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Immuno-targeting the 
multifunctional CD38 using 
nanobody
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 Xian Wang Wang4, Du Xin5, Peng Zhang6, Friedrich Koch-Nolte3, Quan Hao2, 

Hongmin Zhang7, Hon Cheung Lee1 & Yong Juan Zhao1

CD38, as a cell surface antigen is highly expressed in several hematologic malignancies including 
multiple myeloma (MM) and has been proven to be a good target for immunotherapy of the disease. 
CD38 is also a signaling enzyme responsible for the metabolism of two novel calcium messenger 
molecules. To be able to target this multifunctional protein, we generated a series of nanobodies against 
CD38 with high affinities. Crystal structures of the complexes of CD38 with the nanobodies were solved, 
identifying three separate epitopes on the carboxyl domain. Chromobodies, engineered by tagging 
the nanobody with fluorescence proteins, provide fast, simple and versatile tools for quantifying CD38 
expression. Results confirmed that CD38 was highly expressed in malignant MM cells compared with 
normal white blood cells. The immunotoxin constructed by splicing the nanobody with a bacterial 
toxin, PE38 shows highly selective cytotoxicity against patient-derived MM cells as well as the cell 
lines, with half maximal effective concentration reaching as low as 10−11 molar. The effectiveness of the 
immunotoxin can be further increased by stimulating CD38 expression using retinoid acid. These results 
set the stage for the development of clinical therapeutics as well as diagnostic screening for myeloma.

CD38 is a 46-kDa membrane glycoprotein with a short 20-aa N-terminal sequence, a single transmembrane 
segment and a 256-aa catalytic carboxyl domain. Decades of research documents that it is a novel multifunc-
tional molecule, serving not only as a di�erentiation antigen on cell surface, but also, most surprisingly, as the 
dominant signaling enzyme responsible for the metabolism of two intracellular calcium messenger molecules, 
cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP) (reviewed in Lee1). It is 
well-established that the C-terminal domain possesses all the catalytic activities of the enzyme. Paradoxically, as a 
surface molecule, it has long been known that its catalytic C-terminal domain faces the extracellular space instead 
of the cytosol. How an ecto-enzyme can produce two second messenger molecules that function intracellularly is 
an unresolved conundrum that has been intensely investigated. A body of recent studies have now established the 
existence of intracellular CD38 (reviewed in Lee2) and even a Type III CD38 with its catalytic C-domain facing 
the cytosol3. �e development of speci�c immuno-targeting tools for CD38, as described in this study, should 
facilitate the resolution of this topological paradox.

In addition to its intracellular signaling functions, CD38 is also a surface antigen, serving as a receptor for 
ligands such as CD44,5 and CD316,7. CD38 is ubiquitously expressed in many cells, especially in the immune cells, 
such as lymphocytes and monocytes (reviewed in Malavasi et al.8). �e expression was found to be extremely 
high in some malignant cells, including multiple myeloma (MM), and chronic lymphoid leukemia. MM is a 
plasma-cell cancer characterized by accumulation of malignant cells in the bone marrow and production of a 
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monoclonal immunoglobulin (M protein). It remains incurable, although the median overall survival rate has 
been increased to 5 years owing to the introduction of novel treatments9. Considering the huge di�erences of the 
expression between normal and myeloma cells, CD38 is thought to be a good drug target for cancer therapy10–12 
and the human monoclonal antibody, daratumumab (Darzalex™ ) has recently been approved by the US FDA13.

Besides the success of daratumumab, several other monoclonal antibodies against CD38 are in clinical trials. 
Nanobodies, also called single domain antibodies, have attracted much attention for their therapeutic potential 
as a class of powerful next-generation antibodies14. �ey are much smaller and more stable than conventional 
full-length antibodies but retain equivalent antigen-binding capacity15.

In this study, we used the phage-display technology to generate a series of clones of nanobodies against CD38 
and have developed highly e�cient expression systems in bacteria to mass produce them. Using X-ray crystallog-
raphy we identi�ed their epitopes on CD38. To demonstrate their versatility, we engineered and produced speci�c 
chromobodies and an immunotoxin targeting MM cells with very high e�cacy. �e results should set the stage 
for developing clinical therapeutics as well as diagnostic screening for myeloma.

