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In�uenza viruses routinely acquire mutations in their hemagglutinin (HA) and neuraminidase (NA) glycoproteins that abrogate 

binding of pre-existing antibodies in a process known as antigenic dri�. Most human antibodies against HA and NA are directed 

against epitopes that are hypervariable and not against epitopes that are conserved among di�erent in�uenza virus strains. Universal 

in�uenza vaccines are currently being developed to elicit protective responses against functionally conserved sites on in�uenza 

proteins where viral escape mutations can result in large �tness costs [1]. Universal vaccine targets include the highly conserved HA 

stem domain [2–12], the less conserved HA receptor-binding site (RBS) [13–16], as well as conserved sites on NA [17–19]. One cen-

tral challenge of universal vaccine e�orts is to steer human antibody responses away from immunodominant, variable epitopes and 

towards subdominant, functionally conserved sites. Overcoming this challenge will require further understanding of the structural 

basis of broadly neutralizing HA and NA antibody binding epitopes and factors that in�uence immunodominance hierarchies of 

human antibody responses.
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IMMUNODOMINANCE OF THE 

HEMAGGLUTININ HEAD

Antibodies targeting epitopes in the HA globular head 

domain can protect animals and humans from influenza 

virus infections [20]. The majority of these antibodies neu-

tralize by blocking viral attachment to host cells, although 

other neutralization mechanisms might be in play for some 

of these antibodies [1, 21]. Infection and vaccination typi-

cally elicit strain-specific HA-head antibodies that are often 

long-lived [22], but these antibodies can become ineffective 

when viruses acquire antigenic changes in the HA head. 

Such an example occurred during the 2014–2015 season 

when a new antigenically drifted H3N2 strain possessing 

a novel glycosylation site on the HA head caused dramati-

cally reduced vaccine effectiveness [23, 24]. Although most 

antibodies against the HA head are directed against epitopes 

adjacent to the conserved HA RBS [25, 26], some antibod-

ies are able to partially mimic the sialic acid receptor and 

bind to conserved residues within the HA RBS [13, 15, 16, 

27, 28]. Hemagglutinin stem antibody responses constitute 

a small fraction of total anti-influenza virus antibodies in 

most humans [29]. In contrast to most epitopes on the HA 

head, the HA stem is less tolerant of change [30–33] and 

is much more highly conserved across subtypes. Although 

some anti-HA stem monoclonal antibodies can directly neu-

tralize viruses through inhibiting HA proteolytic processing, 

pH-induced conformational changes, and viral egress [1, 

21], many HA stem antibodies require Fc-mediated effector 

functions for in vivo protection [34].

HEMAGGLUTININ IMMUNODOMINANCE OF 

PRIMARY ANTIBODY RESPONSES

Antibodies against highly exposed epitopes on the HA head 

usually dominate the primary responses against influenza 

viruses (Figure 1A). Primary H3N2 infections in ferrets elicit 

high levels of antibodies that are directed towards HA antigenic 

sites A and B [35, 36], which are located in close proximity to 

the HA RBS [25]. Likewise, H1N1-infected young children tend 

to mount antibody responses to epitopes in antigenic sites near 

the HA RBS [37]. Although steric hindrance or inaccessibility 

has been suggested to contribute to the immunosubdominance 

of HA stem antibodies [38], recombinant HA vaccines also fail 

to elicit high-titer HA stem responses [39]. In fact, cryoelectron 

tomography has shown that the majority of the HA on influenza 

virions are indeed available to bind to stem antibodies [40]. 
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Some HA stem antibodies can be polyreactive [38], and it is 

possible that selection against B-cells specific for HA stem epi-

topes contributes to HA stem antibody immunosubdominance. 

Recent data suggest that the fine specificity of influenza virus 

antibody responses in mice changes over time [41]. Angeletti 

et al [41] found that (1) antibodies against epitopes near the top 

of the HA head dominate the early response and (2) antibodies 

against other epitopes increase later in the response. Given that 

most studies have only examined a limited range of timepoints, 

it is likely that shifts in antibody immunodominance dynamics 

have yet to be fully explored.

