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Background. Zika virus (ZIKV) infection may be associated with severe complications and disseminated via both vector-borne 

and nonvector-borne routes. Adenovirus-vectored vaccines represent a favorable controlling measure for the ZIKV epidemic because 

they have been shown to be safe, immunogenic, and rapidly generable for other emerging viral infections. Evaluations of 2 previously 

reported adenovirus-vectored ZIKV vaccines were performed using nonlethal animal models and/or nonepidemic ZIKV strain.

Methods. We constructed 2 novel human adenovirus 5 (Ad5)-vectored vaccines containing the ZIKV premembrane-envelope 

(Ad5-Sig-prM-Env) and envelope (Ad5-Env) proteins, respectively, and evaluated them  in multiple nonlethal and lethal animal 

models using epidemic ZIKV strains.

Results. Both vaccines elicited robust humoral and cellular immune responses in immunocompetent BALB/c mice. 

Dexamethasone-immunosuppressed mice vaccinated with either vaccine demonstrated robust and durable antibody responses and 

signi�cantly lower blood and tissue viral loads than controls (P < .05). Similar �ndings were also observed in interferon-α/β recep-

tor-de�cient A129 mice. In both of these immunocompromised animal models, Ad5-Sig-prM-Env-vaccinated mice had signi�cantly 

(P < .05) higher titers of anti-ZIKV-speci�c neutralizing antibody titers and lower (undetectable) viral loads than Ad5-Env-vaccinated 

mice. �e close correlation between the neutralizing antibody titer and viral load helped to explain the better protective e�ect of 

Ad5-Sig-prM-Env than Ad5-Env. Anamnestic response was absent in Ad5-Sig-prM-Env-vaccinated A129 mice.

Conclusions. Ad5-Sig-prM-Env provided sterilizing protection against ZIKV infection in mice.
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Zika virus (ZIKV) is a human-pathogenic �avivirus that has 

emerged from obscurity to cause epidemics in the Americas 

and Asia in recent years [1, 2]. Although most ZIKV-infected 

patients are asymptomatic or have self-limiting symptoms, 

some develop severe complications with long-term sequelae [3]. 

�e major complications of ZIKV infection include congenital 

microcephaly and anomalies, severe neurological diseases such 

as Guillain-Barré syndrome and meningoencephalitis, and pos-

sibly epididymo-orchitis with potential long-term e�ects on 

fertility [2–4]. Unlike other emerging viral outbreaks involving 

patients with respiratory tract infections or viral hemorrhagic 

fever who are usually easily identi�able by their symptom-

atology, ZIKV can be transmitted from patients with minimal 

symptoms to others through both mosquito-borne and non-

vector-borne routes, such as sexual and vertical transmissions 

[5, 6]. �is makes it extra di�cult to control the epidemic and 

highlights the urgency of developing a safe and e�ective vaccine.

In the past 2  years, a number of ZIKV candidate vaccines 

have been developed and evaluated in animal models, and some 

are now undergoing phase I and II clinical trials [7–23]. �ese 

include live-attenuated virus, puri�ed inactivated virus, deoxy-

ribonucleic acid (DNA) or messenger ribonucleic acid (mRNA), 

subunit, virus-like particles, and virus-vectored vaccines [24]. 
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Each vaccine type has its distinct advantages and limitations. For 

example, although a live-attenuated yellow fever virus vaccine 

has been used for a long time, there are concerns regarding the 

safety and potentially severe side e�ects of this type of �avivirus 

vaccines in severely immunocompromised patients, especially 

those with thymus disorders [25]. Structural alterations induced 

by inactivation processes for producing inactivated virus vaccines 

may render the vaccine’s immunogenicity to be suboptimal, and 

multiple dosing is usually required to elicit adequate immune 

response [7, 8, 15, 24]. Zika virus DNA vaccines have been shown 

to be immunogenic in some animal studies, but e�cient delivery 

of DNA vaccines in vivo remains unreliable and usually requires 

electroporation [7–9, 13]. Zika virus-like particle vaccines require 

multiple dosing for achieving optimal immunogenicity [16–18]. 

�e more recently described RNA nanoparticles and modi�ed 

mRNA vaccines were immunogenic in animal studies, but clini-

cal data in human remain limited [12, 14, 19]. More importantly, 

some of these reported ZIKV vaccines were only evaluated in 

nonlethal mouse (adult BALB/c and C57BL/6 mice) and/or non-

human primate (rhesus macaques) models that have self-limiting 

ZIKV infection [7, 8, 11, 12, 16, 17, 19]. �is makes it more di�-

cult to interpret the data regarding the vaccines’ protective e�ects.