Results
Structural characterization of a panel of nanobodies recognizing different epitopes on the sur-
face of CD38. �e C-terminal domain of human CD38 (residue 45–300) was expressed and produced in a 
yeast expression system as previously described16. �e puri�ed recombinant protein was used as an antigen to 
immunize llamas. Phage display technology was used to obtain 19 positive clones against CD38. Seven of them 
were selected and produced in large scale for crystallography using an E.coli expression system as described in 
the Methods.

�e secondary structure of one of these nanobodies is shown in Fig. 1. It contains prominent beta-sheets 
(yellow), making the molecule very compact and highly stable. �ree short alpha helices (red), composing of 
three residues each, are also present. �e three complementarity determining regions (CDRs) are located in three 
separate loops and are di�erently colored in Fig. 1b. �e residues within these CDRs that form closest contacts of 
less than 3.9 Å with CD38 are rendered in sticks and listed in bold with underline.

�e crystal structures of seven di�erent nanobodies complexed with CD38 were solved. �ree of them are 
shown in Fig. 2 as a composite. �ree separate epitopes are identi�ed and are colored di�erently (orange, cyan or 
green). �e residues composing the epitopes are also listed and colored correspondingly. Two of them (orange 
and green) are located close to C-terminal region of CD38. �is region appears to be highly antigenic since it is 
also where the monoclonal antibody, HB-7, binds, as shown in the crystal structure we have previously solved17. 
Consistent with the long distance between the epitopes and the catalytic pocket18, none of these nanobodies 
shows any antagonistic e�ect on the enzymatic activity of CD38 (data are not shown).

An additional epitopic region (cyan) is distinct, which is located close to the middle of the molecule. �e cle� 
at the middle of CD38 is where the active site pocket is located18, which can be seen in the le� panel of Fig. 2, 
marked by the catalytic residue, E226 (colored red), present at the bottom of the pocket. �e epitope is located on 
the opposite side of the pocket (right panel in Fig. 2).

Chromobody 1053-FPs specifically stain CD38 on the cell surface. With the epitopes de�nitively 
identi�ed, the panel of nanobodies developed in this study should be useful for immuno-targeting these regions 

Figure 1. �e overall structure of nanobody 1053. (a) A ribbon representation of the structure of 1053 with 
surface presented in a semi-transparent manner. (b) Ribbon structure of 1053 with three CDRs colored in 
di�erent colors and residues forming closest contacts with CD38 are presented in the stick mode.
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for possible post translational modi�cations or for assessing interactions with regulatory factors. To facilitate 
quanti�cation of binding of the nanobody to the surface expressed CD38, we engineered two fusion proteins by 
splicing EGFP or mCherry to the C-terminus of the nanobody, Nb1053, to create either a green (1053-EGFP) or 
a red (1053-mCherry) �uorescent nanobody. �is type of �uorescent nanobody has been termed chromobody19. 
�e construct of 1053-EGFP is diagrammed in Fig. 3a, the cDNA sequence of Nb1053, encoding 3 CDRs (red) 
and 4 framework residues (FRs, blue), was linked to EGFP (green), with a His6-tag in the N-terminus and a linker 
in between. �is fusion gene was cloned into the prokaryotic expression vector, pET28a. �e chromobody was 
expressed in E.coli BL21(DE3), mostly in the soluble fractions, and puri�ed by sequential chromatography on 
Ni-NTA-agarose and Q-Sepharose ion exchange columns (see Material and Methods), yielding around 6 mg pure 
recombinant protein per liter of culture (Fig. 3b). By replacing EGFP with mCherry, a red colored chromobody 
was also prepared in a yeast system16, as described in Suppl. Fig. 1. �e excellent yields of the preparations serve to 
illustrate the ease of mass scale production of these nanobodies as compared with monoclonal antibodies, which 
could be a deciding advantage for developing immuno-therapeutics.