Almost all immunological studies of in�uenza virus have 

been carried out in organisms that make immunoglobulin 

(Ig)-based humoral responses. To test whether some features 

of immunodominance are antigen-intrinsic, Altman et al [42] 

studied immune responses in lampreys that were immunized 

with in�uenza virus. Lampreys, a jawless �sh, lack Ig genes but 

encode variable lymphocyte receptors (VLRs), which are an 

entirely di�erent system of humoral adaptive immunity based 

on Leu-rich repeats rather than Ig domains. Remarkably, lam-

prey VLR responses were found to be focused on the same HA 

epitopes as those that have been observed in mice [42]. �e sim-

ilarity of antibody and VLR responses against HA in mice and 

lamprey suggest that properties of the HA protein itself contrib-

ute to antibody immunodominance hierarchies.

NEW HEMAGGLUTININ STEM-BASED UNIVERSAL 

VACCINE APPROACHES

Several universal vaccines are being developed to elicit antibod-

ies against the immunosubdominant HA stem. One approach 

is to generate stable “headless” HA constructs that lack the 

head domain [10] and, as a result, induce antibody responses 

exclusively directed against HA stem epitopes [2, 3]. Another 

approach is sequential immunization with chimeric HAs that 

express divergent head domains with the goal of refocusing 

antibody responses towards the HA stem domain [12] (also see 

Krammer and Palese in this issue). This approach is promis-

ing because chimeric HAs selectively recall subdominant HA 

stem-reactive B-cells in the absence of HA head-reactive immu-

nity. Both of these approaches have shown protection in animal 

models, but their success in humans will likely depend on their 

ability to induce protective responses in the context of differing 

pre-existing immunity in different individuals and age groups.

IMMUNE HISTORY SHAPES SECONDARY IMMUNE 

RESPONSES

It has been known since the 1950s that antibodies elicited by 

primary influenza virus exposures are highly strain-specific, 

whereas antibodies elicited by secondary exposures with anti-

genically distinct viral strains tend to be highly cross-reactive 

with the first strain encountered [43–45] (Figure 1B and C). 

This observation was originally referred to as “original antigenic 

sin” [45], and it has been more recently referred to as “antigenic 

seniority” [46] or “immune imprinting” [47]. Although the 

mechanisms behind original antigenic sin have yet to be fully 

elucidated, it is thought that cross-reactive B cells elicited by pre-

vious influenza virus exposures are preferentially recalled upon 

exposure with an antigenically distinct viral strain (Figure 1D).

Several studies suggest that prior seasonal H1N1 exposures 

in�uenced the �ne-speci�city of antibodies elicited against the 

antigenically distinct 2009 pandemic H1N1 virus in humans 
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Figure 1. Immunodominance of primary responses and recall responses against 

influenza hemagglutinin (HA). (A) The HA head domain (pink) is immunodominant 

in primary responses, whereas antibodies against the stem domain (blue) are rare. 

(B–C) Antibodies against the HA head remain dominant after exposure to anti-

genically similar (B) and antigenically drifted (C) seasonal viral strains. Antibodies 

elicited by antigenically drifted seasonal influenza virus strains often have high 

levels of somatic hypermutations that allow recognition of altered epitopes. (D–E) 

Antibodies against new pandemic viral strains tend to be more dominant initially 

against the (D) conserved HA stem, and (E) rare conserved epitopes, if any, in the 

