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Immunity to Device Variations in a Spiking Neural

Network with Memristive Nanodevices
Damien Querlioz, Member, IEEE, Olivier Bichler, Philippe Dollfus, Member, IEEE, and Christian Gamrat

Abstract—Memristive nanodevices can feature a compact
multi-level non-volatile memory function, but are prone to device
variability. We propose a novel neural network-based computing
paradigm, which exploits their specific physics, and which has
virtual immunity to their variability. Memristive devices are used
as synapses in a spiking neural network performing unsupervised
learning. They learn using a simplified and customized “spike
timing dependent plasticity” rule. In the network, neurons’
threshold is adjusted following a homeostasis-type rule. We
perform system level simulations with an experimentally verified-
model of the memristive devices’ behavior. They show, on the
textbook case of character recognition, that performance can
compare with traditional supervised networks of similar complex-
ity. They also show that the system can retain functionality with
extreme variations of various memristive devices’ parameters (a
relative standard dispersion of more than 50% is tolerated on
all device parameters), thanks to the robustness of the scheme,
its unsupervised nature, and the capability of homeostasis.
Additionally the network can adjust to stimuli presented with
different coding schemes, is particularly robust to read disturb
effects and does not require unrealistic control on the devices’
conductance. These results open the way for a novel design
approach for ultra-adaptive electronic systems.

Index Terms—spiking neural networks, memristors, mem-
ristive devices, spike timing dependent plasticity, unsupervised
learning, neuromorphic

I. INTRODUCTION

M
EMRISTIVE nanodevices provide fantastic opportuni-

ties for microelectronics. They can indeed provide a

compact multi-level non-volatile memory function [1]. How-

ever, they are often subject to strong variability [2], [3], [4],

so that fully exploiting their potential would be easier with

architectures offering a strong immunity to device variations.

Spiking neural networks could provide a serious lead since

the brain itself relies on variable neurons and synapses [5]

and manages computational efficiency that outperforms man-

made systems. This idea takes particular meaning in that many

groups (constituting the “neuromorphic” community) already

imitate the brain with electronics, using Complementary Metal

Oxide Semi-conductor (CMOS) circuits to model its spiking

neurons and synapses. These works, however, are often limited

by the number of implementable synapses: implementing
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plastic synapses requires many transistors [6], [7]. Memristive

nanodevices could provide the compact synapses required to

advance neuromorphic circuits. In recent years several classes

of them have indeed emerged, as e.g. resistive RAMs and

memristors [1], [2], or adaptive transistors [8], [3]. It has

been suggested [9], [10], [11], [12], and shown experimentally

[13], [14], [15], [16], [17], [18], that such devices could

reproduce a learning rule of biological synapses – spike timing

dependent plasticity (STDP) [19], [20] – that is believed to be

a foundation of learning in the brain [21]. A system consisting

of nanoscale synapses and CMOS neurons could be a major

breakthrough in computing, allowing cognitive-type tasks with

high efficiency.

This idea is currently receiving considerable interest [22],

[23], [24], [25]. However, its sustainability is still to be

demonstrated, especially with regards to the variability issue

that is common to all memristive technologies [26], [27], [4].

It is also not clear if biological STDP is the best approach

for electronics, the constraints of which differ strongly from

Biology’s.

In this paper, system simulations introduce quantitative

results in terms of computing performance and robustness

to variability. We exploit a simplified and customized STDP

scheme for memristive devices, which is key to achieve effec-

tive learning with extreme robustness to memristive devices’

variability. It is associated with the use of unsupervised learn-

ing, and of a homeostasis-type mechanism. We describe the

required technology and architecture (section II) and perform

system-level simulations on a standard database of machine

learning [28] that show the potential of the approach and

its robustness. The system consists of an unsupervised layer

that extracts features of the inputs using a simplified spike

timing dependent plasticity (section III). The network perfor-

mance compares favorably with traditional – but supervised –

networks with similar numbers of adjustable parameters and

achieves excellent tolerance to various memristive devices’

parameters variability. Finally, the robustness of the network to

other device nonidealities (read disturb and limited resolution

effects) is established (section IV).