In addition to being safe, immunogenic, and protective, vac-

cines for emerging viral infections must also be easily producible 

in high quantities for rapid distribution. Adenovirus-vectored vac-

cines can be produced rapidly and may take as short as ~60 days 

to complete the processes of antigen-coding sequence synthesis, 

shuttle vector construction, virus packaging, and small-scale virus 

production. Adenovirus-vectored vaccines have been shown to be 

safe and capable of eliciting robust humoral and cellular immune 

responses in vitro, in animal models, and in clinical trials [8, 11, 

24, 26, 27]. Moreover, nonhuman adenovirus-vectored vaccines 

may have the additional advantage of overcoming the concerns of 

pre-existing immunity to human adenovirus-based vaccines [8]. 

Unlike other types of vaccine that require multiple dosing, ade-

novirus-vectored vaccines can usually induce robust and durable 

immune response rapidly a�er a single dose. �ese advantages 

of adenovirus-vectored vaccines and the relevant clinical experi-

ences prompted us to construct and evaluate 2 novel adenovirus 

5 (Ad5)-vectored vaccines containing ZIKV premembrane-enve-

lope (prM-Env) and Env proteins, respectively, in multiple nonle-

thal and lethal animal models.

MATERIALS AND METHODS

Phylogenetic and Amino Acid Sequence Conservation Analyses

�e amino acid sequences of Env of 136 di�erent ZIKV strains 

with complete genome sequences available in GenBank were 

analyzed. �e evolutionary distances were computed using the 

Poisson correction method. All positions containing gaps and 

missing data were eliminated. �ere were a total of 495 posi-

tions in the �nal dataset. Phylogenetic analyses were performed 

using MEGA6.0 as previously described [28]. �e ZIKV-Env 

amino acid sequence comparisons were performed using 

National Center for Biotechnology Information Blastp suite 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi).

Construction of Recombinant Adenovirus 5 Containing Codon-Optimized 

Zika Virus-Premembrane-Envelope and/or Zika Virus-Envelope 

Ad5-Env and Ad5-Sig-prM-Env were generated according to 

our previously described protocol with modi�cations [26]. First, 

prM and Env genes of an epidemic ZIKV strain (MRS_OPY_

Martinique_PaRi_2015; accession number KU647676) were pro-

duced synthetically. Codon optimization was used to enhance 

transgene expression. Second, ZIKV-Env was cloned into the 

shuttle vector pDC316 of AdMax adenovirus vector system [29]. 

A Kozak sequence and tPA signal peptide sequence were included. 

�e resulting recombinant vector was named pDC316-Env. ZIKV-

prM-Env was cloned into pDC316. A Kozak sequence was included 

with (pDC316-Sig-prM-Env) or without (pDC316-prM-Env) the 

last 54-nucleotide sequence of ZIKV-capsid (C) gene. All 3 recom-

binant vectors were con�rmed by sequencing. �ird, pDC316-Env 

or pDC316-Sig-prM-Env was mixed with pBHGlox_E1,3_Cre, 

and the mixture was transformed into HEK293 cells to generate 

Ad5-Env and Ad5-Sig-prM-Env. �e recombinant Ad5 was ampli-

�ed in 293F cells, puri�ed by SOURCE30Q ion exchange chroma-

tography (GE Healthcare, Little Chalfont, United Kingdom), and 

concentrated by ultra�ltration with Amicon centrifugal ultra�l-

tration 100K unit (Merck Millipore, Burlington, MA). Virus solu-

tion was supplemented with 10% glycerol and stored in aliquots 

at −80°C until use. Virus titration was performed in HEK293 cells 

using Adeno-X Rapid Titer Kit (Clontech, Mountain View, CA) 

according to the manufacturer’s instructions. �e expression of 

ZIKV-Env by recombinant shuttle plasmid and Ad5 vectors was 

detected by Western blot (Supplementary Methods).

Recombinant ZIKV-Env
1-409

 and ZIKV-prM
1-110

 Protein Preparation

Recombinant ZIKV proteins were prepared as previously 

described with modi�cations [30]. �e synthetic coding 

sequences of ZIKV-Env and ZIKV-prM deletion mutants 

lacking the transmembrane and stem regions were separately 

cloned into pET21a vector with an N-terminal 6×His-tag. 

�e resulting recombinant plasmids were transformed into 

Escherichia coli strain BL21(DE3). Both rEnv
1-409

 and rprM
1-

110
 were expressed as inclusion bodies and then puri�ed in an 

AKTA Pure System by QXL and HisTrap HP (GE Healthcare). 

�e puri�ed inclusion bodies were refolded by 100-fold dilution 

into refolding bu�er (100 mM Tris, 10 mM EDTA, 0.5 mol/L 

l-arginine, 1.5  mmol/L reduced glutathione, and 1.5  mmol/L 

oxidized glutathione) for overnight refolding at 4°C.

