

Open access • Posted Content • DOI:10.1101/2021.06.03.21257757

Immunochemotherapy as induction treatment in Stage III (N2, N3) Non-small cell lung cancer — Source link

Hongsheng Deng, Hengrui Liang, Wenjun Wang, Jian Li ...+8 more authors

Institutions: Guangzhou Medical University

Published on: 05 Jun 2021 - medRxiv (Cold Spring Harbor Laboratory Press)

Topics: Stage IIIC and Lymphadenectomy

1	Immunochemotherapy as induction treatment in Stage III (N2, N3) Non-small cell lung			
2	cancer			
3				
4	Hongsheng Deng ^{1#} MD., Hengrui Liang ^{1#} MD., Wei Wang ^{1#} MD., Jianfu Li ¹ MD., Shan Xiong ¹ MD., Bo			
5	Cheng ¹ MD., Caichen Li ¹ MD., Qing Ai ¹ MD., Zhuxing Chen ¹ MD., Haixuan Wang ¹ MD., Wenhua			
6	Liang ^{1*} MD., Jianxing He ^{1*} MD, PhD, FACS			
7				
8	¹ Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical			
9	University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for			
10	Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China			
11				
12	[#] These authors contributed equally to this work.			
13				
14	*Corresponding author: Wenhua Liang and Jianxing He			
15	E-mail addresses: liangwh1987@163.com; drjianxing.he@gmail.com			
16	Tel:+86-20-83337792;			
17	Address: No.151, Yanjiang Road, Guangzhou 510120, China.			
18				
19	Abstract Word Count: 257			
20	Manuscript Word Count: 3082			
21	Number of references: 25			
22				
23	Declarations			
24	Funding: This study received no source of funding.			
25	Conflict of interest: No potential conflicts of interest are disclosed.			
26	Availability of data and material: All data generated or analyzed during this study are included in			
27	this published article and supplementary files.			
28	Ethics approval: This study was approved by the Institutional Review Board of the First Affiliated			
29	Hospital of Guangzhou Medical University.			
30	Inform consent to participate: Informed consent was waived by the ethics committee due to the			
31	retrospective character of this study.			
32	Consent for publication: All patients confirm that the manuscript has been reviewed and approved by			
33	all named authors for publication.			
34				
35				
36				
37				
38				
39				
40				
41				
42				
43				
44				

45	Abstract

46	Background: To increase locoregional and systemic tumor control, a portion of patients with stage III (N2, N3)
47	non-small cell lung cancer (NSCLC) received pulmonary resection after immunochemotherapy in our center.
48	Herein, we assessed the real-world downstage (T, N stage) effectiveness of immunochemotherapy as induction
49	treatment and explored the proper cycle number for stage III (N2, N3) NSCLC.
50	Methods: Biopsy confirmed stage III (N2, N3) NSCLC patients who underwent immunochemotherapy between
51	January 1 ^{st,} 2018, to August 30 ^{th,} 2019, were identified. Tumor radiologic regression, lymph node down-staging,
52	and pathological response information were collected.
53	Results: In total, 16 patients with stage IIIA NSCLC, 30 with stage IIIB NSCLC, 9 with stage IIIC NSCLC (N2,
54	N3 metastasis) were included. After immunochemotherapy, 25/55 (45.5%) patients achieved an objective response.
55	Ultimately, 33/55 (60.0%) patients received lobectomy plus systemic lymphadenectomy, of whom 18/33 (54.5%)
56	obtained major pathological response (MPR) of the primary lesion, and 24 (72.7%) had pathological-confirmed
57	lymph node downstage (N2-3 to N0-1). Notably, four patients had MPR of the primary lesion but without lymph
58	node downstage. At the time of data cutoff (December 30 ^{th,} 2020), the median follow-up duration was 9.2 months
59	(IQR 8.0-11.7), 24/33 (72.7%) of patients that had pulmonary resection were progression-free, with 30 of them
60	alive. Binary logistics analysis showed that 3-4 induction cycles were favorably associated with MPR than 1-2
61	cycles ($p = 0.017$).
62	Conclusions: Immunochemotherapy as induction treatment showed encouraging MPR and lymph nodes
63	down-staging rates in stage III (N2, N3) NSCLC in this study. Prolonged (3-4) cycles of immunochemotherapy
64	were recommended for a better pathological response.
65	
66	Keywords: stage III non-small cell lung cancer, induction immunochemotherapy, tumor downstage, lymph node
67	downstage, induction cycle, real-world data
68	
69	
70	
71	
72	
73	
74	
75	
76	
77	
78 70	
79 00	
80	
81 82	
82 83	
83 84	
04 85	
86	
87	
88	

89 Introduction

90 Non-small-cell lung cancer (NSCLC) accounts for 80-85% of all lung cancer cases. Approximately 20% of 91 patients with NSCLC are locally advanced disease at diagnosis and are generally considered inoperable. Outcomes 92 remain poor for this subset of patients, with a median progression-free survival of 13 months and 3-year overall 93 survival of 30%. Most locally advanced NSCLC experience disease progression, despite definitive concurrent 94 chemoradiotherapy [1]. 95 Anti-PD-1 immunotherapies (IO), which block the binding of the PD-1 receptor and its ligands (PD-L1/2), have 96 been proven to improve the outcomes of patients with advanced NSCLC. Recently, the results of some phase II 97 studies investigating the role of immunotherapy plus chemotherapy[2-4] or dual checkpoint inhibition [5] have 98 been published, which supported the addition of IO in neoadjuvant treatment for patients with resectable stage 99 NSCLC. The NADIM trial [6] assessed the efficacy and safety of neoadjuvant immunochemotherapy followed by 100 surgery and adjuvant nivolumab in stage IIIA NSCLC patients. Down-staging occurred in 90% of cases, and 35 101 (85.4%) of 41 patients survived without recurrence following surgery. The phase II NEOSTAR trial [5] 102 administrated three doses of nivolumab with or without ipilimumab as a neoadjuvant regiment in 44 patients with 103 stage I-IIIA NSCLC. MPR rates in the nivolumab and nivolumab plus ipilimumab groups were 17% and 33%, 104 respectively. However, advanced stage III NSCLCs with N2, N3 metastasis were generally excluded from trials 105 respecting neoadjuvant immunochemotherapy due to the initial unresectability. 106 Long-term outcomes from phase III clinical trials of PD-1 inhibitors in previously treated patients with advanced 107 NSCLC demonstrated a 2-year overall survival of 23%-29% and 5-year overall survival of 16%[7, 8]. A 108 subsequent study, the phase III clinical trials PACIFIC, have released its latest outcome that 3-year overall survival 109 of the durvalumab group attained 57.0% versus 43.5% of placebo[9]. The survival advantage with anti-PD-1 110 agents after concurrent chemoradiotherapy in patients with stage III, unresectable NSCLC has been proven. This 111 pattern, which is able to cause long-term tumor regression and potential cure for advanced NSCLC, may render 112 inoperable NSCLC operable. Chaft et al[10] reported five patients with metastatic cancer that underwent tumor 113 resection following ICIs therapy. Surgery was carried out successfully, and 2 (40%) patients had pCR, with four 114 patients remained disease-free 7-23 months postoperatively. However, so far, no study with a sufficient sample size 115 has demonstrated the down-staging (T, N stage) rate in stage III (N2, N3) NSCLC treated by induction 116 immunochemotherapy due to low surgery rate in this cohort. And the long-term survival benefit of surgery 117 following immunochemotherapy in stage III (N2, N3) NSCLC remains poorly elucidated. 118 Furthermore, since the proper cycle number of PD-1 blockades could not be explored from randomized trials,