Partial and preliminary results have appeared in [12]. This

papers adds new discussions and results, especially the plau-

sibility of the device model with regards to measurements of

real devices, adaptations of the programming scheme, and the

impact of diverse device nonidealities. Other proposals have

been made to exploit variable adaptive devices in the context

of nanotechnological implementations. Most proposed archi-

tectures rely on reconfigurable logic [29] or on state-based

supervised neural networks [30], [31]. In the first approach
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Figure 1. Circuit topology. Wires originate from CMOS input layer
(horizontal black wires) and from the CMOS output layer (vertical gray wires).
Memristive nanodevices are at the intersection of the horizontal and vertical
wires.

variability is addressed through error mapping and redundancy,

in the second case through a standard neural network approach

using supervised learning based on error gradient descent.

Our approach of using unsupervised learning with asyn-

chronous spiking neural networks to tackle the variability issue

of nanodevices is original and takes inspiration from recent

ideas in computational neuroscience and neural networks [32],

[33], [34]. Different works have been published that go into

that direction. As mentioned above, several proposals exist

to use memristive devices for STDP [10], [9], [11], [35]. In

this paper we use a simplified STDP scheme that is easier to

implement. Additionally, we propose to give to the neurons a

homeostasis property and that is shown to be essential for

the robustness of the scheme to variations. One work had

already shown that memristive devices with STDP could allow

the emergence of receptive fields in a variability-compatible

unsupervised approach and synchronous neurons [36]. Our

work uses asynchronous designs, like the ones used in the

neuromorphic community [6], [7], and performs full learning

on a standard dataset. Finally, an alternative way to allow

learning with memristive devices in a variability-compatible

way can be to use all digital designs [22]. This requires

more devices per synapses [37]. In this paper we show that

variation-tolerance can be retained by using nanodevices with

continuous variation of the conductance.

II. ARCHITECTURE AND IMPLEMENTATION OF THE

NETWORK

We first introduce the architecture that we propose for

our classifier system. CMOS input and output “neurons” are

connected by the nanodevices that act as synapses. It is natural

to lay out the nanodevices in the widely studied crossbar as

illustrated on Fig. 1, where CMOS silicon neurons and their

associated synaptic driving circuitry are the dots, the squares

being the nanodevices. The synapses indeed act as adaptive

resistors. With the crossbar layout, if several synapses are ac-

tive at the same time (i.e. receiving voltage spikes), the output

receives directly the sum of the currents flowing through the

synapses. In a more futuristic design, the system could also be

laid out in a CMOL architecture where nanodevices crossbar

is fabricated on top of the CMOS neurons and driving circuits

[30].
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Figure 2. Pulses for simplified STDP (voltage pulses as a function of time).
When an input neuron spikes, it applies an Input pulse (a) to the nanodevices to
which it is connected. When an output neuron spikes it applies an Output pulse
(b) to the nanodevices to which it is connected. When the voltage applied on
the device (difference between the voltages applied at the two ends (c) or (d))
reaches VT+ or VT−

, its conductance is increased or decreased, respectively.

This kind of connectivity corresponds to a feed-forward

architecture in a neural network. Of particular interest, in the

case of our network, it limits the sneak path issue because

both programming and reading are performed in parallel.

This issue usually limits the competitiveness of crossbars [38]

and requires complex counter-measures like complementary

resistive switches [39], or the use of nonlinear devices [40].

As a replacement of memristive devices, the architecture

may also exploit phase change memories associated in “2-

PCM” circuits as evidenced experimentally in [14], [18], [41],

which has the advantage of technological maturity.

The input neurons present the stimuli as asynchronous volt-

age spikes using several possible coding schemes described

in section III-C. Spiking rate is proportional to stimulus

intensity. These stimuli may originate for example directly

from a spiking retina [42] or cochlea [43] designed in the

neuromorphic community that present data as asynchronous

spikes, similarly to their biological counterparts.

As a result of learning, the output neurons should become

selective to the different stimuli classes that are presented in a

fully unsupervised manner: the output neurons should develop

selectivity to specific features contained in the input patterns.

The learning rule of the nanodevices needs to be fully local to

be implementable in the crossbar architecture. The behavior of

the neurons needs to be simple to make it easy to implement

in a compact way. We now describe how this can be achieved.