To test the speci�city and sensitivity of this chromobody, we used an MM cell line, LP-1, which expresses 
CD38 at high levels. As a negative control, we also constructed an LP-1 cell line with the CD38 gene knocked 
out (CD38-KO) using the CRISPR technique. �e construction and validation of the CD38 knockout cell line is 
described in Suppl. Fig. 2. Figure 3c shows that the 1053-EGFP stained LP-1, but not CD38-KO, indicating the 
staining is speci�c for CD38. As retinoid acid (RA) was reported to be able to increase CD38 expression in HL-60 
and other cells20,21, we tested the stimulation in LP-1. Indeed, CD38 expression was also stimulated by RA, not 
only in LP-1 but also in other two MM cell lines. �e stimulation was in a concentration- and time-dependent 
manner (see Suppl. Fig. 3). A�er the RA treatment, the staining by 1053-EGFP was greatly enhanced in LP-1 but 
not CD38-KO (Fig. 3c), indicating again the staining by the chromobody was highly speci�c. Additionally, we 
have tested and found no cross-reactivity of 1053-EGFP to CD157, a CD38 paralogue protein (Suppl. Fig. 4).

Flow cytometry was used to quantify the staining. �e concentration- and time- dependency of the increase 
in �uorescence intensity of the stained cells are shown in Fig. 3d. Signi�cant �uorescence can be detected on the 
stained LP-1 cells with as low as 10 ng/ml of 1053-EGFP. At around 100–500 ng/ml of 1053-EGFP the �uores-
cence signals were saturated. �e RA treatment increased the �uorescence of the cells by more than two folds, 
consistent with enhanced CD38 expression. Nonspeci�c binding was not observed on CD38-KO cells until the 
concentration went up to 1 µ g/ml.

�e staining of the cells with 1053-EGFP was done on ice to minimize possible internalization of the chro-
mobody, even though its binding to the cells at room temperature was much faster (data not shown). On ice, 
the binding curves of LP-1 cells treated with or without RA plateaued at around 10–30 min (Fig. 3e). With these 

Figure 2. Two views of the crystal structure of CD38 complexed with nanobodies related by 180° rotation 
around a vertical axis. �ree di�erent nanobodies (shown in ribbon mode; orange: 375; cyan: 551; green: 
1053) are composed with CD38 (shown in surface mode). �e residues of the epitopes are colored both in the 
structure and in the listed sequence.
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characterizations, all subsequent experiments were done using 500 ng/ml chromobody and 30 min incubation on 
ice. �e ease of the procedure needs to be emphasized, as it requires just simple incubation of the cells with the 
chromobody, followed by analysis with �ow cytometry directly. No �xing, washing or incubation with secondary 
antibody is required. As shown above, non-speci�c staining was virtually undetectable (cf. Fig. 3c).

Apart from simplicity, the sensitivity of the method was validated by comparison with two widely used tech-
niques for measuring CD38; Western blot analysis and the NGD assay that is based on the enzymatic activity 
of CD38. �e three assays di�er in principle. �e chromobody stains the cell surface CD38, while the Western 
blot analysis detects the total CD38 in cell lysates and the NGD assay measures the ADP-ribosyl cyclase activity 
of the surface CD38. As shown in Fig. 4, all three methods could detect CD38 signals in three di�erent MM 

Figure 3. Designing and characterization of chromobody. (a) �e structure of 1053-EGFP. (b) SDS-PAGE 
analysis of 1053-EGFP. (c) Confocal imaging of chromobody-stained cells. Bar: 10 µ m. Dose curve (d) and time 
course (e) of live cell staining of 1053-EGFP analyzed by FACS. RA pre-treatment: 5 ×  105 cells/ml, 10 nM RA 
for 3 days; initial cell density for staining was 5 ×  105 cells/ml. �e experiments were performed four times.

Figure 4. Di�erent methods to quantify CD38 expression in di�erent cell lines or normal PWBCs.  
(a) FACS following staining with 500 ng/ml 1053-EGFP at 4 °C for 30 min. (b) NGD assay of live cells.  
(c) Total CD38 in lysate was analyzed by Western blot, blotted with anti-CD38. Band intensity was quanti�ed 
by ImageLab. All the data were normalized with the values in LP-1 cells. �e experiments were performed �ve 
times.
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cell lines: LP-1, OPM2 and RPMI8226. All three methods are highly speci�c as none detected any signal from 
CD38-KO cells. Notably, the levels of CD38 in the cell lines detected by all three methods showed similar trend, 
with LP-1>  RPMI8226>  OPM2. Also, all three methods detected RA stimulation in all three cell lines, but not 
in the CD38-KO cells.