Immunocompetent BALB/c Mouse Model for Evaluation of Vaccine 

Immunogenicity

To evaluate the immunogenicity of the Ad5-vectored vaccines, 4- 

to 6-week-old female BALB/c mice (Wei Tong Li Hua Company, 

Beijing, China) were randomly divided into 3 groups to receive a 
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single dose of Ad5-Sig-prM-Env, Ad5-Env, or Ad5-Luc (controls) 

intramuscularly (1 × 106–8 infectious units [ifu]) (Supplementary 

Table 1). Mouse sera were collected at 1 week and 4 weeks post-

vaccination for antibody detection (n = 6–15/group). For cell-me-

diated immune response evaluation, the mice were sacri�ced at 

2 weeks postvaccination (n = 10/group) and their spleens were 

excised. �e splenocytes were extracted into Gibco Roswell Park 

Memorial Institute 1640 medium (10% fetal bovine serum) for 

intracellular cytokine staining and enzyme-linked immunospot 

(ELISPOT) assay (Supplementary Methods).

Dexamethasone-Immunosuppressed BALB/c Mouse Model for Evaluation 

of Serial Antibody Response Elicited by the Adenovirus 5-Vectored 

Vaccines

Patients with immunosuppression, including those on cor-

ticosteroid therapy, may develop severe ZIKV infection [3]. 

To investigate whether the antibody responses elicited by our 

Ad5-vectored vaccines were robust and lasting despite the use 

of corticosteroid, we evaluated the serial antibody response 

and viral loads in dexamethasone-immunosuppressed mice 

before and a�er challenge with an epidemic ZIKV strain 

(Puerto Rico strain PRVABC59; accession number KU501215; 

ZIKV-PR) as previously described with some modi�ca-

tions (Supplementary Methods) [31, 32]. ZIKV-PR was used 

because it has previously been thoroughly evaluated in the 

dexamethasone-immunosuppressed mouse model and its 

Env amino acid sequence was 100% homologous with that of 

ZIKV-MRS_OPY_Martinique_PaRi_2015.

Survival Studies With A129 Mice Receiving Active or Passive 

Immunization With Adenovirus 5-Vectored Vaccines

Survival studies using the type I interferon (IFN) receptor-de-

�cient A129 mouse model for ZIKV infection were per-

formed as previously described with slight modi�cations [33] 

(Supplementary Methods). �e mice’s clinical parameters were 

serially recorded, and their organ tissues were collected at nec-

ropsy for viral load studies and immunohistochemistry staining 

as previously described (Supplementary Methods) [31, 34]. For 

both the dexamethasone-immunosuppressed and A129 mouse 

models, each mouse received a single dose of vaccine intramus-

cularly (1 × 108 ifu) at day 0.

Detection of Binding and Neutralizing Antibodies in Mouse Sera

Serum anti-ZIKV-Env-speci�c and anti-ZIKV-prM-speci�c 

binding antibodies were detected by enzyme-linked immuno-

sorbent assay, and serum neutralizing antibodies (nAb) were 

detected by plaque reduction neutralization test as previously 

described with modi�cations [35, 36] (Supplementary Methods).

Ethical Considerations

All the animal experiments were approved by the Animal Care 

and Use Committee of the Beijing Institute of Biotechnology 

(immunocompetent BALB/c mouse model) and the Committee 

on the Use of Live Animals in Teaching and Research of �e 

University of Hong Kong (dexamethasone-immunosuppressed 

and A129 mouse models).

Statistical Analyses

All data were analyzed with GraphPad Prism so�ware 

(GraphPad So�ware, Inc.) as we previously described [31]. 

Kaplan-Meier survival curves were analyzed by the log rank 

test, and weight losses were compared using 2-way analysis 

of variance. Student’s t test was used to determine signi�cant 

di�erences in viral loads, and Tukey-Kramer post hoc test was 

used to discern di�erences among individual vaccine groups. 

Spearman rank correlation test was used to determine the cor-

relation between antibody titers and viral loads. P  <  .05 was 

considered statistically signi�cant.

RESULTS

Zika Virus-Envelope Amino Acid Sequences Are Highly Conserved Among 

Zika Virus Strains

Bioinformatic analysis was performed to identify the changes 

and di�erences in the amino acid sequence of the major immu-

nogenic antigen ZIKV-Env among the di�erent ZIKV strains. 

All ZIKV-Env sequences were categorized into 2 main groups 

that represented the Asian/American and African lineages of 

ZIKV (Supplementary Figure 1A). �e ZIKV-Env amino acid 

sequence of ZIKV-MRS_OPY_Martinique_PaRi_2015 showed 

high similarity (≥99.2%) with most other ZIKV strains (121 

of 135, 89.6%). A relatively lower similarity (98.0%) was seen 

in 1 Asian/American lineage strain (AMK79469.1, 1 of 135, 

0.7%) and the 13 African lineage strains (13 of 135, 9.6%) 

(Supplementary Figure  1B). Overall, these �ndings corrobo-

rated with our previous report that the ZIKV-Env is highly con-

served among di�erent ZIKV strains and is therefore a suitable 

target for constructing vaccine candidates to provide protection 

against most epidemic ZIKV strains [28].