The next subsections describe the different elements into

more details. The synapses learn using a simplified STDP

scheme (section II-A1). The output neurons behave as leaky

integrate-and-fire neurons (section II-B1) and have a home-

ostasis property (section II-B3). They are also connected by

inhibitory connections using diffuser networks (section II-B2).
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A. Synaptic behavior

1) Simplified STDP learning: In this work, the synapses

are acting in two ways. They are variable resistors and thus

transmit spikes with a variable conductance (which plays the

exact role of a synaptic weight). Additionally, they adapt their

conductance depending on the activity of the neurons to which

they are connected, which provides the foundation of learning

by the system.

The memristive nanodevices are programmed as follows.

When being applied a positive voltage pulse higher than a

threshold VT+, they increase their conductance. When applied

a voltage pulse smaller than a negative threshold VT−, they

decrease their conductance [13], [10]. Previous works have

shown that memristive devices can implement spike timing

dependent plasticity (STDP), a learning rule used by brain

synapses [13], [14], [15], [9], [11], [10], [16], [17], [35]. These

works focused on faithful imitation of Biology. In this work,

we focus on proposing simpler scheme, targeted toward pattern

extraction, as illustrated in Figure 2.

• When an input neuron spikes, it applies a long voltage

pulse to its synapses (Input pulse, Figure 2(a)). This

voltage is high enough to drive some current into a

memristive device, but not enough to reprogram it. This

current is integrated by the output neurons (resistor role

of the synapse). If several synapses connected to the same

output neuron are active at the same time their currents

are summed.

• When an output neuron spikes, it applies a pulse that is

a succession of a negative bias and of a positive bias

(Output pulse, Figure 2(b)). If no Input pulse is being

applied to the device, only the second part reaches a

threshold and the conductance of the synapse is decreased

by δGm (Figure 2(d)). However, if the input neuron had

spiked recently, and the Input pulse is still being applied

on the other end of the device, the voltage applied on the

device actually increases its conductance by δGp ((Figure

2(c)).

This simple learning rule, easily implemented with nanode-

vices, is the ground for learning. Compared with the purely

bioinspired and more complex scheme introduced in [9], no

delay matching is necessary between the Input and Output

synaptic waveforms, which should make the driving circuitry

much easier to design.

The way this simple learning rule works is straightforward.

When an output neuron declares a spike (at time tspike), it

increases by δGp the conductance of the synapses connected

to input neurons that spiked recently (from tspike − tPRE

to tspike, if tPRE is the duration of the Input pulse), and

decreases by δGm the conductance of the synapses that did

not. This increases the sensitivity of the neuron to the specific

pattern that activated it, making it more likely to spike for a

similar (correlated) pattern in the future. This process – that

works surprisingly well in practice, as we show in this paper

– has been partially theorized in [34]. A comparison with the

traditional biological STDP scheme is presented in Figure 4.

A disadvantage of this rule is the long Input pulse, which

drives current for a long time, and thus increases power

consumption. If it becomes significant, a low power version of

the learning rule is possible and illustrated in Figure 3, for the

cost of limited added complexity. The input neuron does not

apply a voltage pulse during the whole time it is active, but

only at the beginning to drive current into the output neuron.

Additionally, as soon as one of the output neuron becomes

active, a signal is sent back to the input neurons, which apply

a short Input pulse again if they are still active. This lower

power version of the learning scheme is more realistic with

most current technologies like [13], [14].

2) Memristive devices modeling: To model the conductance

increments and decrements in our system simulations, we

use the model introduced in [44]. It takes inspiration from

experimental memristive devices measurements [13], [15]. An

increase in the conductance is modeled by the equation:

δGp = αpe
−βp

G−Gmin

Gmax−Gmin . (1)

Similarly, a decrease is modeled by:

δGm = αme
−βm

Gmax−G

Gmax−Gmin . (2)

The exponential factor expresses the fact, observed in most

memristive technologies, that a given voltage pulse has a

reduced effect on the device conductance if applied several

times [13], [15], [14]. Agreement with the experimental data

of [13] is presented in Figure 5. The parameters αp, αm, βp,

βm depend heavily on the Input and Output pulse voltages

that are chosen. These parameters, as well as minimum and

maximum conductances Gmin and Gmax are subject to device

variability in real devices.