�e chromobody method is highly sensitive as indicated by its readiness in detecting CD38 in the normal 
peripheral white blood cells (PWBCs), while the other two methods could not. Both monocytes and lymphocytes 
express much higher levels of CD38 than granulocytes (Suppl. Fig. 5), which is consistent with that reported 
previously22. Another advantage of chomobody-FACS method is that the amounts of cells required are the least 
of the three methods, which is an important factor when studying the limited samples from patients, as described 
below. Considering the cost and e�cacy, we compared the chromobody with anti-CD38-FITC (T16, A07778 
Beckman Coulter), which is routinely used in research and clinical tests. As shown in Suppl. Fig. 6, both the max-
imum signals and the linear range of the chromobody (right chart) are comparable to the commercial antibody  
(le� chart). But the ease of preparation and the cost consideration (more than 300 times less), make the chromo-
body the method of choice.

Immunotoxin 1053-PE38 efficiently kills MM cell lines in a CD38-dependent manner. �e excel-
lent sensitivity of the chromobody prompted us to consider developing a new therapeutic agent based on CD38 
nanobody. We chose immunotoxin for two main reasons. First, immunotoxin is highly potent, even a single mol-
ecule of the toxin entering a cell can kill it23. Second, toxins suitable for this purpose, such as the bacterial PE38, 
have been well documented24.

We employed the bacterial toxin domain, PE38 as the toxin part, which has been used in constructing various 
immunotoxins, including LMB-2, which is successful in a phase II clinic trial25. �e construct of the immuno-
toxin is diagrammed in Fig. 5a, we used the hinge sequence of human CD8 to link the C-terminus of the nano-
body (le�, CDRs in red and FRs in blue) to the N-terminus of PE38 (right, translocation domain in magenta 
and enzymatic domain in red)26. A His6-tag from the backbone of pET28a was included to facilitate the puri-
�cation process. �e recombinant immunotoxin was expressed in E.coli BL21(DE3) and the majority was in 
soluble fraction. Around 4 mg of immunotoxin was puri�ed from 1 L culture using Ni-NTA, anion exchange and 
size-exclusion chromatography (see Material and Methods) (Fig. 5b).

To test the cytotoxic activity of 1053-PE38, we employed a colorimetric assay based on cellular 
dehydrogenase-mediated reduction of the WST-1 tetrazolium salt to formazan. �e results (Fig. 5c) show that 

Figure 5. Designing and characterization of immunotoxin. (a) �e structure of 1053-PE38. (b) SDS-PAGE 
analysis of pure 1053-PE38 and GFPNb-PE38. �e cytotoxicity of 1053-PE38 (c) and GFPNb-PE38 (d), as 
a control, on MM cell lines, with or without RA pre-treatment measured by WST-1 assay and analyzed by 
Graphpad. �e experiments were performed four times.
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all three MM cell lines are susceptible to killing by 1053-PE38 with EC50 values around 30 picomolar. �e toxin 
was highly selective and did not a�ect the LP-1 cells not expressing CD38 (CD38-KO), unless at least 5 orders of 
magnitude higher concentration was used, indicating the cytotoxicity is strictly CD38-dependent. �e potency 
of 1053-PE38 can be further increased by stimulating CD38 expression in the targeted cells. �is was particularly 
notable in the RPMI8226 cells, showing a 68% reduction of the EC50 value, following treatment of the cells with 
RA (Table in Fig. 5).

To further test the non-speci�c toxicity of PE38-based immunotoxin, we prepared a control toxin composed 
with an unrelated nanobody against GFP27. �e result shows that no signi�cant cytotoxicity was observed in both 
CD38-positive or negative cells (Fig. 5d).