whether prolonged cycles of immunochemotherapy had better efficacy for tumor downstage remains unclear.
 Immunochemotherapy was administrated in initial stage III NSCLC patients with a potentially curable possibility

121 in our center [11]. And with the aims of increasing both locoregional and systemic control, a portion of patients 122 received radical tumor resection after immunochemotherapy. This retrospective study aimed to assess the 123 real-world downstaging (T, N stage) effectiveness of induction immunochemotherapy for stage III NSCLC with 124 N2, N3 metastatic; figure out the relationship between prolonged cycle and pathological response; with particular 125 attention given to progression-free survival within a year of following up.

126

127 Materials and Methods

128 Study design and patient inclusion

129 Flow chart of the study design, inclusion, and exclusion criteria used for screening patients, and main oncological 130 outcomes of included patients was shown in Figure 1. The study protocol and methods were reviewed by the 131 institutional ethics committee of the First Affiliated Hospital of Guangzhou Medical University. Patients who

132 underwent at least two cycles of PD-1 immuno-chemotherapy (PD-1 blockades included: Pembrolizumab,

133 Nivolumab, Toripalimab, Camrelizumab or Sintilimab) plus platinum-based chemotherapy to decrease tumor size

134 and down-staging lymph node (intention to surgery) at The First Affiliated Hospital of Guangzhou Medical

135 University between January 1^{st,} 2018 to August 30^{th,} 2019 were identified and included. The data of this patient

136 cohort consecutively retrospectively collected through electronic medical records.

Exclusion criteria: patients with small-cell lung cancer (SCLC); patients diagnosed with stage IV NSCLC; orpreviously treated patients.

All patients were followed up until December 30th, 2020.

140 Immunochemotherapy and surgical technique

141 Specimens for cytological and histological examination were obtained via bronchoscopy before induction 142 immune-chemotherapy. PD-L1 expression test was not compulsive in every case. Platinum-based doublet 143 chemotherapy was prescribed every 21 days [12] with PD-1 inhibitors (Pembrolizumab, Nivolumab, Toripalimab, 144 Tislelizumab, Camrelizumab, or Sintilimab). All patients underwent standard diagnostic and staging procedures. 145 Computed tomography (CT) of the brain, chest, and abdomen were performed to exclude distant metastasis. CT 146 scan was administrated every two cycles and at the last planned cycle of immune-chemotherapy. Lymph node 147 status was assessed via PET-CT to first- and re-stage patients. All patients were confirmed to have no targetable 148 driven mutations such as EGFR, ALK, ROS1, and BRAF.

More cycles were offered until the tumor was down-staged and became resectable. The resectability of patients was discussed by the multidisciplinary tumor board, which contained an expert group of thoracic surgeons, oncologists, and radiologists. Candidates for operation after induction immunochemotherapy: (1) Confirmed lymph node down-staging (assessed by PET/CT), the operation time will be at the second month after the last cycle of induction immune-chemotherapy; (2) complete cardiovascular examination tests, namely cardiopulmonary exercise test, echocardiogram and coronary angiography, pulmonary function tests showed tolerable cardio-pulmonary function for surgery.

156 All surgeries were initially attempted under video-assisted thoracoscopic surgery (VATS), converting to hybrid 157 VATS or open surgery when necessary. Wedge resection was first performed; residual disease was excluded by 158 frozen section evaluation. Then a lobectomy combined with systematic hilar and mediastinal lymphadenectomy 159 with dissection of stations 2, 4, 7, 8, 9, and 10 during a right pneumonectomy and of stations 4, 5, 6, 7, 8, 9, and 10 160 during a left pneumonectomy. Double sleeve resection was performed in patients that did not tolerate 161 pneumonectomy, and if the main bronchus infiltration by the tumor at the level of origin of the upper lobar bronchi 162 exceeds 2 cm or involvement of pulmonary artery exceeds 3 cm, lung auto-transplantation would be the choice. 163 The anastomosis was covered by the interposition of the vascular pedicled thymic flap, prepericardial fat, thymus, 164 or mediastinal pleura in selected cases.

After the operation, the patients were provided with one of the following three regimens as adjuvant treatment after multidisciplinary board discussion according to the original response to chemotherapy and clinical conditions after the operation: (1) Conventional chemotherapy, (2) PD-1 blockade monotherapy, or (3) chemotherapy combined with PD-1 blockade. (Table 3)

169 Data collection, evaluation, and statistical analyses

170 Data were extracted independently by two investigators (HD and HL), and conflicts were adjudicated by a third 171 investigator (WL). Information on all available variables was extracted. The following outcomes of all patients 172 included were used to respectively assess the efficacy and safety of immunochemotherapy: (a) 173 Radiological-regression rate and therapeutic evaluation with RECIST 1.1 standard; (b) Stage change outcomes, 174 defined as the hilar/mediastinal/supraclavicular lymph node regression; (d) pathological regression outcomes; (e) 175 serum tumor markers outcomes; (f) baseline details.