B. Output neurons

1) Output neurons’ dynamics: Exploiting the devices re-

quires connecting them to processing units – silicon neurons

able to process and generate spikes in a bioinspired manner



4

0

20

40

0 20 40 60 80 100

Pulse number

0

20

40

0 20 40 60 80 100

Pulse number

(a) (b)

Figure 5. Evolution of the conductance for the devices from [13], fitted with
equations 1 and 2. (a) device conductance (measured at 1V ) after each pulse
in a serie of potentiating (V = −3.2V ) pulses. (b) same with depressing
(V = 2.8V ) pulses. Diamond: experimental data, reproduced from [13]. Full
line: equations 1 and 2.

by integration of their input. We call X the state variable (a

current or a voltage, equivalent of the biological “membrane

potential”) of the neuron (expressed in normalized unit where

the maximum value of the state variable X is 1). Neurons

are leaky integrate-and-fire type, which is meant to solve the

simple following equation. :

τ
dX

dt
+ gX = γIinput (3)

where τ is a leak time constant, and g and γ are constants.

Iinput represents the current flowing through the line of the

crossbar connected to the neuron:

Iinput =
∑

j

Ij (4)

where Ij are the currents flowing through each memristive

device j connected to output neuron.

The neuron declares a spike if X reaches a given threshold

Xth, in which case X is reset to zero.

An approach widely studied in the neuromorphic com-

munity is to use analog circuits (generally with transistors

operating in the sub-threshold regime) able to receive and

generate asynchronous spikes [6], [7] to design such neurons.

This kind of CMOS design is particularly low power, because

most transistors operate in the subthreshold regime, and thanks

to the use of asynchronous computation. Though smaller than

in nanodevices, variability is also a problem for such transistor

designs. It is a challenge for any neuromorphic design [43]

and will become even more crucial when scaling to modern

technology. Digital designs may also be used that do not suffer

from variability directly but may have higher area and power

requirements [45].

2) Output neurons’ lateral inhibition : When an output

neuron spikes, it sends inhibitory signals to the other output

neurons of the layer that prevent them from spiking during

the inhibition time and resets their potential to zero. With this

inhibition, the network is reminiscent of a Winner-Takes-All

topology [34].

More precisely, when an output neuron spikes, the state

variable X of the other output neurons is reset to zero during

a time tinhibit.

Figure 6. Conductances (weights) learned in a simulation with 10 output
neurons. Red is maximum conductance, blue is minimum conductance.

X = 0 if tspike < t < tinhibit. (5)

In hardware, this inhibition between the neurons can be

implemented in a compact way through diffuser networks as

in [6], which require a minimum number of transistors.

3) Homeostasis : A final issue for the architecture is the

adjustment of the neurons’ threshold. Simple algorithms exist

for traditional (non spiking) artificial neuron networks, but

they do not work directly for spiking neurons. A bioinspired

original route is homeostasis [5]. A target activity is defined

for the neurons (i.e. a number of times an output neuron

should spike over an extended period of time, like 100

digits presentation). Regularly the threshold of the neuron is

increased if the average activity of the neuron is above the

target, and decreased if it is below.

dXth

dt
= γ (A− T ) , (6)

where A is the mean activity (or firing rate) of a neuron, T
is the target activity, and γ is a multiplicative positive constant.

This ensures that all the output neurons are used and

adjust the neurons’ thresholds to the stimuli for which they

become specialized. In neuromorphic hardware, homeostasis

has been implemented with analog memories like in [46] or

could be implemented digitally. The advantage inherent in this

technology is evidenced in this paper in section III-B.

C. Simulations of the System

In this paper, all simulations are system-level and are based

on a C++ special purpose code (“Xnet”) [47], [12]. The code is

event-based for simulation performance and runs on traditional

central processing units (CPUs). Simulation parameters as

introduced above are τ = 100ms, g = 1, Xth = 0.5 (nor-

malized unit), inhibition time tinhibit = 10ms, αp = 10−2,

αm = 5 · 10−3, Gmin = 10−4, Gmax = 1 (normalized units

where the mean of the maximum conductance value is 1),

βp = 3.0, βm = 3.0. The width of the Input pulses is 25 ms.

Parameter variations are introduced around all the parameters

using Gaussian random numbers (the value of their standard

deviation is given in Section III). The initial conductances

are selected randomly around mid-range (0.5). The stimuli are

applied using the coding schemes described in section III-C.

