et al. 2009).

Several transcriptome and proteomic studies comparing hemocytes from colo-
nized and noncolonized animals have been performed, which enabled the sequence 
identi�cation of a number of soluble immune factors (Collins et al. 2012b). Among 
these, a matrix metalloprotein, a cephalotoxin, a galectin, and a soluble peptidogly-
can recognition protein (EsPGRP5) were found to be downregulated in cured hemo-
cytes, while EsC3 transcripts could not be detected in symbiotic animals. These 
results suggested that the presence of the symbiont modulates the host immune 
system to avoid its removal (Collins et al. 2012b). The complement component C3 
and other complement-like molecules—including CD109 antigen (Yazzie et  al. 
2015), other thioester-containing proteins, and alpha-2-macroglobulin (Collins 
et al. 2012b, personal observations)—have also been identi�ed in hemocytes, but 
their speci�c role in symbiosis have not been described yet. Like C3, some of these 
transcripts appear to be modulated in symbiotic squid compared with those not 
exposed to bacteria, as was the case for CD109 antigen (Yazzie et  al. 2015). 
Furthermore, several transcripts with homology to known PRRs have been identi-
�ed in hemocytes, including PGRPs and TLRs (Collins et al. 2012b). Hemocyte–
proteomics studies have also revealed at least 37 differentially expressed proteins in 
the adult symbiotic animals compared with cured squid. Some of these are known 
to be involved in immune-related functions, most notably cathepsins, lysosomal 
proteins, and various proteases (see section “Proteases and Protease Inhibitors”) 
(Schleicher et al. 2014). It is also worth noting that—as mentioned in section “A 
Short Journey in the ‘Immune System’ of Cephalopods,”—like all other cephalo-
pods, squid appear to possess a well conserved immune signaling machinery. It is, 
however, still unclear how these immune sensors and effector molecules modulate 
or are modulated by the presence of the bacterial symbiont.

Hemocytes are not only important during the squid colonization process; they 
are also central to the homeostatic maintenance of the symbiosis. Recent studies 
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have found that hemocytes have cytoplasmic vesicles that contain chitin (Heath- 
Heckman and McFall-Ngai 2011). Chitin is an abundant carbohydrate polymer in 
marine environments and a food source for many planktonic organisms, including 
bacteria. It has been suggested that hemocytes deliver this nutrient into the LO 
crypts during the evening and night hours, when the bacteria population is at its 
higher densities, to provide nutrients to the symbionts. In return, the symbionts 
utilize this resource via fermentation and, as a consequence, acidify the crypt spaces 
to a pH of about 5.5 (Kremer et al. 2014). Hemocyanin, the squid’s blood pigment 
and oxygen carrier (Markl 2013), releases oxygen under acidic conditions. Since 
bacteria need oxygen to produce light, as in the luciferase reaction, the hemocytes 
are providing a source of food to the bacteria that will in turn promote the formation 
of the proper environment for light production, which the host uses for its nocturnal 
activities (Kremer et al. 2014).

The large number of putative immune molecules identi�ed in the aforementioned 
sequencing studies con�rm the involvement of hemocytes in the host response to 
V. �scheri colonization. It is also interesting to note that multiple genes associated 
with cytoskeletal and lysosomal activities are modulated, re�ecting the develop-
mental and morphological changes the host undergoes in response to its association 
with its bacterial partner. For more information, the reader is directed to the primary 
study sources (Goodson et al. 2005; Collins et al. 2012b; Schleicher et al. 2014; 
Salazar et al. 2015).

 The Immune Role of the Light Organ
In addition to hemocytes, other squid tissues express immune-related molecules. 
Many of these were originally discovered during an extensive analysis of expressed 
sequence tags (ESTs) from the juvenile LO at different times after colonization 
(Chun et al. 2006), in the transcriptomes of adult LOs at different times during the 
diel rhythm (Wier et  al. 2010), or in a data set of LO transcripts differentially 
expressed in animals for 3 h to the symbiont (Kremer et al. 2013). The following 
paragraphs will describe these molecules and their suggested role in the symbiosis.

 Receptors and Sensor Molecules
Several receptors were identi�ed in the juvenile LO, including four PGRPs 
(PGRP1–4) (Chun et al. 2006), whose general role in invertebrate immunity is sum-
marized in section “Other Membrane-Bound Immune Receptors.” PGRP1 was 
found to be localized in the cytoplasm of surface epithelial cells and translocated to 
the nucleus, a change associated with the apoptosis of the LO appendages (Troll 
et al. 2009). PGRP2 was secreted in mucus and found to have PGN-catalytic activ-
ity, suggesting an antimicrobial purpose (Troll et al. 2010). Furthermore, PGRP2 
was also secreted inside the LO crypts but only after colonization, possibly to aid in 
removal of PGN products released by the symbionts. Finally, PRGP3 had a glyco-
phosphatidylinositol (GPI)-anchoring site, and PRGP4 was a true transmembrane 
receptor (McFall-Ngai et al. 2010). Additional PRRs identi�ed in E. scolopes are 
members of the LBP/BPIs family of proteins (see section “Lysozymes, BPIs and 
Other Pore-Forming Molecules”). Not much is known about the function of these 
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sensor/effector molecules in squid, other than the fact that a BPI transcript was 
upregulated during LO apoptosis in symbiotic squid. Because of its localization in 
the LO crypts, this BPI might play a similar antimicrobial role to the PRGPs (Krasity 
et al. 2011).