Construction and Characterization of Recombinant Adenovirus 5 Vectors 

Containing ZIKV-prM and/or ZIKV-Env Genes

Based on the bioinformatic analysis results, we designed syn-

thetic codon-optimized ZIKV-Env and ZIKV-prM genes based 

on ZIKV-MRS_OPY_Martinique_PaRi_2015 (Figure  1A). All 

open reading frames were placed between the murine cyto-

megalovirus promoter and the polyadenylation signal of sim-

ian virus 40. pDC316-Env was designed to express ZIKV-Env 

directed by tPA signal peptide. To mimic the natural production 

process of ZIKV-Env protein, we also designed pDC316-prM-

Env and pDC316-Sig-prM-Env. For the latter, the last 18Aa of C 

protein was placed on the N-terminus of ZIKV-prM-Env fusion 

peptide to act as a signal peptide.

To detect the expression of ZIKV-Env protein by the open 

reading frames, cell lysates of 293T cells transfected with 

pDC316-Env, pDC316-prM-Env, or pDC316-Sig-prM-Env 
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were probed by Western blot using ZIKV-Env-speci�c poly-

clonal antibody. Expression of ZIKV-Env protein was demon-

strated in 293T cells transfected with either pDC316-Env 

or pDC316-Sig-prM-Env, but not in cells transfected with 

pDC316-prM-Env (Figure  1B). �is suggested that the signal 

peptide present in pDC316-Sig-prM-Env but not pDC316-

prM-Env was essential for the endoplasmic reticulum, Golgi, 

and membrane tra�cking of the prM-Env peptide. pDC316-

Env and pDC316-Sig-prM-Env were therefore used to generate 

Ad5-Env and Ad5-Sig-prM-Env. ZIKV-Env protein expression 

was examined by Western blot analysis of cell lysates of HEK293 

cells infected with equal quantities of Ad5-Luc (luciferase), Ad5-

Env, or Ad5-Sig-prM-Env. Protein expression of ZIKV-Env was 

detected in Ad5-Env-infected and Ad5-Sig-prM-Env-infected 

HEK293 cells, with the expression level being higher in Ad5-

Sig-prM-Env-infected than Ad5-Env-infected cells (Figure 1C).

Vaccination With Ad5-Sig-prM-Env or Ad5-Env Elicited Potent Humoral 

and Cellular Immune Responses in Immunocompetent Mice

As the �rst step to evaluate the immunogenicity of the 2 vaccines, 

we evaluated the humoral and cellular immune responses of immu-

nocompetent BALB/c mice vaccinated with Ad5-Sig-prM-Env, 

Ad5-Env, or Ad5-Luc (control). Vaccination with either Ad5-Sig-

prM-Env or Ad5-Env induced anti-ZIKV-Env-speci�c binding 

antibodies in a dose-dependent manner (Figure 2A and B). �e 

anti-ZIKV-Env-speci�c binding antibody response in mice receiv-

ing either vaccine was evident at as early as 1 week postvaccina-

tion, and the antibody titer became signi�cantly higher at 4 weeks 

postvaccination (P < .001). �e antibody titer at 1 week postvac-

cination was generally 0.5- to 1-log higher in the Ad5-Sig-prM-

Env-vaccinated mice than the Ad5-Env-vaccinated mice receiving 

the same dose of vaccine (P <  .05 for 1 × 108 ifu), whereas the 

antibody titer of the 2 groups were not signi�cantly di�erent at 4 

weeks postvaccination (Figure 2C). Both groups had signi�cantly 

higher antibody titer than the Ad5-Luc-vaccinated mice. Lower 

titers of serum anti-ZIKV-prM-speci�c binding antibody was also 

detected in the mice vaccinated with Ad5-Sig-prM-Env at 1 week 

and 4 weeks postvaccination (Figure 2D).

To evaluate the cellular immune response elicited by Ad5-

Sig-prM-Env and Ad5-Env, the levels of anti-ZIKV-Env-

speci�c IFN-γ, tumor necrosis factor (TNF)-α, interleukin 

(IL)-2, and CD107a were measured with multiparameter intra-

cellular cytokine staining and ELISPOT assays. At 2 weeks 

postvaccination with either vaccine, the mice developed strong 
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anti-ZIKV-Env-speci�c cellular immune responses (Figure 3A) 

as evidenced by the signi�cantly higher (P <  .001) mean per-

centage of IFN-γ-, TNF-α-, IL-2-, and CD107a-positive CD8+ 

T cells and IFN-γ- and TNF-α-positive CD4+ T cells in the 

vaccinated mice than the Ad5-Luc-vaccinated control mice. 