The two variations of voltages pulses (Figures 2 and 3)

gave identical performance in terms of recognition rate. All

the results presented in the paper use the pulses of Figures 2.

For demonstration of the concept, in this paper we use

the widely studied case of handwritten number recognition.
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The MNIST database is used, which consists in handwritten

number of 28× 28 pixels by 250 writers [28].

In order to achieve learning, we present the full MNIST

training database (60, 000 digits) three times to the system.

Each input neuron is connected with one pixel of the image.

It emits spikes with a jittered rate that is proportional to

the pixel intensity (maximum rate is 22 Hz) as illustrated

in Figure 11(b). The initial phase is random. Input neurons

present spikes corresponding to a given digit during a period

of 350ms, after which they present spikes corresponding to

another digit. No kind of preprocessing on the digits is used

and the set is not augmented with distortions. The network

is then tested on the MNIST test database, which consists in

10,000 digits that have not been presented during training.

Simulation time was about 8 hours per run on an AMD

Opteron 2216 CPU.

Figure 6 plots the synaptic conductances (or weights)

learned by the system in a configuration with only 10 output

neurons. It is remarkable that without any supervision and

using only our local custom STDP rule, the system has

identified 9 (out of 10) different numbers, the real features

of the input. Moreover it has learned the distinctive features

of the digits (and not just the most likely handwriting): it has

learnt the loop of the digit two, the bottom of the six, or the

horizontal parts of three and eight.

To evaluate the capability of the system, we can define a

recognition rate. For that purpose, we associate output neurons

with the digit for which they spike the most frequently a

posteriori, using a subset of 1000 well identified numbers.

In hardware this association could be performed with com-

plex digital circuitry. An alternative can be to associate the

unsupervised network with a supervised one [48]. All the

simulations were repeated ten times, and the recognition rate

given is averaged on the ten runs.

In order to evaluate quantitatively the network’s recognition

rate, Figure 7 plots the final recognition rate on the test

database. With ten output neurons the recognition rate reaches

60%. To improve the recognition rate, we can introduce

additional output neurons, in which case some output neurons

respond to different handwritings of the same digit. All the

output neurons respond to some kind of digits, as explained

in section II-B3. With 50 output neurons, the recognition

rate reaches 81%, and with 300 output neurons 93.5%. A

70

80

0 20 40 60 80 100

Rel. std. dispersion s/µ 

of the device parameters (%)

Initial conductance

α
p
 and α

m

α
p
, α

m
, 

G
min

 and G
max

Figure 8. Recognition rate on the MNIST testing set with different kinds of
nanodevice (synaptic) variability. All the simulations were repeated ten times,
the error bar is one standard deviation. All the simulations have homeostasis.

σ/µ=10% 25% 50% 100%

Figure 9. Conductance as a function of pulse number (plotted similarly to
Figure 5), for 100 devices with different relative standard dispersion σ/µ on
the parameters αp, αm (from left to right 10%, 25%, 50% and 100%).

traditional artificial neural network with back-propagation and

300 hidden neurons (obtained with the same number of

adjustable parameters) reaches 95% [28], which compares

to our rate of 93.5%. In the literature, the best algorithm

has a largely superior 99.7% recognition rate, but using 12

million adjustable parameters (vs. 235, 200 here) and a largely

augmented training set [49]. Though our numbers are clearly

more modest, the interest here is that the network is fully

unsupervised, with simple local learning rules, and variability

immunity as is seen in the next section.

Thanks to the unsupervised nature of learning, the com-

plicated “labeling” step does not need to be performed right

away. Lots of unknown data may be presented for training, and

the labeling can be performed from a limited subset of well

identified data. This is a strong advantage for many problems

involving natural data. In many cases, a lot of data is available,

but that was not classified, and the system can here perform

this analysis by itself.

III. VARIABILITY IMMUNITY

A. Synaptic variability

We now exploit our system-level simulations to analyze

the robustness of our approach. We first study the impact of

nanodevices (synaptic) variability on the recognition rate of

the network. For this study, we simulated the network with

50 output neurons, introducing different kinds of variability.

Results are reported in Figure 8.