HA head. Memory B cells producing antibodies against these conserved epitopes 

are preferentially boosted upon exposure to new pandemic viral strains. The color 

similarity of the HA head domain represents the similarity of the antigenicity in all 

figure panels.
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[48–53]. In many adults, the 2009 pandemic H1N1 strain pref-

erentially boosted HA stem antibodies [48, 49, 54, 55], likely 

because this strain possessed a radically di�erent HA head 

but a similar HA stem compared with previously circulating 

seasonal H1N1 strains. However, HA stem antibodies were 

not the only antibody type that was preferentially recalled in 

humans exposed to the 2009 pandemic H1N1. In some indi-

viduals, the 2009 pandemic H1N1 virus elicited antibody 

responses that were highly focused on rare HA head epitopes 

that were conserved in seasonal H1N1 strains to which they 

were exposed in childhood [50–53] (Figure 1E). More impor-

tantly, di�erent aged individuals were found to mount anti-

body responses of di�erent speci�cities upon exposure to the 

2009 pandemic H1N1 virus, due to di�erences in seasonal 

H1N1 exposure histories. Age-related di�erences in antibody 

speci�city appeared to play a role during the 2013–2014 sea-

son when a dri�ed pandemic H1N1 strain acquired an HA 

mutation in an epitope that was preferentially targeted by 

middle-aged individuals and, as a consequence, caused a dis-

proportionate amount of disease in this population [51, 56, 

57]. Animals sequentially infected with seasonal H1N1 and 

the 2009 pandemic H1N1 strains produce antibodies that have 

similar speci�cities compared with those elicited in humans 

who were likely sequentially exposed to these viruses [50, 51].

�ese �ndings are consistent with a recent study by Gostic et al 

[47] who used epidemiological data to demonstrate a correlation 

between the probability of �rst exposure in early childhood to 

either a group 1 or group 2 HA and susceptibility to avian H7N9 

and H5N1 viral strains, respectively. �ey found that individuals 

who were likely exposed to a virus with a group 1 HA in child-

hood appeared to be protected from H5N1 but susceptible to 

H7N9, whereas individuals who were likely exposed to a virus 

with a group 2 HA in childhood appeared to be protected from 

H7N9 but susceptible to H5N1. �us, it appears that individuals 

exposed in childhood to group 1 HAs are more likely to respond 

well to group 1 HA stem antigens, whereas individuals exposed 

in childhood to group 2 HAs are more likely to respond well to 

group 2 HA stem antigens. A deeper understanding of the com-

plexities of human prior exposure and the interplay with uni-

versal vaccine candidates will likely be required to design better 

vaccines and vaccine regimens.

DIFFERENCES BETWEEN INFLUENZA GROUP 1 AND 

GROUP 2 HEMAGGLUTININ STEMS

Although a few HA stem-reactive antibodies can target both 

group 1 and 2 HAs [27, 58–64], many are group specific [58, 

63–70]. Several structural features are conserved within, but not 

across, group 1 or group 2 HAs. For example, the N-glycosylation 

site at HA1 Asn38 is highly conserved in group 2, but it is not 

present in group 1 HAs (Figure 2). In addition, the orientation 

and positioning of HA2 Trp21 differ between group 1 and group 

2 HAs (Figure 2). A higher variability can be observed in other 
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Figure 2. Structural variation in the hemagglutinin (HA) stem and neighboring regions. Structures of HA protein from subtypes that have caused human infection are 

aligned by the helix A (HA2 residues 38–55) in the stem region: H1 (PDB 3LZG) [53], H2 (PDB 3KU5) [93], H3 (PDB 4FNK) [16], H5 (PDB 4BGW) [94], H6 (PDB 4XKD) [95], H7 (PDB 

4LN6) [96], H9 (PDB 1JSD) [97], H10 (PDB 4XQ5) [98]. Zoomed-in views for several structural features of interest are shown. PDB, Protein Data Bank.
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structural features in the HA stem and proximal regions, such as 