�ere was no signi�cant di�erence between the mean percent-

ages of anti-ZIKV-Env-speci�c cytokine-positive CD8+ and 

CD4+ T cells in the Ad5-Env-vaccinated mice and those in the 

Ad5-Sig-prM-Env-vaccinated mice. In contrast, the Ad5-Sig-

prM-Env-vaccinated mice demonstrated signi�cantly higher 

mean percentages of anti-ZIKV-prM-speci�c IFN-γ-positive 

CD8+ and CD4+ T cells than both the Ad5-Env-vaccinated and 

Ad5-Luc-vaccinated mice. �e anti-ZIKV-Env-speci�c and 

anti-ZIKV-prM-speci�c IFN-γ and IL-2 ELISPOT assay results 

corroborated with those of the intracellular cytokine staining 

assays (Figure 3B). Overall, these �ndings suggested that both 

Ad5-Sig-prM-Env and Ad5-Env elicited robust anti-ZIKV-Env-

speci�c CD8+ and CD4+ T-cell immune responses, whereas 

Ad5-Sig-prM-Env additionally elicited anti-ZIKV-prM-speci�c 

cellular immune response.

Dexamethasone-Immunosuppressed Mice Vaccinated With  

Ad5-Sig-prM-Env Developed Rapid-Onset, Robust, and Lasting  

Antibody Responses That Protected Them From Zika Virus Infection

�e dexamethasone-immunosuppressed mouse model pro-

vided a platform for evaluating the vaccines’ ability to elicit 

robust and durable antibody responses in hosts receiving cor-

ticosteroids. Both Ad5-Sig-prM-Env and Ad5-Env elicited 

similarly high levels of serum anti-ZIKV-Env-speci�c bind-

ing antibodies (~3.0 logs) at  as early as 2 weeks postvaccina-

tion (Supplementary Figure 2A). �e antibody titers peaked at  

6 weeks postvaccination (~4.0 logs) and persisted at similarly 

high levels at 8 weeks postvaccination. It is interesting to note 

that Ad5-Sig-prM-Env elicited signi�cantly higher titers of anti-

ZIKV-speci�c nAb (≥1-log higher, P < .001) at 4–8 weeks post-

vaccination (Figure 4A). �ere was no detectable ZIKV RNA 

in the serum and tissues of the Ad5-Sig-prM-Env-vaccianted 

mice (P < .05), and there was detectable but signi�cantly lower 

viral loads in the Ad5-Env-vaccinated mice than in the control 

mice (P <  .05) (Figure 4B). �ese �ndings illustrated that the 

antibody response elicited by Ad5-Sig-prM-Env was rapid-on-

set, robust, and durable even in the presence of high-dose dexa-

methasone immunosuppression.

Active Immunization of A129 Mice With Ad5-Sig-prM-Env Provided 

Sterilizing Protection Against Zika Virus Infection

Interferon receptor-de�cient mice develop fatal ZIKV infection 

and are frequently used for evaluation of antivirals and vaccines 

for ZIKV infection. To further evaluate the protective e�ects 

and immunogenicity of our Ad5-vectored vaccines, we vacci-

nated A129 mice with our Ad5-vectored or control vaccines. 

�e Ad5-Sig-prM-Env-vaccinated mice developed minimal 
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weight loss of  <3% throughout the study period (Figure  5A). 

�e mean body weight loss of the Ad5-Env-vaccinated mice was 

more than that of the Ad5-Sig-prM-Env-vaccinated mice, but it 

was generally still less than that of the controls. �e Ad5-Sig-

prM-Env-vaccinated and Ad5-Env-vaccinated mice had very 

low clinical scores (Figure  5B). �e survival rates of the Ad5-

Sig-prM-Env-vaccinated and Ad5-Env-vaccinated mice were 

100% and 83.3%, respectively, which were signi�cantly higher 

than that of the controls (P <  .05) (Figure 5C). Corroborating 

with the clinical �ndings, the Ad5-Sig-prM-Env-vaccinated 
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mice had undetectable ZIKV RNA loads in serum (3 and 6 days 

postinfection [dpi]) (Figure 5D) and major organ tissues (6 dpi) 

(Figure 5E), whereas the Ad5-Env-vaccinated mice had detect-

able but signi�cantly lower ZIKV RNA loads in serum and organ 

tissues than the controls (P < .05). ZIKV-NS1 antigen expression 

was undetectable in the brain and testis of the Ad5-Sig-prM-Env-

vaccinated mice  (Figure 6). Similar to the dexamethasone-im-

munosuppressed mice, the Ad5-Sig-prM-Env-vaccinated 

and Ad5-Env-vaccinated A129 mice had similar serum anti-

ZIKV-Env-speci�c binding antibody titers (Supplementary 

Figure 2B), but the Ad5-Sig-prM-Env-vaccinated mice had sig-

ni�cantly higher serum anti-ZIKV-speci�c nAb titers (P < .001) 

(Figure 5F). �e serum anti-ZIKV-speci�c nAb titers were found 

to correlate with the di�erential viral loads (R2 = 0.845). Given 

the undetectable ZIKV  RNA load in the Ad5-Sig-prM-Env-

vaccinated mice, we further compared their pre- and post-ZIKV 

challenge serum samples and found the lack of an anamnestic 

response (Figure  5G), thus con�rming sterilizing immunity. 