In the top curve of Figure 8, we evaluate the impact of vari-

ability of the initial conductance (i.e. the initial conductance of

the nanodevices, before learning starts). We can see it has no
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impact on the final recognition rate, even when the variability

is extreme. This means that we do not need to control the

initial conductance precisely. This is fortunate since this would

be complex: controlling the exact state of memristive devices

organized in a crossbar is a difficult issue, due to the device

variations and the sneak paths.

In the middle curve of Figure 8, we evaluate the impact of

the variations on the learning increments and decrements (the

parameters αp, αm of equations 1 and 2). These variations can

be caused by dispersion of the device thresholds and of their

programming characteristics. We can see that the network is

immune to variations up to 25% of the mean value of these

parameters (i.e. σ/µ = 25%). This is already an extremely

high level of variation for an electron device, but typical for

research nanodevices. With 50% of variation, there is a small

decrease of recognition rate (79% instead of 82% with no

variability). With an extreme variability of 100% on the synap-

tic parameters, the recognition rate decreases significantly, but

interestingly the functionality of the network is not challenged.

We should note that with a variability of 50%, as many as

4% of the nanodevices cannot be programmed in at least one

direction (i.e. they have an α value of 0). The latter figure

becomes 30% when parameter variability is 100%. This is an

indication of the overall tolerance to defects. To give a feel of

the magnitude of these dispersions, we plotted on Figure 9, the

conductance as a function of pulse number (plotted similarly

to Figure 5), for 100 devices with different relative standard

dispersion σ/µ on the parameters αp, αm .

The bottom curve of Figure 8 adds variations of Gmin,

Gmax. In that case some nanodevices overpower the others

due to increased maximum conductance. Results are how-

ever similar to the previous case, and extreme robustness

is preserved: with 50% variability, the recognition rate is

lowered from 81.9% to a reasonable 77.2% . The most

sensitive parameter is the maximum conductance. It should be

noted that memristive currently devices developed in academic

groups may have relative standard variations in Gmin, Gmax

in the range between 50% or 100% ([4], [26] suppl. info.).

The situation is expected to improve dramatically when the

technology becomes mature. However, some significant degree

of variability might be intrinsic to their physics [27].

This degree of robustness to device variation is exceptional

in electronic systems and constitutes one of the strongest

points of the approach. It takes root in the unsupervised nature

of learning: output neurons learn features for which they are

naturally suited. Synaptic variability determines how a neuron

reacts initially, and thus what it is going to learn. This means

that, in a way, variability is not a real problem, but a feature

to initiate learning.

The simplicity of the voltages pulses is also fundamental to

ensure this robustness.

B. CMOS neuron variability

We now study the impact of the variability of the CMOS

neurons. The impact of the variability of their threshold is seen

in Figure 10. We can see that without homeostasis the impact

of the variability is dramatic. The more excitable neurons (the
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Figure 10. Impact of the neurons’ threshold Xth variability, with and without
homeostasis on the recognition rate. All the simulations were repeated ten
times.

Figure 11. Illustration of the three stimulus coding schemes. Stimulus spikes
timing for ten input neurons with the same pixel value in the three schemes.
All three lead to a recognition rate between 81% and 82%, without any
parameter needing to be adjusted.

ones with lower thresholds) spike predominantly and the other

neurons do not specialize efficiently. In a typical simulation

with a threshold variation of 25 %, the most excitable neuron

spikes 51 % of the time, and in a simulation with a threshold

variation of 50 %, it spikes 91% of the time. Homeostasis

however fully compensates this issue (all the neurons spike

between 1.5 and 3% of the time, most neurons spiking around

2%). And the same recognition rate as without threshold

variation is achieved as evidenced in Figure 10. Homeostasis

appears as particularly valuable in this application. This also

stresses the importance to evaluate the robustness of the system

not only to nanodevices’ variations, but also to the CMOS’.