 Complement System
As mentioned earlier, bivalve molluscs possess a prototypical complement system 
(see section 4.4). Furthermore, C3-like transcripts have been found in squid hemo-
cytes (Collins et al. 2012b; Schleicher et al. 2014). Transcripts for this and other 
complement-like molecules were �rst identi�ed in ESTs from juvenile LOs (Castillo 
et al. 2009; McFall-Ngai et al. 2010). Immunocytochemical analysis detected the 
expression of C3 in epithelial cells of several tissues of juvenile squid, including the 
LO, gills, and skin (Castillo et al. 2009). Other complement homologs have also 
been identi�ed in E. scolopes and its sister species E. tasmanica ([name], [year], 
unpublished data), including C1qDC proteins, C1qBP, and an MBL-like transcript 
(McFall-Ngai et al. 2010). Preliminary data also point toward the presence of sev-
eral serine proteases with similarity to MASPs and Factor C ([name], [year], unpub-
lished data), although biological activity for these and the other complement-like 
proteins remains to be con�rmed. Furthermore, TEPs similar to C3 have been iden-
ti�ed in E.  scolopes. Initially thought to be a representative of the insect TEPs 
(iTEPs) subgroup, Es-CD109 was found to be expressed in several squid tissues, 
and its transcript was downregulated in the LO of juveniles harboring V. �scheri 
(Collins et al. 2012b; Yazzie et al. 2015). This suggested that, similarly to C3, this 
microbial sensor is modulated in order to avoid the removal of symbiont cells 
(Collins et al. 2012b; Yazzie et al. 2015).

 Soluble Effector Molecules
One of the �rst immune-related molecules identi�ed in E. scolopes was a halide per-
oxidase (Tomarev et al. 1993). This enzyme, localized to vesicles in the epithelial 
cells, was secreted on the ciliated appendages of symbiotic juveniles, possibly as 
an antimicrobial factor (Weis et al. 1996). Transcripts of enzymes such as chitinase 
and lysozyme have also been described as upregulated in the �rst hours of exposure 
to V. �scheri, suggesting a possible involvement in the symbiont selection process 
(Kremer et al. 2013). The �nding of NOS in the squid LO represented another pos-
sible antimicrobial source (Davidson et  al. 2004). Immunocytochemical studies 
found NOS and NO in vesicles localized to the mucus on ciliated epithelial cells, 
where the bacteria aggregate and symbiont selection starts. In addition, NOS was 
expressed in the crypt ducts and antechambers (Davidson et al. 2004). Furthermore, 
it was shown that the presence of the symbiont or its products (LPS and TCT) down-
regulated the expression of NOS and the production of NO (Davidson et al. 2004; 
Altura et al. 2011). The authors proposed that in this case, the attenuation of NO 
production was a response by the host, enacted to modify the crypt environment to 
ease colonization upon symbiont recognition (Altura et al. 2011).

Although hemocyanin is mainly expressed in gills and the branchial heart, it was 
also detected in the symbiotic LO crypts, where it was suggested to release oxygen, 
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thereby promoting bacterial growth and bioluminescence (Kremer et  al. 2014). 
Moreover, the detection of a hemocyanin isomer in the mucus secretions of the 
juvenile LO suggests that this molecule may have a dual role and serve in the sym-
biont selection process as an antimicrobial agent against nonsymbiotic marine bac-
teria (Kremer et al. 2014). An additional antimicrobial and bacteriostatic molecule 
recently reported in E. scolopes is galaxin, one of the most highly upregulated tran-
scripts in colonized LOs (Chun et al. 2008; Wier et al. 2010), whose encoded pro-
tein is localized to the epithelial cells and mucus secretions of the LO (Heath-Heckman 
et al. 2014). In vitro assays showed that a peptide fragment of galaxin had inhibitory 
effects mainly against Gram-positive bacteria, although the growth of V. �scheri 
was also affected (Heath-Heckman et al. 2014). As mentioned earlier, the sensor 
molecule PGRP2, which binds and degrades bacterial peptidoglycan, is localized to 
epithelial surfaces exposed to the environment and secreted into the LO mucus, sug-
gesting a role during the initial stages of colonization and selection of the symbiont 
(Troll et al. 2010). This protein is also detected in the crypt lumen, suggesting that 
it also assists in modulating host–bacteria interactions once the symbiosis is estab-
lished (Troll et  al. 2010). Another soluble protein with antimicrobial properties 
found in this squid species is alkaline phosphatase (ALP) (Rader et al. 2012), whose 
enzymatic activity was upregulated in symbiotic hosts possibly in response to bacte-
rial MAMPs. Indeed, the addition bacterial lipid A and TCT induced the enzymatic 
activity, while the addition of an inhibitor reduced bacterial colonization by more 
than 80%. Overall, it was suggested that esap1 has a supporting role in the coloniza-
tion and maintenance of symbiosis (Rader et al. 2012).