Applications on the primary MM cells. To further test the e�cacy and safety of the immunotoxin, we 
isolated MM cells from patient bone marrow samples and PWBCs from healthy donors as controls. We �rst 
quanti�ed the amounts of cell surface CD38 by 1053-EGFP staining. �e limited amounts of cells obtainable from 
patients made it suitable to use the chromobody quanti�cation procedure developed in this study. As shown in 
Fig. 6a and Suppl. Fig. 7, both primary MM cells isolated from the patients and the LP-1 cell line have high levels 
of CD38 expression, while a very limited expression levels were detected on both lymphocytes and monocytes 
in the PWBCs isolated from healthy donors. Similar di�erences were also seen in the cytotoxicity of the immu-
notoxin. As shown in Fig. 6b,c and Suppl. Fig. 8, 1053-PE38 could kill the primary MM cells derived from the 
patients e�ciently but had little e�ect on normal PWBCs. �e EC50 values correlated to the expression levels of 
CD38. �e expression levels of CD38 were higher in cells from patient-1, 3 and 5 than those from patient-2 and 
4, and the corresponding EC50 values were around 7 pmol/L for the samples from patient-1, 3 and 5, lower than 
70 pmol/L for those from patient-2 and 4.

Discussion
CD38 is a novel protein serving multiple functions. Not only is it the dominant signaling enzyme in mammalian 
cells for mediating the mobilization of multiple intracellular calcium stores2, but it also functions as a surface 
antigen interacting with speci�c receptors, such as CD44,5 and CD316. Its expression level on activated T cells is 
an indicator of AIDS progression28 and has also been found to be highly expressed on myeloma cells29.

As a signaling enzyme, it is well established that one of its enzymatic products, cADPR, regulates the mobi-
lization of the endoplasmic calcium stores, while another product, NAADP, targets the endo-lysosomal calcium 
stores instead30,31. Indeed, deletion of CD38 in mice has been shown to result in multiple defects, ranging from 

Figure 6. CD38 expression level of primary MM and the corresponding e�ects of the 1053-PE38. (a) CD38 
expression in �ve di�erent MM patient samples and PWBCs were analyzed by 1053-EGFP staining method, 
together with LP-1 and CD38-KO as relative expression controls. (b) �e cytotoxicity of 1053-PE38 a�er 3-day 
treatment was analyzed by calcein staining followed by FACS. �ree repeats were performed on each batch of 
samples.
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insulin secretion32, lymphocyte chemotaxis33 to depression of oxytocin release and social behavior34. How a single 
molecule can be involved in both extra- and intra-cellular functions has been a long unresolved conundrum. We 
believe that the development of speci�c and sensitive tool for targeting CD38 should be invaluable for resolving 
the conundrum, especially concerning its subcellular distribution and its membrane topology in relation with its 
multiple functions.

In this study, we have generated a series of nanobodies targeting three di�erent epitopes on CD38, de�nitively 
identi�ed by crystallography. We then engineered the nanobody to produce chromobody and showed that it 
is a highly sensitive tool for visualizing CD38 and quantifying its levels, with virtually no non-speci�city. We 
have developed highly e�cient expression system in E.coli that can be readily scaled up for mass producing the 
nanobody-based diagnostic agents as well as clinical therapeutics.

As an immuno-targeting tool for CD38, 1053-EGFP has the advantage of not only being highly sensitive, 
requiring limited amounts of cells, but also very simple to use (Figs 3 and 6). Both advantages have been illus-
trated in its ready detection of CD38 expression in primary cells isolated from individuals. Another important 
advantage of the chromobody is that it can be transfected and expressed inside cells, which should be useful for 
targeting intracellular CD38 that has been described in recent studies19. Indeed, chromobody has been used to 
visualize cytoskeletal dynamics in live cells35,36 and also can be used in single-molecule microscopy37.