176 The tumor radiological response was evaluated through the Response Evaluation Criteria for Solid Tumors

177 (RECIST) 1.1[13]. Calculation formula of tumor radiologic-regression rate: the longest diameter of the tumor after 178 induction immunochemotherapy treatment, divided by the longest diameter of the tumor before 179 immunochemotherapy treatment. The preoperative and postoperative staging was evaluated in accordance with the 180 8th American Joint Committee on Cancer (AJCC) lung cancer staging manuals on the tumor, node, and metastasis 181 (TNM) staging systems[14]. Pathological analyses were performed on available biospecimens of the surgical 182 group by two senior pathologists. MPR was defined as 10% or less viable tumor remaining on postoperative 183 pathological review[15], while no residual tumor cells found in dissected tissues and lymph node was defined as 184 pCR [15]. The histologic subtype was determined by a review of biopsy specimens obtained before 185 immunochemotherapy for patients with no viable residual tumor.

186 Continuous data are presented as mean and standard deviation and were analyzed with 2-sample Student t-tests for
 187 independent data. Categorical variables are given as a count and percentage of patients and compared with the X²
 188 or Fisher exact test. All tests were 2-sided, with an a-level of 0.05. SPSS software (SPSS version 25.0; IBM Corp,
 189 Armonk, NY) was used for all statistical evaluations. Pearson chi-square or Fisher's exact test were used to

- comparing proportions. Reported P values are two-sided, and the significance level was set at 0.05 for all analysesunless otherwise noted.
- 192

193 Results

194 Patients' characteristic

From January 2017 through October 2019, 55 patients with initial N2-3 metastatic NSCLC (16 patients with stage
IIIA NSCLC, 30 with stage IIIB NSCLC and 9 with stage IIIC NSCLC) were eligible for inclusion in the study.
Detailed baseline characteristics of the included patients were summarized in Table 1. Informed consent of patients
was waived considering the retrospective setting.

199 Tumor and Nodal downstage efficacy of induction immunochemotherapy

For 55 patients with initial stage III (N2-3 metastatic) NSCLC, after induction immunochemotherapy, 25/55
(45.5%) patients had a partial response (PR), 23/55 (41.8%) had stable disease (SD), while 4/39 (7.3%) had PD.
(Figure 2A, 2B).

For 33 of 55 (60.0%) patients that underwent tumor resection (Figure 2C) after immunochemotherapy, pathological-confirmed T stage downstaging occurred in 26 (78.8%) of resected NSCLC, and 24 (72.7%) of patients had pathological-confirmed lymph node downstaging (N2-3 to N0-1). (Figure 2D left) For nine patients with initial N3 NSCLC, only 3 (33.3%) had pathological confirmed supraclavicular lymph node downstaging after immunochemotherapy and underwent surgery. Detailed induction immunochemotherapy regimens and pathologic downstaging of patients that received pulmonary resection were listed in Supplementary Table 1.

209 Twenty-two patients with initial N2-3 NSCLC did not undergo surgery after induction immunochemotherapy, with 210 only 7 of whom had cT stage downstaged and no patients had cN stage downstaged. (Figure 2D right). Detailed 211 oncological outcomes and reasons for not underwent planned surgery were summarized in Supplementary Table 3.

212 Relationship between immunochemotherapy cycles and pathological response

A binary logistics analysis for MPR including the factors as follow: (1) Histological type; (2) Clinical T stage; (3)

- 214 Clinical N stage; (4) Induction immunochemotherapy cycles; (Figure 3). The results showed that patients who
- 215 underwent 3-4 cycles of induction immunochemotherapy were more likely to get MPR compared with
- 216 conventional two cycles [Exp (B) (95% CI): 14.06 (1.59-124.08); p = 0.017]. However, adding more cycles (≥5
- 217 cycles) did not prone to better pathological response (p=0.845).
- 218 Relationship between clinical response, STM, and pathological response
- A univariable analysis for MPR, including the factors (1) STM change during induction immunochemotherapy; (2)

220 Clinical response, was conducted. (Figure 3) Serum tumor markers (STM): CEA, CA125, or CA153 decreased≥20%

- 221 than the baseline during the induction immunochemotherapy (p=0.291), and partial response after induction
- 222 immunochemotherapy were associated with MPR (p=0.129); however, a significant difference was not reached.

223 Antitumor response heterogeneity existed between LN and primary lesion

224 MPR occurred in 18 of 33 (54.5%) resected tumors, of which 10 (30.3%) specimens were considered pCR.

225 Antitumor response heterogeneity existed between lymph nodes and primary tumors. Table 2 showed the clinical

226 response and lymph node downstage status. Of 18 patients considered MPR, 4 (22.2%) patients had no lymph node

227 downstage. While for 19 patients that had lymph node downstage (resected lymph node had no residual tumor cells, 228

7 (36.8%) patients still had residual tumor > 10% in primary lesion.

229 We present 2 cases with typical antitumor response heterogeneity. (1) Patient 45 was diagnosed with lung 230 squamous cell carcinoma (TNM stage: T3N2M0, stage IIIB) and received 2cycles of induction 231 Pembrolizumab+Paclitaxel liposome+Nedaplatin. The patient then underwent lobectomy of RUL, and the resected 232 specimen achieved 100% pathologic remission (Figure 4A left) but was identified hardly any pathologic remission 233 at resected 4R lymph node (Figure 4A left). (2) Patient 52 was diagnosed with lung squamous cell carcinoma 234 (TNM stage: T4N2M0, stage IIIB) and received 2cycles of induction Sintilimab+Abraxane+Carboplatin. The 235 patient then underwent lobectomy of RUL, and the resected specimen 2R lymph node showed no residual tumor 236 cell (Figure 4B right). However, in the resected specimen primary tumor, only 20% pathologic remission was 237 achieved (Figure 4B left).