 Signaling Molecules
Following the preliminary annotation of the LO-EST database, several molecules 
pertaining to the canonical TLR signaling (see section “Canonical TLR Signaling”) 
were identi�ed (Goodson et al. 2005). In a related study, three p-63-like (a member 
of the p-53 family of tumor suppressor proteins) transcripts were identi�ed and 
localized to the nuclei of LO cells in symbiotic animals, suggesting a role in the 
apoptosis of appendages (Goodson et al. 2006).

This is a topic that warrants further study, as the capacity of the host to rec-
ognize the correct bacterial symbiont from the multitude of bacterial cells in the 
water may reside in the signaling cascades triggered by V. �scheri. One interesting 
aspect that has been learned since the early studies of this symbiosis is that at �rst 
glance, V. �scheri bacteria do not seem to contain any evident “symbiont marker” 
that could help the host to discern the symbionts from other bacteria. Surprisingly, 
the same molecules present in nonsymbiotic bacteria, including pathogens, are 
used to communicate with the animal host. These MAMPs, such as LPS and PGN, 
should be readily recognized by the innate immune system as foreign and usu-
ally elicit a response resulting in microbial removal (see section “Phagocytosis”). 
Similarly, the host interacts with the symbionts using PRRs and signaling pathways 
known to be usually activated by pathogens. Nonetheless, there is still the potential 
of discovering novel markers on the symbionts and receptors on the host, especially 
considering the scarce genomic resources currently available and the unknown 
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function of most cephalopod genes (see section “A Short Journey in the ‘Immune 
System’ of Cephalopods”). The described studies suggest that attention needs to be 
paid to the context, timing, and very possibly the effector mechanisms elicited in 
response to the bacterial signals that can make the difference between removal and 
accommodation.

 Accessory Nidamental Gland
E. scolopes is also used to study another very interesting case of symbiosis, in this 
case involving a consortium of symbionts that may be acquired in different ways. 
This particular interaction occurs in the accessory nidamental gland (ANG) (Collins 
et  al. 2012a). The ANG is part of the reproductive organs in female squid. This 
structure is formed by a series of epithelial tubules containing a mixture of bacterial 
species dominated by Rhodobacteriaceae (Barbieri et al. 2001; Collins and Nyholm 
2011; Collins et al. 2012a, 2015). It is thought that some of the components of the 
ANG bacterial community are added to the jelly coat of eggs during their formation, 
and that the function of these microorganisms is to protect the developing embryos 
from environmental infections (Barbieri et al. 1997; Collins et al. 2012a, 2015). In 
a recent publication, Gromek and colleagues (2016) isolated one of the ANG bacte-
ria (Leisingera sp.) from the jelly coat of E. scolopes eggs, and in in vitro studies 
demonstrated that it had antimicrobial activity, producing a pigment that selectively 
inhibited the growth of several marine bacteria, including Vibrio species.

Altogether, the knowledge obtained from the study of these two types of symbio-
sis has the potential to provide an improved understanding of the complex bacterial 
associations between animals and microbes. In particular, this might bring new ele-
ments to interpret the mechanisms of regulation of bacterial symbiosis in various 
organs, such as the digestive, respiratory, and urogenital tracts of mammals, further 
serving as a productive research �eld for deciphering the multifaceted roles of the 
immune system in metazoans, which are still not well understood.

 Conclusions

The application of -omic tools to the study of bivalve and cephalopod immunology 
has recently led to exciting discoveries about the extent of the diversity of immune 
genes in these groups of diverse species. Comparative functional studies using natu-
ral and selectively bred disease-resistant strains of bivalves, and in-depth analysis of 
the powerful model system of the bobtail squid–Vibrio symbiosis, as well as the 
application of gene-editing technologies, have the potential to provide exciting 
insights into the functional relevance of immune gene family expansion in molluscs 
and the potential role of this diversity in the speci�city and plasticity of immune 
responses. Other areas of molluscan immunity that have not been understudied until 
now, because of the lack of tools and resources, include the elucidation of the pro-
cess of hematopoiesis, the molecular characterization of hemocyte subpopulations, 
and a thorough characterization of mechanisms underlying maternal immunity and 
immune priming.
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Molluscan immunobiology is gaining renewed importance from the growing 
challenges posed by human activities, which have a signi�cant impact in particular 
on anthropized coastal regions (for a detailed discussion, see Chap.  12, section 
“Challenges for Molluscs in the Anthropocene Epoch”). This, together with the cur-
rent trends of global climate change, is currently leading signi�cant shifts in the 
structure of benthic communities due to the introduction of alien species, more 
resistant to the presence of pollutants and therefore outcompeting native species. 
Continuous research will be certainly needed to improve our knowledge of the 
immune system of molluscs, both to preserve endangered endemic populations and 
to face the challenges posed by emerging diseases targeting commercially and eco-
logically important species (see Chap.  12, section “Molluscan Conservation 
Immunology” for a detailed discussion on molluscan conservation immunology).
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