�e potential of using the nanobody to develope clinical therapeutics is also illustrated in this study. �e 
results demonstrate that the engineered immunotoxin, 1053-PE38, selectively kills CD38-positive cells in a 
concentration-dependent fashion. �e e�cacy of this immunotoxin is in the picomolar range, with the particular 
EC50 values correlating with the amounts of surface CD38 expression in di�erent cells types (Figs 4 and 5). �e 
e�cacy of 1053-PE38 compares favorably with the several monoclonal antibodies against CD38 for targeting 
MM cells that are currently in clinic trials, including daratumumab from GenMab/Johnson & Johnson38 and 
SAR650984 from Sano�39. �e EC50 values for daratumumab and SAR650984 are reported at around 1 nmol/L38 
and 15–100 pmol/L39, respectively. Immunotoxins of CD38 have also been constructed based on the monoclonal 
antibodies, such as HB740 and IB-441, which shows excellent e�cacy on MM cells and other CD38-overexpression 
cells. As discussed above, the nanobody-based immunotoxin does have several advantages over those based on 
monoclonal antibody, including simplicity for mass production. Also, as shown in this study, the compact molec-
ular structure of the nanobodies stabilizes the molecules, making them suitable for long-term storage. �e nano-
body approach is thus a valuable alternative to monoclonal antibody.

Another notable feature of the nanobody is the remarkable speci�city toward CD38. �is is re�ected not only 
in the chromobody staining, but also in the lack of cytotoxicity of 1053-PE38 towards cells expressing little or no 
CD38. As such, a wide safety window of around �ve order-of-magnitude di�erence in cytotoxic concentrations 
is seen between the MM cells and normal PWBCs (Figs 5 and 6), which should be a critical requirement for any 
therapeutic application.

Last but not least, that the nanobody is encoded by a single gene makes it amenable for improvement by 
protein engineering. Likewise, bivalent molecule targeting two di�erent epitopes on CD38 can be constructed 
by introducing dimerizing motif such as FKBP42 and Fc domain43, which could increase its a�nity for CD38 and 
prolongs its life time in serum. Nanobodies are also very suitable in making bispeci�c antibodies, which bind to 
two di�erent antigens and convey great therapeutic potential44. As such, the nanobody approach is highly versa-
tile for future development.

Material and Methods
Cell lines and samples from MM patients and healthy individuals. Myeloma cell lines, including 
LP-1, OPM2 and RPMI8226, which were kindly provided by Annie An (School of Pharmaceutical Sciences, 
Peking University) and veri�ed by STR pro�ling test before experiments, were cultured in IMDM (for LP-1) or 
RPMI 1640 (OPM2 and RPMI8226) supplemented with 10% or 20% (OPM2) fetal calf serum (Life Technology), 
1% penicillin–streptomycin solution (Life Technology). CD38 knockout LP-1 cell line was constructed by 
CRISPR technology according to previous report (Addgene, #48139)45. All the cells were maintained in a stand-
ard humidi�ed tissue culture incubator with 5% CO2.

Primary malignant plasma cells were puri�ed from MM patient bone marrow aspirates by negative selec-
tion using the RosetteSep human MM cell enrichment cocktail (StemCell Technologies) and Ficoll-Hypaque 
(Nycomed) density-gradient centrifugation according the manufacturers’ instructions. MM cells collected from 
the plasma/Ficoll interface were washed with PBS and applied to the tests of CD38 expression and cytotoxicity 
of immunotoxin.

Approximately 15 ml of peripheral blood was obtained from four healthy volunteers. Whole blood was applied 
to a Ficoll (Nycomed) gradient as previously described3. �e isolated normal PBWCs were used as controls in the 
tests of CD38 expression and cytotoxicity of 1053-PE38.

�e bone marrow samples were collected from MM patients. Informed consents were obtained from all 
patients concerning the use of the samples for research purposes. �e sample collection and analysis in vitro were 
carried out in accordance with the recommendations in the research involving human biological materials of 
Shenzhen Second People’s Hospital. �e protocol was approved by the Hospital Ethics Committee of Shenzhen 
Second People’s Hospital.