Taken together, these �ndings demonstrated that Ad5-Sig-prM-

Env elicited sterilizing protection against ZIKV infection in the 

severely immunocompromised IFN  receptor-de�cient A129 

mice. �e higher serum anti-ZIKV-speci�c nAb titer of the Ad5-

Sig-prM-Env-vaccinated mice provided a likely explanation of 

the better protective e�ects observed in our A129 mouse model.

Passive Immunization With Serum of Mice Vaccinated With  

Ad5-Sig-prM-Env Protected A129 Mice Against Zika Virus Infection

To further ascertain the importance of ZIKV-speci�c antibody 

response for the observed protection against ZIKV infection, we 

performed adoptive transfer studies using the lethal A129 mouse 

model. A�er ZIKV inoculation, the A129 mice that received 

Ad5-Sig-prM-Env-vaccianted mouse antisera (nAb titer 3.11 

logs) had the best clinical parameters with 100% survival, min-

imal weight loss, and no clinical symptoms (Figure  7A–C). 

Zika virus  RNA was not detectable by quantitative reverse 

transcription-polymerase chain reaction in their sera (3 and 6 

dpi) (Figure 7D) and tissues (6 dpi) (Figure 7E). Two (33.3%) 

mice that received Ad5-Env-vaccianted mouse antisera (nAb 

titer 1.60 logs) were euthanized at 5 dpi because they developed 

>10% weight loss with clinical symptoms, whereas the remain-

ing 4 (66.7%) mice survived with mean body weight loss <10% 

and minimal clinical symptoms. Low levels of ZIKV RNA were 

detectable in serum (3 dpi) (Figure 7D) and organ tissues col-

lected at necropsy (Figure 7E), but they were signi�cantly lower 

than those of the control mice (P < .05). All (100%) of the con-

trol mice that received Ad5-Luc-vaccinated or sham-vaccinated 

mouse antisera died at 5–6 dpi with mean weight loss >15% and 

high clinical scores. �e mean ZIKV RNA loads in their sera 

and tissues collected at necropsy (5–6 dpi) were signi�cantly 

higher than those of the mice that received antisera of Ad5-Sig-

prM-Env-vaccinated and Ad5-Env-vaccinated mice (P < .001).

DISCUSSION

Adenovirus-vectored vaccines have the advantages of being safe, 

highly immunogenic even with single-dose regimens, and easily 

producible. We and others have previously evaluated the safety 

and immunogenicity of (1) adenovirus-vectored vaccines for 

Time after vaccination

N
eu

tr
a
li
zi

n
g
 a

n
ti

 b
o

d
y 

ti
te

r

(P
R

N
T

5
0
, l

o
g

1
0
)

0W 4W 8W

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
A B

Ad5-LUC

Ad5-Env

Ad5-Sig-prM-Env

Sham

Tissues

V
ir

a
l 
lo

a
d

 (
co

p
ie

s 
/

1
0

6
 ß

-a
ct

in
)

Bra
in

Tes
tis

 /
Epi

di
dy

m
is

K
id

ney

Spl
ee

n
Liv

er

Blo
od

10

100

1000

10000

100 000

1000000
Ad5-LUC
Ad5-Env
Ad5-Sig-prM-Env

Sham

***
***

***
***
***

***

***

***

*
*

NS

**
**
*

*
*

NS

*
*NS

NS
NS
NS **

**NS

*
*

NS
***
***
NS

*
*

NS
*
*

NS
***
***
NS

*
*

NS

Figure 4. Serological and virological parameters of dexamethasone-immunosuppressed mice vaccinated with sham vaccine, Ad5-Luc, Ad5-Env, or Ad5-Sig-prM-Env. (A) 