HA2 residue 38 and HA1 290-loop that are often contacted by 

stem-reactive antibodies [58–60, 65, 69, 71]. Subtype-specific 

variation can also be observed. For example, whereas HA1 

Ile45 is highly conserved across group 1 and 2 HAs, HAs of the 

human H2 subtype have HA1 Phe45 instead (Figure 2). Some of 

these features have been associated with limiting the breadth of 

HA stem-reactive antibodies. The most well known example is 

perhaps the group 2-specific N-glycosylation site at HA1 Asn38 

[72], which restricts the approach angle for antibodies to the 

highly conserved epitope in the stem of group 2 HAs [60]. Due 

to the structural difference in group 1 and group 2 HAs, it is 

not surprising that the germline usage of group 1-specific HA 

stem antibodies also seems to have a different preference than 

that of group 2-specific HA stem antibodies [73]. Most group 

1-specific HA stem-binding antibodies utilize V
H
1-69 germline 

[64–66, 69, 70, 74], whereas group 2-specific HA stem-binding 

antibodies utilize a more diverse set of germlines, such as V
H
1-2 

[64], V
H
3-53 [64], V

H
1-3 [67], and V

H
1-18 [75]. Nonetheless, 

studies have shown that the breadth of broadly neutralizing 

antibodies (bnAbs) can be increased during memory B cell evo-

lution [59, 62, 70]. For example, although FI6 and MEDI8852 

are both cross-group anti-HA stem antibodies, their germline 

versions (V
H
3-30 and V

H
6-1, respectively) only react with group 

1 HAs [59, 61]. In fact, V
H
6-1 has been proposed to be a germ-

line that encodes a multidonor class of bnAbs [63]. Therefore, it 

is possible for an HA group-specific anti-HA stem antibody to 

evolve a cross-group breadth through affinity maturation.

Recent studies from the Vaccine Research Center at the 

National Institutes of Health have elucidated several classes 

of cross-group anti-HA stem antibodies that were commonly 

observed in individuals a�er H5N1 (group 1) or H7N9 (group 

2) vaccinations [63, 64]. An additional observation is that the 

anti-HA stem antibodies from H5N1-vaccinated individuals 

are primarily group 1-speci�c, whereas most antistem anti-

bodies from H7N9-vaccinated individuals can react with both 

group 1 and group 2 HAs [64]. Such results suggest that there 

is a higher chance to induce cross-group anti-HA stem anti-

bodies from a group 2 HA stem-based immunogen than from 

a group 1 HA stem-based immunogen. Nonetheless, most HA 

stem-based immunogen designs to date [76] are based on group 

1 HAs (H1 [2, 3, 5, 6, 9] and H5 [4]), although some success 

has come from group 2 based HAs (H3 [7, 8]). Head-to-head 

comparison should be performed in the future between group 

2 HA stem-based and group 1 HA stem-based immunogens 

to see whether one is superior to the other in inducing cross-

group antistem antibodies. It will also be important to establish 

whether sequential vaccinations with group 1 HA stem vaccines 

followed by group 2 HA stem vaccines elicit di�erent types of 

antibodies compared with sequential vaccinations with group 

2 HA stem vaccines followed by group 1 HA stem vaccines. 

�roughout all of these studies, it will be crucial to take into 

account vaccinees’ year of birth and the potential e�ects of HA 

imprinting from early childhood in�uenza virus exposures.

ESCAPE MUTATIONS TO HEMAGGLUTININ STEM 

ANTIBODIES

An important consideration for antiviral and vaccine devel-

opment is the potential emergence of escape mutants. The HA 

head can tolerate a lot more mutations, additional or changing 

glycosylation sites, or even insertions, when compared with 

the HA stem [30–33]. As a result, anti-HA head antibodies 

are more prone to escape than anti-HA stem antibodies [77]. 