Expression, purification, crystallization of the CD38-Nb complexes. Recombinant CD38 was 
prepared and puri�ed as reported previously16,46. �e puri�ed protein was bu�er-exchanged to 20 mM HEPES  
(pH 7.0), 50 mM NaCl, concentrated to 50 mg/ml and stored at − 80 °C for later use. �e nanobodies were cloned 
into pHEN2 vectors with an N-terminal pelB leading sequence and C-terminal His6- and C-myc tag. �e proteins 
were expressed in E.coli BL21(DE3) or Rosetta(DE3) and puri�ed by Ni-NTA a�nity chromatography, followed 
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by anion exchange Q or cation exchange SP. �e proteins were bu�er-exchanged to 20 mM HEPES (pH 7.0), 
50 mM NaCl, concentrated to more than 20 mg/ml and stored at − 80 °C for later use.

CD38 and nanobodies were mixed at equal molar ratio and diluted to 20 mg/ml. �e protein mixtures were 
screened for crystallization conditions using hanging drop vapor di�usion method. Crystallization hints were 
further optimized for better crystals. �e crystallization conditions for these protein complexes were listed in 
Suppl. Table 1. �e crystals were harvested and soaked in cryo-protectant (c.f. Suppl. Table 1) and then �ash 
frozen into liquid nitrogen. �e di�raction data were collected at 100 K at BL17U at the Shanghai Synchrotron 
Radiation Facility and processed with HKL200047. Molecular replacement was performed using the program 
Phaser48 from CCP4 suit49 and the wild type CD38 (PDB code 1YH3) was used as searching model. �e model 
completion (especially the nanobody part) was performed using IPCAS as described50. Models were re�ned with 
Refmac51 and cycled with manual rebuilding in Coot52. TLS re�nement53 was incorporated into the later stages of 
the re�nement process for some of the complexes. Solvents were added automatically in Coot and then manually 
inspected and modi�ed. �e �nal models were analyzed with MolProbity54. Data collection and model re�nement 
statistics were summarized in Table 1. �e coordinates and structure factors were deposited in Protein Data bank 
with PDB code of 5F21, 5F1O and 5F1K for CD38-MU375, CD38-MU551 and CD38-MU1053, respectively.

Construction, expression and purification of the immunotoxin, 1053-PE38 and GFPNb-PE38.  
Nb1053 was ampli�ed from the phagemid pHEN2-1053 and subcloned to pET-28a(+ ) (Novagen) by EcoR 
I and Hind III, resulting an intermediate plasmid pET28a-1053. The sequence encoding hinge region of 
human CD8 and the truncated Pseudomonas exotoxin A (PE38) was ampli�ed from the plasmid anti-CD11c 
IMMUNOTOXIN26 from Addgene (#22850) and subcloned into the above plasmid pET28a-1053 by Hind III 
and Not I. To construct GFPNb-PE38, Nb1053 was replaced with the gene encoding GFP nanobody, which was 
ampli�ed from pOPINE-GFP nanobody27 (Addgene, #49172). �e resulted plasmids were then transformed into 
E.coli BL21(DE3) to produce immunotoxins. �e culture was harvested 12 h a�er induction by 0.5 mmol/L IPTG 
at 18 °C. More than 4 mg of immunotoxin could be puri�ed from 1 L culture a�er puri�cation using a standard 

CD38-MU375 CD38-MU551 CD38-MU1053

Data collection

Space group P212121 P212121 P212121

Cell dimensions

a, b, c (Å) 45.149, 69.666, 123.476 33.141, 96.190, 143.254 88.552, 96.242, 133.777

α , β , γ (°) 90, 90, 90 90, 90, 90 90, 90, 90

Resolution (Å) 50~1.90 (1.97~1.90) 50~2.2 (2.28~2.2) 50~2.3 (2.38~2.30)

Unique re�ections 29637(1958) 23341 (1897) 45209 (2716)

Completeness (%) 99.3(98.1) 99.7 (100.0) 99.7 (100)

Redundancy 6.1(6.1) 7.6(7.6) 9.8(9.1)

Wilson B-factor 20.75 26.66 28.87

Rmerge 0.069(0.614) 0.074(0.461) 0.092(0.576)

I /σ I 22.2(3.2) 22.6(5.0) 21.8(3.4)