238 Survival outcomes

239 The Kaplan-Meier curves for progression-free survival (Figure 2E) and overall survival (Figure 2D) in the study 240 population that had surgery were shown in Figure 3. Table 4 showed the postoperative oncological outcomes of 48 241 patients receiving tumor resection. At the time of data cutoff (October 30th, 2020), the median follow-up duration 242 was 9.6 months (IQR 7.9–11.7), 24 of 33 (72.7%) patients that had pulmonary resection were progression-free. 243 Thirty of them (90.9%) still alive at the time cutoff, while two patients died of lymph node relapse 223 days and 244 129 days after surgery, respectively, and one patient died of brain metastasis 255 days after surgery 245 (Supplementary Table 3). The estimated 1-year progression-free survival was 60.14% and the 1-year overall 246 survival was 87.78%. (Table 3)

247

248 **Discussion:**

249 Through immunochemotherapy, 25/55 (45.5%) patients with stage III (N2, N3) NSCLC in the current study had 250 PR. With the aim of increasing both locoregional and systemic control, radical tumor resections were administrated 251 after induction immunochemotherapy in selected 33 patients. Respecting efficacy, MPR occurred in 18 of 33 252 (54.5%) resected tumors and pCR in 10 (30.3%) patients. Compared with the SAKK16/14 study [19], a slightly 253 lower MPR rate (54.5% versus 60%), ORR (45.5% versus 58.1%) and similar 12-month EFS (72.7% vs 71.3%) 254 were shown in this study. However, the calculated MPR rate (54.5% vs. 85.4%) and the estimate PFS (72.7% vs. 255 95.7%) at 12 month was worse than that of the NADIM[20] trial, this might be due to the fact that most of the 256 patients included in this study were with IIIB NSCLC, and potential micrometastasis tends to be accompanied with 257 more advanced stage tumor. To be noted, 16 patients did not undergo surgery, with a majority of them had no 258 tumor downstaging or with tumor progression; thus, the actual response rate of all 55 patients with initial N2-N3 259 lymph node would be even lower.

260 This study also showed that the antitumor activity could be different between metastatic lymph node and primary 261 tumor in patients with unresectable N2/3 NSCLC: 4 patients had MPR of the primary lesion but with no lymph

262 node downstage, while seven patients had no metastatic tumor cells in resected lymph nodes but with pathological

263 response < 90% in primary lesion. Gao et al.[17] administrated 2cycles of induction sintilimab in resectable

NSCLC and identified different responses between primary tumors and lymph node metastases in 18 patients. Liu et al. [18] reported that induction PD-1 blockade could enhance the systemic priming of antitumor T cells to eradicate distant metastases. However, whether primed T cell might be impeded from infiltrating into the lymph nodes or any up-regulated molecular markers affecting the unmatched response remains unknown. The immune microenvironment between primary cancer and metastatic lymph nodes might also lead to this phenomenon, and further study could focus on how to reverse the "local resistance."

270 Notably, a patient (pts 71) in this study experienced progress disease (PD) according to RECIST 1.1 after two 271 cycles of induction immunochemotherapy. However, this patient still had complete pathologic remission (pCR). 272 This may be related to massive fibrosis, lymphocytic infiltration, and peritumoral inflammation occupying the 273 original tumor location after tumor retraction instead of tumor growth. This pseudo-progression was also reported 274 by Tanizaki et al. and Bott et al. [21, 22], in which two pCR patients only had stable disease during treatment of 275 induction IO. The result demonstrated that a proportion of patients with locally advanced NSCLC could benefit 276 from induction IO without initial radiographic tumor shrinkage, even it presented as PD. A more comprehensive 277 response evaluation of induction IO combining CT, SUV value, and serum tumor markers could be useful for 278 identifying this phenomenon before surgery.

279 Considering that some patients have received more than four courses, including \geq 5-8 cycles (~30% of N2-N3 280 patients) in this study. We conducted a univariable analysis to investigate the association of clinical factors with 281 MPR. And the result demonstrated that patients who underwent 3-4 cycles of induction immunochemotherapy 282 were more likely to get MPR compared with the conventional two cycles (p = 0.017). In clinical trials regarding 283 induction IO in early-stage NSCLC [23, 24], two cycles of IO were administrated before surgery. However, a 284 recent article demonstrated that: a proportion of the top 1% of intra-tumor clonotypes shared with the peripheral T 285 cell receptor repertoire significantly increased after the second cycle of the preoperative anti-PD-1 agent, and the 286 upward trend side remained. The results indicated that the antitumor response is still growing at the second cycle 287 of preoperative PD-1 blockade[25], which reinforced the necessity to extend the induction immunochemotherapy 288 cycle for achieving MPR.

289 Nevertheless, we also found that adding more cycles based on four cycles (\geq 5 cycles) was not associating with the 290 presence of MPR (p=0.845). In our center, a strategy of offering more cycles until the tumor was down-staged and 291 became resectable was preferred. And it indicated that some patients might still not respond to induction 292 immunochemotherapy even though sufficient time and cycles were given.

In this study, of 33 patients who underwent surgery, 15 (45.5%) reported different levels of pleural adhesion, which can be regarded as a post-immunotherapy response. Chaft et al. [10] included five patients with advanced NSCLC that underwent pneumonectomy after treatment with t-cell checkpoint inhibitors; mediastinal and hilar fibrosis could be seen intraoperatively. Bott et al. [21] investigated pneumonectomy after induction immunotherapy in resectable NSCLC, and more than half of the VATS cases were with perihilar inflammation and fibrosis. Furthermore, the brittleness of the vessels did contribute to the increased difficulty of the operation.

Several limitations of this study should be acknowledged. Firstly, this study did not investigate immune-related adverse events of the immunochemotherapy, which influences the tolerance of induction immunochemotherapy. Secondly, we stage each patient before the operation with PET plus contrast-enhanced CT (few of them had EBUS), which might not as accurate as mediastinoscopy; Thirdly, patients in the nonsurgery group could not be staged through surgical specimens, which could bring bias to the integrated downstaging rate considering the pseudo-progression phenomenon and the false positive rate of PET/CT scan stage for lymph nodes.

306 Conclusions:

307 Immunochemotherapy in patients with stage III (N2, N3) NSCLC is feasible for tumor and nodal downstaging. We

308 believe that the indications of induction immunochemotherapy can be further expanded to initial stage III NSCLC 309 in strictly selected patients, given the acceptable recurrence risk and surgery-related mortality shown above. For 310 initial N2/3 NSCLC, the antitumor response could differ between metastatic nodals and primary tumors. Prolonged 311 cycles of immunochemotherapy (3-4 cycles) were more appropriate for stage III (N2, N3) NSCLC than 1-2 cycles 312 for higher tumor radiologic-regression rate and MPR rate. 313 314 **References:** 315 Bradley JD, Paulus R, Komaki R et al. Standard-dose versus high-dose conformal 1. 316 radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without 317 cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a