Nevertheless, strong escape mutations to the anti-HA stem 

antibodies have been isolated [66, 67, 71, 75, 78–80]. Chai et 

al  [80] have shown that both decrease in antibody-binding 

affinity and enhancing membrane fusion can contribute to 

escape from anti-HA stem antibodies. However, not all attempts 

to isolate strong escape mutants to the anti-HA stem antibod-

ies have been successful. Doud et al [77] used deep mutational 

scanning to systematically search for escape mutations against 

2 HA stem-binding bnAbs, namely FI6v3 [59] and C179 [78], 

but only weak escape mutants were found. Likewise, escape 

mutants to HA stem-binding bnAb CR6261 were only iden-

tified after extensive passaging [66]. It remains to be resolved 

how strong escape can be readily identified in some studies but 

not in others. It is possible that certain anti-HA stem antibodies 

are more prone to result in viral escape. It should also be noted 

that different studies often use different viral strains to search 

for escape mutants. The escape profiles of anti-HA stem anti-

bodies may also vary among strains and subtypes, as suggested 

by the differential ability of A/California/7/2009 (H1N1) and 

A/Perth/16/2009 (H3N2) to escape from anti-HA stem anti-

body 39.29 [80]. Likewise, whereas only weak escape mutants 

to C179 were identified in A/WSN/1933 (H1N1) [77], com-

plete escape mutants were identified in A/Suita/1/1989 (H1N1) 

and A/Izumi/5/1965 (H2N2) [78]. In fact, such a phenome-

non of strain- or subtype-specific mutational effects has been 

described in the study of the HA RBS, where the tolerability to 

certain mutations differs between subtypes [81] or even among 

strains within a given subtype [82]. Several anti-HA stem anti-

bodies are undergoing clinical trials as therapeutics [83], and an 

increasing amount of resources is being invested in the devel-

opment of an HA stem-based universal vaccine [84]. Therefore, 

a comprehensive understanding of possible escape mutations 

is desirable to minimize unwanted surprises. Furthermore, 

because combining multiple antibodies can potentially mini-

mize the emergence of escape mutants [85–87], a universal vac-

cine where escape is minimized will likely require elicitation of 

polyclonal responses targeting different HA epitopes.

MOVING FORWARD

Although current influenza HA stem-based universal vaccine 

candidates are promising, the development of a universal 
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vaccine will likely be an iterative process, and a better under-

standing of the dynamics of immunodominance in humans 

will be essential for improving such vaccines. In the case of 

human immunodeficiency virus, a great deal has also been 

learned about the development of broadly neutralizing anti-

body responses by studying antibody-virus coevolution from 

the time of infection [88–90]. The analogous situation in 

influenza is more challenging, because it requires following 

individuals from birth in longitudinal studies and defining 

how immunodominance changes over the course of a response 

and from response to response. These longitudinal cohort 

studies have the potential to answer fundamental questions 

about (1) what antibody specificities dominate the plasmab-

last response versus B-cell memory and (2) which lineages 

are recalled in the response to an antigenically drifted strain. 

More importantly, these studies will also allow us to explore 

differences in responses elicited by infection and vaccination. 

Some studies suggest that B cells recalled in response to vac-

cination have a reduced ability to undergo somatic mutation 

relative to those recalled by an infection [91]. Although titers 

elicited by vaccination in adults exhibit modest waning [92], 

we know very little about the longevity of responses elicited 

in children.

Another major challenge will be to develop standardized 

assays to detect antibodies against di�erent HA and NA 

epitopes. �e standard assays used to select vaccine strains 

almost exclusively detect antibodies that bind the HA head 

and block viral attachment to cellular receptors. New assays 

to measure antibody functions such as HA stem binding 

and neutralization, NA inhibition, and Fc-mediated e�ector 

engagement need to be developed. Dissecting the contribu-

tion of di�erent epitopes to protection in universal vaccine 

trials will allow us to precisely determine which epitopes are 

targeted in di�erent individuals and whether viral escape is 

occurring at particular epitopes.

CONCLUSIONS

The current generation of universal vaccine candidates are the 

product of decades of work across multiple disciplines and rep-

resent the first attempt to control influenza immunodominance 

to elicit long-lived, protective responses against conserved sites. 

Understanding and manipulating immunodominance will be 

the crux of continued progress towards universal influenza 

immunity.
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