Re�nement

Resolution (Å) 50~1.90 50~2.2 50~2.3

Rwork 0.1625 0.1679 0.198

Rfree 0.2108 0.2366 0.2313

No. atoms 3163 3165 6094

Protein 2874 2958 5771

ligands 16

Water 273 207 323

Protein residues 362 369 727

Ramachandran plot

Favored (%) 97.5 97.5 97.5

Outliers (%) 0.3 0.3 0.3

Average B-factors 27.74 34.92 42.58

Protein 26.8 34.55 43.07

ligands 27.98

Water 37.59 40.08 33.8

R.m.s. deviations

Bond lengths (Å) 0.009 0.009 0.01

Bond angles (°) 1.28 1.3 1.38

Table 1.  Data collection and re�nement statistics.
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Ni-NTA column (Qiagen), followed by a HiTrap Q column (GE Healthcare) and a Superdex 200 15/300 GL col-
umn (GE Healthcare) according to the manufacturers’ instructions.

Construction, expression and purification of the chromobody, 1053-EGFP. To construct 
pET28a-1053-EGFP, the EGFP fragment, cut from pEGFP-N1 (Clontech) by Hind III and Not I, replaced PE38 
in pET28a-1053. �e expression conditions were similar to 1053-PE38. Around 6 mg of pure chromobodies were 
obtained from 1 L culture a�er puri�cation using a standard Ni-NTA column (Qiagen), followed by a HiTrap Q 
HP 1 mL/5 mL (GE Healthcare) according to the manufacturers’ instructions.

Measurement of ADP-ribosyl cyclase activity of CD38. �e activity was measured by the colorimetric 
NGD assay55,56. Brie�y, around 2 ×  105 live cells were applied to 50 µ l of 100 µ M NGD in PBS. Kinetic �uorescence 
reading (ex/em: 300/410 nm) was immediately started a�er adding NGD in an In�nite M200 PRO microplate 
reader (Tecan), maintained around 25 min and reCD38 was added to get a maximum reading (Fmax). �e activity 
of the cell surface CD38 was calculated by the following equation: initial slope (F/h)  ×  10 nmol NGD/(Fmax-Fmin), 
in which Fmin is the initial �uorescence reading. �e results were presented as nmol NGD/hour/105 cells and 
normalized with the values of LP-1 cells.

Measurement the amount of CD38 in cells. �e expression levels of CD38 in di�erent cells were meas-
ured by Western blot. Cells were or were not treated by 10 nM RA for 3 days and then lysed with the lysis bu�er 
(PBS, 0.5% TRX-100, 2 mM EDTA, protease inhibitor cocktail (Roche)) and 40 µ g total proteins were applied to 
SDS-PAGE. �e blotting was performed using a homemade polyclonal antibody3 (α CD38), while anti-GAPDH 
(Sangon) as a loading control. Images were acquired by Chemidoc MP (Bio-rad) and analyzed by ImageLab 
(Bio-rad).

�e amounts of CD38 on cell surface were measured by �ow cytometry. 105 cells were incubated with 500 ng/ml  
of 1053-EGFP for 30 min on ice and analyzed on CytoFLEX (Beckman Coulter). Data were analyzed by the so�-
ware FlowJo.

Measurement of cytotoxicity of the immunotoxin. To measure the cytotoxity of 1053-PE38 on dif-
ferent cells, WST-1 assay and FACS were used to evaluate the live cell numbers for cell lines and primary cells, 
respectively. Brie�y, in WST-1 assay, 1 ×  104 cells were seeded together with di�erent concentrations of immuno-
toxin in a 96-well plate. Seventy-two hours later, WST-1 reagent (Roche, 11644 807001) was added and incubated 
for 1 h at normal growth condition. �e color intensity was read at 450 nm (reference wavelength: 690 nm) in an 
In�nite M200 PRO plate reader (Tecan). For primary MM cells and normal PWBCs, 1 ×  105 cells were seeded 
and incubated with immunotoxin as above for 72 h. Number of live cells was analyzed by calcein acetoxymethyl 
ester (calcein-AM) (C3100MP, Life Technology) staining and CytoFLEX (Beckman Coulter) according to the 
manufactures’ instructions. EC50 values were calculated using GraphPad Prism so�ware and plotted.
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