- 318 randomised, two-by-two factorial phase 3 study. Lancet Oncol 2015; 16: 187-199.
- 319 2. Shu CA, Gainor JF, Awad MM et al. Neoadjuvant atezolizumab and chemotherapy in
- 320 patients with resectable non-small-cell lung cancer: an open-label, multicentre, single-arm,
- 321 phase 2 trial. Lancet Oncol 2020; 21: 786-795.
- 322 3. Gaudreau PO, Negrao MV, Mitchell KG et al. Neoadjuvant Chemotherapy Increases
- 323 Cytotoxic T Cell, Tissue Resident Memory T Cell, and B Cell Infiltration in Resectable NSCLC.
- 324 J Thorac Oncol 2021; 16: 127-139.
- 325 4. Tfayli A, Al Assaad M, Fakhri G et al. Neoadjuvant chemotherapy and Avelumab in early
- 326 stage resectable non-small cell lung cancer. Cancer Med 2020; 9: 8406-8411.
- 327 5. Reuss JE, Anagnostou V, Cottrell TR et al. Neoadjuvant nivolumab plus ipilimumab in
- 328 resectable non-small cell lung cancer. J Immunother Cancer 2020; 8.
- 329 6. Provencio M, Nadal E, Insa A et al. Neoadjuvant chemotherapy and nivolumab in
- 330 resectable non-small-cell lung cancer (NADIM): an open-label, multicentre, single-arm, phase
- 331 2 trial. Lancet Oncol 2020; 21: 1413-1422.
- 332 7. Gettinger S, Horn L, Jackman D et al. Five-Year Follow-Up of Nivolumab in Previously
- 333 Treated Advanced Non-Small-Cell Lung Cancer: Results From the CA209-003 Study. J Clin

334 Oncol 2018; 36: 1675-1684.

335	8. Horn L, Spigel DR, Vokes EE et al. Nivolumab Versus Docetaxel in Previously Treated
336	Patients With Advanced Non-Small-Cell Lung Cancer: Two-Year Outcomes From Two
337	Randomized, Open-Label, Phase III Trials (CheckMate 017 and CheckMate 057). J Clin Oncol
338	2017; 35: 3924-3933.
339	9. Gray JE, Villegas A, Daniel D et al. Brief report: Three-year overall survival with
340	durvalumab after chemoradiotherapy in Stage III NSCLC - Update from PACIFIC. J Thorac
341	Oncol 2019.
342	10. Chaft JE, Hellmann MD, Velez MJ et al. Initial Experience With Lung Cancer Resection
343	After Treatment With T-Cell Checkpoint Inhibitors. Ann Thorac Surg 2017; 104: e217-e218.
344	11. Liang H, Yang C, Gonzalez-Rivas D et al. Sleeve lobectomy after neoadjuvant
345	chemoimmunotherapy/chemotherapy for local advanced non-small cell lung cancer. Transl
346	Lung Cancer Res 2021; 10: 143-155.
347	12. Ettinger DS, Wood DE, Aggarwal C et al. NCCN Guidelines Insights: Non-Small Cell Lung
348	Cancer, Version 1.2020. J Natl Compr Canc Netw 2019; 17: 1464-1472.
349	13. Eisenhauer EA, Therasse P, Bogaerts J et al. New response evaluation criteria in solid
350	tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009; 45: 228-247.
351	14. Goldstraw P, Chansky K, Crowley J et al. The IASLC Lung Cancer Staging Project:
352	Proposals for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the
353	TNM Classification for Lung Cancer. Journal of Thoracic Oncology 2016; 11: 39-51.
354	15. Pataer A, Kalhor N, Correa AM et al. Histopathologic response criteria predict survival of
355	patients with resected lung cancer after neoadjuvant chemotherapy. J Thorac Oncol 2012; 7:

- 357 16. Aupérin A, Le Péchoux C, Rolland E et al. Meta-analysis of concomitant versus
 358 sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J Clin Oncol
 359 2010; 28: 2181-2190.
- 360 17. Gao S, Li N, Gao S et al. Neoadjuvant PD-1 inhibitor (Sintilimab) in NSCLC. Journal of
- 361 Thoracic Oncology 2020; 15: 816-826.
- 362 18. Liu J, Blake SJ, Yong MC et al. Improved Efficacy of Neoadjuvant Compared to Adjuvant
- 363 Immunotherapy to Eradicate Metastatic Disease. Cancer Discov 2016; 6: 1382-1399.
- 364 19. Rothschild S, Zippelius A, Savic S et al. SAKK 16/14: Anti-PD-L1 antibody durvalumab
- 365 (MEDI4736) in addition to neoadjuvant chemotherapy in patients with stage IIIA(N2) non-small
- 366 cell lung cancer (NSCLC)—A multicenter single-arm phase II trial. Journal of Clinical Oncology
- 367 2018; 36: TPS8584-TPS8584.
- 368 20. Provencio M, Nadal E, Insa A et al. OA01.05 Phase II Study of Neo-Adjuvant
- 369 Chemo/Immunotherapy for Resectable Stages IIIA Non-Small Cell Lung Cancer- Nadim
- 370 Study-SLCG. Journal of Thoracic Oncology 2018; 13: S320.

371 21. Bott MJ, Yang SC, Park BJ et al. Initial results of pulmonary resection after neoadjuvant

- 372 nivolumab in patients with resectable non-small cell lung cancer. J Thorac Cardiovasc Surg
- 373 2019; 158: 269-276.
- 22. Tanizaki J, Hayashi H, Kimura M et al. Report of two cases of pseudoprogression in
- 375 patients with non-small cell lung cancer treated with nivolumab-including histological analysis
- of one case after tumor regression. Lung Cancer 2016; 102: 44-48.
- 377 23. Forde PM, Chaft JE, Smith KN et al. Neoadjuvant PD-1 Blockade in Resectable Lung

378 Cancer. N Engl J Med 2018; 378: 1976-1986.

- 379 24. Kwiatkowski DJ, Rusch VW, Chaft JE et al. Neoadjuvant atezolizumab in resectable
- 380 non-small cell lung cancer (NSCLC): Interim analysis and biomarker data from a multicenter
- 381 study (LCMC3). Journal of Clinical Oncology 2019; 37: 8503-8503.
- 382 25. Zhang J, Ji Z, Caushi JX et al. Compartmental analysis of T cell clonal dynamics as a
- 383 function of pathologic response to neoadjuvant PD-1 blockade in resectable non-small cell
- 384 lung cancer. Clin Cancer Res 2019.
- 385

386 Figure legends:

- Figure 1. Flow chart of the study design, inclusion and exclusion criteria used for screening patients, and
 main oncological outcomes of included patients.
- 389

Figure 2. Tumor diameter change, pathological outcomes and postoperative survival outcomes of enrolledpatients.