Serum neutralizing antibody titers of the mice. To avoid unnecessary suffering, no additional mice were included in the 2 control groups for evaluation of antibody responses 

at 8 weeks postvaccination because they were not expected to survive virus challenge at 4 weeks postvaccination. (B) Viral loads in the blood and major organ tissues of the 

mice collected at 5 days post-Zika virus inoculation. Zika virus ribonucleic acid copies in the blood and tissues of the mice were determined by real-time reverse-transcription 

polymerase chain reaction and normalized by β-actin as described in the Supplementary Methods. *, P < .05; **, P < .005; ***, P < .001. The labels above each bar indicate 

the comparisons between the group represented by the bar and the groups that are represented by the same color of the “*” or “NS.” Error bars represent standard error of 

the mean. Total n = 6 per group. Results were combined from 2 independent experiments. Abbreviations: Ad5, adenovirus 5; Env, envelope; NS, not significant; prM, premem-

brane; PRNT
50

, plaque reduction neutralization test titer that showed 50% of plaque reduction.
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Ebola virus, human immunode�ciency virus, and respiratory 

syncytial virus infections and malaria in clinical trials [26, 27, 

37–42]. GamEvac-Combi, a heterologous vesicular stomatitis 

virus-/Ad5-vectored Ebola vaccine, and our Ad5-vectored Ebola 

vaccine have recently been approved in Russia (registration num-

ber: LP-003390) and China, respectively [43, 44]. In this study, 

we developed and evaluated 2 novel human Ad5-vectored vac-

cines expressing the ZIKV-Sig-prM-Env and ZIKV-Env proteins, 

respectively, in mice with varying degrees of immunode�ciency.

Two other adenovirus-vectored vaccines using di�erent 

ZIKV polypeptide fragments have recently been reported, but 

neither has demonstrated convincing evidence of sterilizing 

protection. Abbink et  al [8] showed that a single-dose intra-

muscular injection of a rhesus adenovirus type-52 (RhAd52)-

vectored vaccine containing the ZIKV-M-Env proteins could 

induce ZIKV-speci�c nAb response and ZIKV-Env-speci�c 

cellular immune response in rhesus macaques. It is notewor-

thy that unlike the immunosuppressed mouse models used 

in the current study, ZIKV-infected rhesus macaques gen-

erally develop mild, self-limiting symptoms and do not die, 

which make the protective e�ects of the vaccines more di�-

cult to interpret in the short term than in the long term [45]. 
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, plaque reduction neutralization test titer that showed 50% of plaque reduction; W, weeks postvaccination.
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Kim et al [11] showed that subcutaneous administration of 2 

doses of a recombinant adenovirus-vectored vaccine express-

ing codon-optimized ZIKV-M-Env (not prM-Env) antigens 

induced antibody response in adult C57BL/6 mice. �e pro-

tective e�ects of the vaccine were indirectly assessed in suck-

ling mice born to vaccinated female C57BL/6 mice infected 

with a ZIKV strain belonging to the African lineage, but not 

directly in an adult lethal mouse model using epidemic ZIKV 

strain. Moreover, whether the use of T4-�britin foldon tri-

merization domain to replace the ZIKV-Env transmembrane 

domain would reduce the immunogenicity of this vaccine was 

not clearly investigated. Reduced immunogenicity has been 

reported for another ZIKV DNA vaccine that used Japanese 

encephalitis virus transmembrane domain to replace ZIKV-

Env transmembrane domain [9]. During the revision of this 

manuscript, another nonhuman adenovirus-vectored vaccine 

expressing ZIKV-M/E glycoproteins was reported to pro-

tect against ZIKV infection in mice [46]. However, unlike 

the present study, data on the lack of anamnestic response in 

the vaccinated mice was not reported by Xu et al [46] to con-

�rm sterilizing immunity of their vaccine. In view of these 

limitations, we used multiple immunocompetent and immu-

nocompromised mouse models in this study to more clearly 

demonstrate the e�ects of our Ad5-vectored vaccines.

We �rst showed that both Ad5-vectored vaccines elicited 

robust humoral and cellular immune responses in immu-

nocompetent BALB/c mice. Based on these results, we then 

evaluated the immunogenicity and protective e�ects of our 

vaccines in immunosuppressed mice with severe ZIKV infec-

tion. Because immunosuppression with steroid therapy is 

increasingly used in patients with various diseases, which may 

dampen the robustness and durability of vaccine-elicited anti-

body responses, we evaluated the serial antibody responses 

elicited by our vaccines in dexamethasone-immunosuppressed 

mice. We showed that both vaccines elicited rapid-onset, 

robust, and durable antibody responses in these mice, and 

Ad5-Sig-prM-Env elicited signi�cantly higher titers of anti-

ZIKV-speci�c nAb titers.
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Similar protective e�ects and antibody responses were 