C. Stimulus encoding

Another remarkable point is the insensitivity to stimulus

encoding scheme. Different schemes are possible to encode the

stimulus into spikes as illustrated in Figure 11. In the first two

schemes (Figures 11(a) and 11(b)), the input neurons spike

periodically, the firing rate being proportional to the input

quantity. The input neurons can spike either in phase (Figure

11(a)) or out of phase (Figure 11(b)). This is a natural scheme

based on how spiking retinas currently work [42]. In the last

case (Figure 11(c)), input neurons spike in a Poissonian way,

the time constant being inversely proportional to the input. All

three coding styles lead to a recognition rate between 81%

and 82%. The only condition for this is that the window for
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potentiation in the STDP scheme is long enough with regards

to the typical interspike interval. In this work, the average

interspike interval is 45 ms for a black pixel, and insensitivity

to stimulus encoding scheme is achieved if the window for

potentiation is longer than 25 ms (while 15 ms is sufficient in

the jittered periodic case). This shows again the robustness of

the approach.

Additionally, noise can be inserted in the input with no

impact. Adding 10% of perfectly random spikes distributed on

all the input neurons has no impact on the system’s recognition

rate. This kind of robustness to spikes’ precise timing is

consistent with computational neuroscience works on STDP

[32]. This result is not surprising since the precise timing of

the spikes does not play a major role neither for the neurons

nor for the simplified STDP learning rule.

IV. DEVICE NON-IDEALITIES

Finally, we check that our approach is not sensitive to two

crucial non-idealities of real memristive devices: the limited

resolution of the conductance and the read disturb effect.

A. Limited Resolution of the Memristive Devices

The nanodevices that we are considering have an “analog

memory ” property. It has been evidenced in many real-life

devices [13], [14], [15], [16], [17]. In these real devices, how-

ever, the conductance cannot be programmed with an arbitrary

precision [13]. It is thus important to clarify which precision

is required for our application. To that purpose, we performed

simulations with different increments αp of equation (1) (the

decrement αm of equation (2) is kept proportional to αp).

The results in terms of recognition rate are plotted in Figure

12 (αp is expressed in normalized units where the maximum

conductance is 1). We see that recognition rate is maximum

for αp until 0.05, which is achievable by several experimental

devices. For example the best measurements in [15] achieve

αp ∼ 0.01, or αp ∼ 0.02 in [14] and αp ∼ 0.07 in [13]. For

higher values of αp, the recognition rate decreases and the

devices’ resolution is not sufficient.

B. Impact of Read Disturb

Another significant device non-ideality can materialize if the

Input pulses (which are subthreshold) have an impact on the

devices’ conductance. This corresponds to the Read Disturb

phenomenon for memory devices. To assess the impact of

this phenomenon, we performed simulations where the Input

pulses increase the device conductance by a fraction ǫ of the

increase of programming threshold:

δGsubthreshold = ǫδGp. (7)

The results are presented in Figure 12. It appears that read-

disturb parameter ǫ as high as 0.1 (meaning that a read pulse

has 10% of the impact of a write pulse) may be tolerated,

since it is fully compensated by learning. Such a value is a

lot higher than what is seen in real devices [26], [13]. Read

distrub should thus not be an issue for our approach.

0

20

40

60

80

0.001 0.01 0.1 1

Conductance Increment αp

40

50

60

70

80

90

0.0001 0.001 0.01 0.1 1

Read Disturb Param. (ε)

Figure 12. Impact of the conductance increment on the recognition rate for
a system with 50 outputs. Inset: Impact of the read disturb parameter ǫ on
the recognition rate for a system with 50 outputs (as defined by equation (7)).
Every simulation was repeated five times.

V. CONCLUSION

In this work, using system-level simulations, we have shown

how, by using a simple custom Spike Timing Dependent

Plasticity scheme, memristive devices associated with CMOS

neuromorphic circuits could perform unsupervised learning

in a way that is extremely robust to variability. (A rela-

tive standard dispersion σ/µ of 50% is tolerated on all de-

vice parameters). Non-supervision is the foundation for this

tolerance and provides extreme adaptability to the system.

Homeostasis was also introduced as an essential component

to retain insensitivity to CMOS variability. Additionally, the

system is particularly tolerant to the read disturb effect, and

does not require unrealistic control of the memristive devices’

conductance.

This design approach could be the groundwork for future

circuits that can process natural data in a compact and low

power way. Thanks to their unsupervised learning capabilities,

such circuits will be able to adapt to various environments.

Future work should focus on the experimental demonstration

of these concepts beyond single devices, and to demonstrate

its scaling to more complex multi-layer networks, and to other

kinds of sensory stimuli like video, auditory or olfactory data.
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