392 (A) Tumor diameter change (%) during curative-intent induction immunochemotherapy by subgroups in 55 393 patients with initial unresectable N2-3 NSCLC, with each bar represents one patient. The 3 rows below the x axis 394 shows clinical characteristics and initial lymph node(s) stage. After induction immunochemotherapy, 25/55 (45.5%) 395 patients had partial response (PR), 23/55 (41.8%) had stable disease (SD), while 4/39 (7.3%) had PD. Of 33 396 patients with initial unresectable N2-3 NSCLC that underwent surgery, MPR occurred in 18 of 33 (54.5%) resected 397 tumors, of which 10 (30.3%) specimens were considered pCR; M, male; F, female; A, lung adenocarcinoma; S, 398 lung squamous-carcinoma; E, lung lymphoepitheliomatoid carcinoma; L, large cell lung cancer; 2, initial N2 stage; 399 3, initial N3 stage. (B up) Pie graph showing the oncological outcomes and (B down) percentage of patients that 400 received surgery. (C left) Clinical stage of patient before and postoperative pathological stage after induction 401 immunochemotherapy of patients in surgery group. (C right) Clinical stage of patient before and after 402 immunochemotherapy of patients in nonsurgery group (D) Kaplan-Meier curves of progression-free survival and 403 (E) overall survival in the patients included (n=33).

404

Figure 3. Clinicopathological characteristics and univariable analysis for major pathological response of
 patients that had surgery. Patients with serum tumor markers (STM): CEA, CA125, or CA153

407 decreased≥20% than the baseline during the induction IO+C were considered as "STM-decrease", or

408 else "STM-stable" Four patients were associated with atelectasis or obstructive pneumonitis that409 extends to the hilar region, making it unevaluable for the clinical response, thus they were not counted.

410

411 Figure 4. Special cases report demonstrating different response between primary tumor and metastatic 412 lymph node.

413 (A) A patient with age ranges from 55-60 was diagnosed as lung squamous cell carcinoma (TNM stage: T3N2M0,

- 414 stage IIIB) and received 2cycles of induction Pembrolizumab+Paclitaxel liposome+Nedaplatin. The patient then
- 415 underwent lobectomy of RUL. The pathologic images shown (A-left) are the primary tumor and large amount of
- 416 inflammatory cell was found, with 100% pathologic remission been achieved (white arrow); (A-right) hardly no
- 417 pathologic remission at resected 4R lymph node (white arrow).
- 418 (B) A patient with age ranges from 55-60 diagnosed as lung squamous cell carcinoma (TNM stage: T4N2M0, stage
- 419 IIIB) and received 2cycles of induction Sintilimab+Abraxane+Carboplatin. The patient then underwent lobectomy
- 420 of RUL. The pathologic images shown (B-left) are the primary tumor specimen with 80% residual tumor cell left
- 421 (white arrow). While the (B-right) resected specimen 2R lymph node showed no residual tumor cell (white arrow).
- 422

Table 1. Baseline Characteristics of patients with initial stage III (N2, N3) NSCLC.					
Variable	All patients (n=55)				
Age-(Median, Range)	56.60, 37-77				
Gender-(Male/ Female)	45/10				
BMI (kg/m²,`x±s)	23.74±3.07				
Comorbidities					
Hypertension	11 (20.0%)				
Diabetes	9 (16.4%)				
Heart diseases	6 (10.9%)				
Somking status-no.(%)					
Never	31 (56.4%)				
Former/current	24 (43.6%)				
Histological type-no.(%)					
Squamous cell carcinoma	33 (60.0%)				
Adenocarcinoma	17 (30.9%)				
Large cell lung cancer	1 (1.8%)				
Lymphoepithelioma-like carcinoma	3 (5.5%)				
Adeno-squamous carcinoma	1 (1.8%)				
Tumor, Node, Metastasis staging classification ¹ -no.(%)					
T1N2M0	1 (1.8%)				
T2N2M0	15 (27.3%)				
T2N3M0	$2(3.6\%)^2$				
T3N2M0	12 (21.8%)				
T3N3M0	4 (7.3%)				
T4N2M0	18 (32.7%)				
T4N3M0	$3(5.5\%)^3$				
Anti-PD-1 agents-no.					
Pembrolizumab	10 (18.2%)				
Nivolumab	11 (20.0%)				
Sintilimab	30 (54.5%)				
Toripalimab	2 (3.6%)				
Camrelizumab	2 (3.6%)				
Chemotherapy regimens with IO-no.					
Paclitaxel ² +Platin ³	35 (63.6%)				
Pemetrexeddisodium+ Platin ³	15 (27.3%)				
Gemcitabine+Platin ³	5 (9.1%)				
Cycles of induction IO+C-no.					
2	15 (27.3%)				
3	18 (32.7%)				
4	6 (10.9%)				
≥5 (<8)	12 (21.8%)				
≥8	4 (7.27%)				

424 BMI= body mass index

425 ¹Assessed before induction immunochemotherapy

- 426 ²Paclitaxel chemotherapy included: Abraxane, Paclitaxel liposome, Docetaxel
- 427 ³Plantin-based chemotherapy included: Carboplatin, Nedaplatin, Lobaplatin and Cisplatin.