observed in the well established lethal A129 mouse model for 

ZIKV infection. Immunization of these IFN  receptor-de�-

cient mice with Ad5-Sig-prM-Env elicited robust binding and 

nAb responses and resulted in 100% survival rate with mini-

mal weight loss and undetectable serum and tissue ZIKV RNA 

loads. More importantly, there was a close correlation between 

the nAb titer and the viral load, providing an explanation of 

Ad5-Sig-prM-Env’s better protective e�ects against ZIKV 

infection. It was previously reported that nAb titers >2-logs was 

considered protective [14]. �is corroborated with our �ndings 

that the ~3-logs nAb titer elicited by Ad5-Sig-prM-Env was 

associated with complete protection, whereas the <2-log nAb 

titer elicited by Ad5-Env was associated with partial protection 

against ZIKV infection in A129 mice. �e molecular mecha-

nism of the di�erences between the 2 vaccines’ immunoge-

nicities is likely related to the biological functions of the Env 

and prM proteins. �e Env protein is the major immunogenic 

antigen of �aviviruses [47]. It forms heterodimers on the viral 

surface with the membrane protein and plays key roles in cell 

entry [48]. �e prM protein plays a critical role in the folding 

of Env protein of �aviviruses and the release of virus particles 

from infected cells [49]. Notably, the ZIKV peptide fragments 

used in the other 3 adenovirus-vectored vaccines were di�erent 

from the ones we used. Abbink et al [8] did not express the �rst 

93 amino acids of prM and only encoded the short M-peptide, 

which is the product of furin cleavage of prM during natural 

infection. Kim et al [11] expressed the extracellular portion of 

the ZIKV-Env [11]. Xu et al [46] used amino acids 216–794 of 

the ZIKV polyprotein to construct their vaccine. It would be 

important to directly compare the immunogenicities of these 

vaccines with Ad5-Sig-prM-Env in future studies.

CONCLUSIONS

We did not investigate our vaccines’ potential to elicit anti-

body-dependent enhancement on other �aviviruses, because 

the in vitro and in vivo signi�cance of this phenomenon remains 

controversial [50]. Given the excellent mouse model data of 

Ad5-Sig-prM-Env in the present study and the experiences 

from previously successful human trials indicating the dis-

tinct advantages of adenovirus-vectored vaccines, clinical trials 

should be considered for this urgently needed countermeasure 

among at-risk population groups once further preclinical data 

on the purity and safety of the vaccine become available.

A B

C D

E

F  G  

H  I  

J  

Figure 6. Representative immunohistochemistry findings in the brain and testis of A129 mice vaccinated with sham vaccine, Ad5-Luc, Ad5-Env, or Ad5-Sig-prM-Env. 

Immunohistochemistry staining of the brain and testicular tissue sections of the mice was performed as we previously described [31]. ZIKV-NS1 protein expression was 

abundantly observed in the brain and testis (Leydig cells) tissue sections of mice vaccinated with either sham vaccine (A and F) or Ad5-Luc (B and G), but this was minimal 

or absent in those of mice vaccinated with either Ad5-Env (C and H) or Ad5-Sig-prM-Env (D and I) and uninfected control mice (E and J). (A–E) Brain tissue sections (×200) of 

mice vaccinated with sham vaccine (A), Ad5-Luc (B), Ad5-Env (C), or Ad5-Sig-prM-Env (D), and uninfected control (E). (F–J) Testicular tissue sections (×400) of mice vaccinated 

with sham vaccine (F), Ad5-Luc (G), Ad5-Env (H), or Ad5-Sig-prM-Env (I), and uninfected control (J). The methodological details of vaccination and ZIKV inoculation are listed 

in the Supplementary Methods and Supplementary Table S1. Abbreviations: Ad5, adenovirus 5; Env, envelope; prM, premembrane; ZIKV, Zika virus.
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Supplementary Data

Supplementary materials are available at �e Journal of 

Infectious Diseases online. Consisting of data provided by 

the authors to bene�t the reader, the posted materials are not 

copyedited and are the sole responsibility of the authors, so 

questions or comments should be addressed to the corre-

sponding author.
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Figure 7. Clinical and virological parameters of A129 mice receiving antisera obtained from BALB/c mice vaccinated with sham vaccine, Ad5-Luc, Ad5-Env, or Ad5-Sig-prM-

Env. (A) Body weights, (B) clinical scores, and (C) survival times and rates of the mice were monitored for 6 days (survived mice) or until euthanasia. Clinical scores: normal = 0; 

ruffled fur = 2; lethargy, pinched, hunched, wasp waisted = 3; labored breathing, rapid breathing, inactive, neurological = 5; and immobile = 10. (D) Viral loads in the blood of 

the mice collected at 3 days post-Zika virus (ZIKV)-inoculation, and (E) viral loads in the blood and major organ tissues of the mice collected at 6 days post-ZIKV-inoculation. 

Zika virus ribonucleic acid copies in the blood and tissues of the mice were determined by real-time reverse-transcription polymerase chain reaction and normalized by β-actin 

as described in the Supplementary Methods. *, P < .05; **, P < .005; ***, P < .001. The labels above each bar indicate the comparisons between the group represented by the 

bar and the groups that are represented by the same color of the “*” or “NS.” Error bars represent standard error of the mean. Total n = 6 per group. Results were combined 

from 2 independent experiments. Abbreviations: Ad5, adenovirus 5; Env, envelope; NS, not significant; prM, premembrane.
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