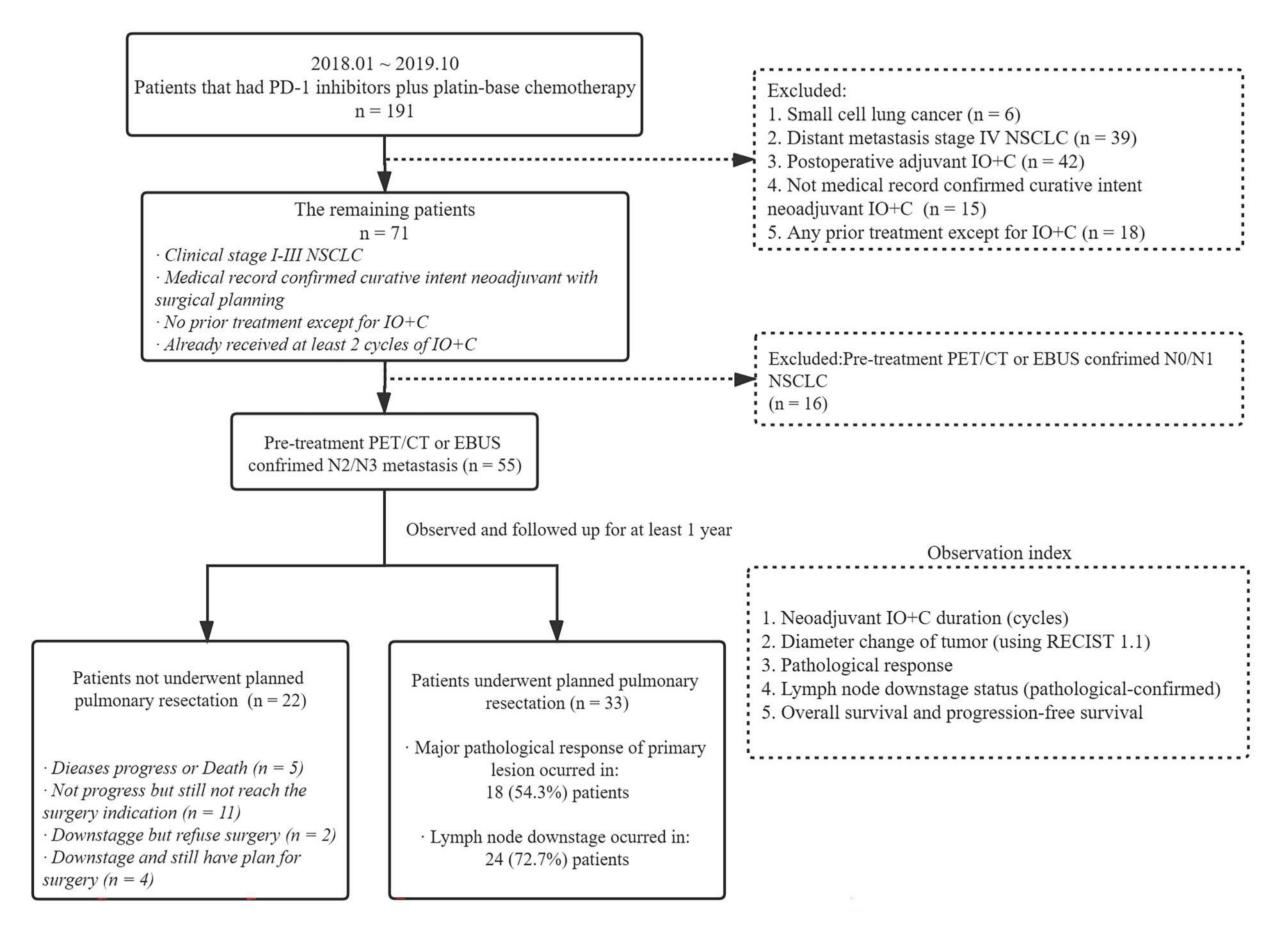
428

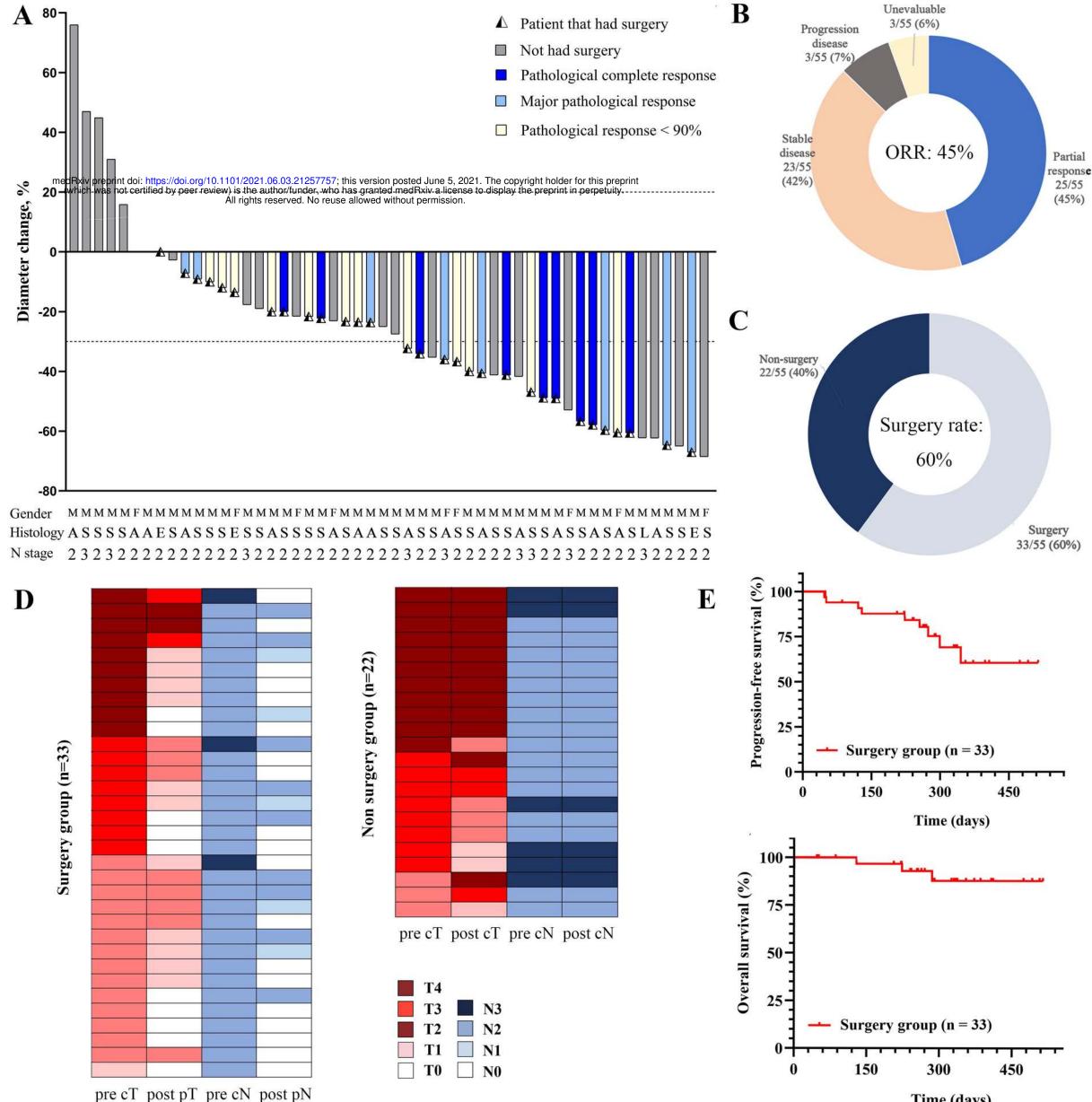
429

430 Table 2. Clinical response and lymph node (LN) downstage status in 33 patients with initial N2-3

Variable*	No LN downstage	LN downstage to N1	LN downstage to N0	
	(n=9)	(n=5)	(n=19)	
Major pathologic response	4 (44.4)	2 (40.0)	12 (63.2)	
Complete pathologic response	2 (22.2)	1 (20.0)	7 (36.8)	
Residual tumor > 10%	5 (55.5)	3 (60.0)	7 (36.8)	

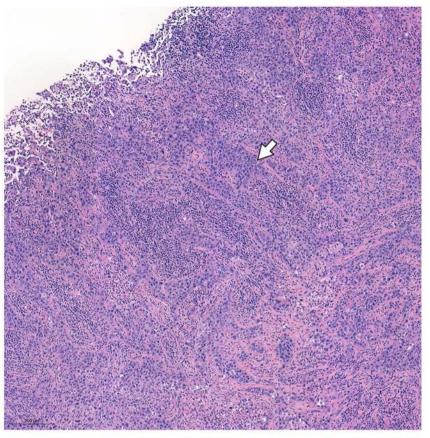
431 NSCLC that had planned surgery

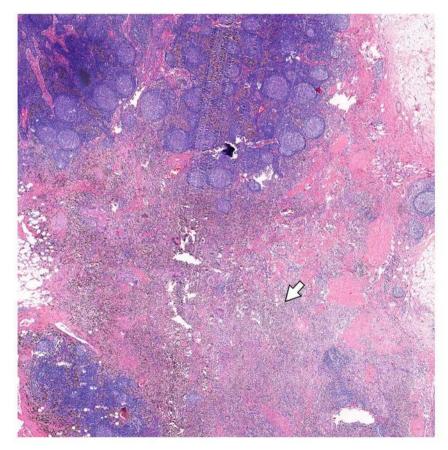

432


433

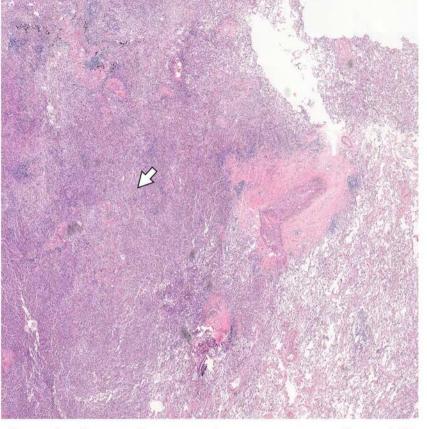
	Initial N2-N3 NSCLC that had	
	surgery	
	(n=33)	
Adjuvant treatment regimens with IO-no.		
Immunotherapy	3 (9.1%)	
Immunochemotherapy	17 (27.3%)	
Chemotherapy	12 (36.4%)	
Chemo-radiotherapy	1 (3.0%)	
Median follow-up time-month (IQR)	9.6 (7.9–11.7)	
Recurrence rate at sensor-no. (%)	9 (27.3%)	
Recurrence type-no. (%)		
Bone metastasis	2 (6.1%)	
Brain metastasis	2 (6.1%)	
Lung nodule/mass	2 (6.1%)	
Lymph node metastasis	3 (9.1%)	
Mortality at sensor-no. (%)	3 (9.1%)	

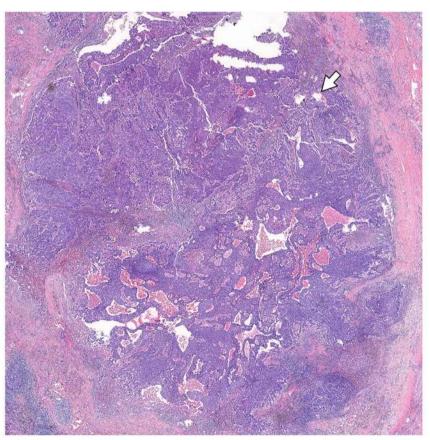
434 Table 3. Postoperative oncological outcomes of patients receiving tumor resection.


435



Time (days)


Subgroup	No. of patients	Non-MPR n(%	%) MPR n(%)		HR(95%CI)	p_value
Histological type						
Lung squamous carcinoma	27	12 (44.4)	15 (55.6)		Ref	
Lung adenocarcinoma	15	5 (33.3)	10 (66.7)	-	1.600 (0.430-5.958)	0.482
T stage: Tumor size						
T1: 1.0–3.0cm	1	0	1 (100.0)		_	
T2: 3.0–5.0cm	19	7 (36.8)	12 (63.2)		Ref	
T3: 5.0–7.0cm	12	5 (41.7)	7 (58.3)	-	0.817 (0.186-3.582)	0.788
T4: =7.0cm	16	10 (62.5)	6 (37.5)	-	0.350 (0.088-1.386)	0.13
N stage: Initial lymph node metast	asis					
N0-N1	15	7 (46.7)	8 (53.3)		Ref	
N2-N3	33	15 (45.5)	18 (54.5)	-	1.050 (0.31–3.57)	0.938
Neoadjuvant IO+C cycles						
2 cycles	23	13 (56.5)	10 (43.5)		Ref	
3-4 cycles	17	4 (23.5)	13 (76.5)		4.225 (1.051–16.984)	0.037
\geq 5 cycles	8	5 (62.5)	3 (37.5)		0.780 (0.150-4.069)	0.768
				00.51 2 5		
Subgroup	No of nationts	Non–MPR n('	24) MDD n(%)		Odds ratio (95%CI)	p_value
STM during neoadjuvant IO+C	No. of patients		/0) WII K II(/0)		Ouus 1400 (7576C1)	p_value
STM-stable	15	9 (56.3)	7 (43.8)		Ref	
STM-decrease	22	9 (39.1)	14 (60.9)		2.000 (0.548-7.301)	0.291
Clinical response		y (39.1)	14 (00.9)	1	2.000 (0.540 7.501)	0.271
Complete response	1	1 (100.0)	0		_	
Partial response	24	15 (62.5)	9 (37.5)		Ref	
Stable disease	18	7 (38.9)	11 (61.1)		0.382 (0.109–1.343)	0.129
Progress disease	1	1 (100.0)	0		-	
	<u></u>	- ()		0 1 2 5		


Surgical specimen 4R lymph node (pts 45)

Surgical specimen 2R lymph node (pts 52)

Surgical specimen primary tumor (pts 45)

Surgical specimen primary tumor (pts 52)

В