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Abstract

Background: The myelin sheath provides electrical insulation of mechanosensory Aβ-afferent fibers. Myelin-degrading

matrix metalloproteinases (MMPs) damage the myelin sheath. The resulting electrical instability of Aβ-fibers is believed

to activate the nociceptive circuitry in Aβ-fibers and initiate pain from innocuous tactile stimulation (mechanical

allodynia). The precise molecular mechanisms, responsible for the development of this neuropathic pain state after

nerve injury (for example, chronic constriction injury, CCI), are not well understood.

Methods and results: Using mass spectrometry of the whole sciatic nerve proteome followed by bioinformatics

analyses, we determined that the pathways, which are classified as the Infectious Disease and T-helper cell signaling,

are readily activated in the nerves post-CCI. Inhibition of MMP-9/MMP-2 suppressed CCI-induced mechanical allodynia

and concomitant TNF-α and IL-17A expression in nerves. MMP-9 proteolysis of myelin basic protein (MBP) generated

the MBP84-104 and MBP68-86 digest peptides, which are prominent immunogenic epitopes. In agreement, the

endogenous MBP69-86 epitope co-localized with MHCII and MMP-9 in Schwann cells and along the nodes of Ranvier.

Administration of either the MBP84-104 or MBP68-86 peptides into the naïve nerve rapidly produced robust

mechanical allodynia with a concomitant increase in T cells and MHCII-reactive cell populations at the injection site. As

shown by the genome-wide expression profiling, a single intraneural MBP84-104 injection stimulated the inflammatory,

immune cell trafficking, and antigen presentation pathways in the injected naïve nerves and the associated spinal

cords. Both MBP84-104-induced mechanical allodynia and characteristic pathway activation were remarkably less

prominent in the T cell-deficient athymic nude rats.

Conclusions: These data implicate MBP as a novel mediator of pain. Furthermore, the action of MMPs expressed

within 1 day post-injury is critical to the generation of tactile allodynia, neuroinflammation, and the immunodominant

MBP digest peptides in nerve. These MBP peptides initiate mechanical allodynia in both a T cell-dependent and

-independent manner. In the course of Wallerian degeneration, the repeated exposure of the cryptic MBP epitopes,

which are normally sheltered from immunosurveillance, may induce the MBP-specific T cell clones and a self-sustaining

immune reaction, which may together contribute to the transition of acute pain into a chronic neuropathic pain state.

Background
Pain is typically mediated by small unmyelinated C-noci-

ceptive and thinly myelinated Aδ-afferents. Non-nocicep-

tive, large-diameter myelinated Aβ-afferents transmit

touch and vibration sense. However, following damage to

the peripheral nervous system (PNS), Aβ-afferents join

nociceptive circuitry [1]. Our mechanistic understanding

of why the damaged Aβ-afferents interpret an innocuous,

low-threshold tactile stimulus as painful (that is, mechan-

ical allodynia) remains exceedingly limited. Growing evi-

dence supports a model in which the damage to the

electrically insulating myelin sheath and the resulting loss

of electrical stability in Aβ-afferents contribute to the de-

velopment of mechanical allodynia [2-6].

Mechanical allodynia and other forms of neuropathic

pain (NP, that is, pain arising as a direct consequence of

a lesion or disease affecting the somatosensory nervous

system [7]) have features of a neuroimmune disorder [8].

T lymphocyte infiltration into both the damaged nerve
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[9-11] and the spinal cord at a corresponding segment

[12-14] has been implicated in NP. Following chronic

constriction injury (CCI), T cell-deficient athymic nude

rats exhibit a diminished ability to develop NP, which is

reversed with adoptive transfer of T-helper (Th)1 cells

[9]. Interleukin (IL)-17, expressed by certain Th cells, is

essential to mediating mechanical, but not thermal,

hypersensitivity [15]. Major histocompatibility complex

(MHC) II, produced by antigen-presenting cells to cap-

ture and present antigens to T cells, is required for the

development of NP [16,17]. An increase in MHCII is

observed in the nerve and the corresponding DRG [18],

spinal cord [14,16], and brainstem [19] after a peripheral

nerve lesion. However, the antigens, which are involved

in the recruitment and the homing of activated T cells in

the pathogenesis of NP, remain unknown.

Myelin basic protein (MBP) is the component of the com-

pact myelin that is believed to participate in the mainten-

ance of the major dense line and interactions of the myelin

sheath with the cytosolic surfaces [20-23]. In the PNS, MBP

comprises 5% to 15% of total myelin protein and is consid-

ered to be non-essential [22]. However, Th1-mediated auto-

immune peripheral neuropathies in humans and the

relevant experimental models induced by immunization of

animals using immunodominant MBP and other myelin

peptides are often painful [24]. It has been demonstrated

that the autoimmune response to immunodominant MBP

peptides assists in myelin clearance and regeneration after

peripheral nerve injury [25]. Certain digest fragments of

MBP and its splice variant (Golli-MBP) expressed in im-

mune cells [26] are generated by matrix metalloproteinase

(MMP) proteolysis and exhibit key T cell epitopes [27,28].

MMPs are a family of zinc-endopeptidases comprising

collagenases, gelatinases, matrilysins, stromelysins, and

membrane-type MMPs [29]. After peripheral nerve injury,

gelatinases B (MMP-9) and A (MMP-2) degrade the blood-

nerve barrier, release the pro-inflammatory cytokines, con-

trol immune cell infiltration and cell survival along the

injured neural axis. These two MMPs are believed to con-

secutively initiate and maintain NP [5,30-34]. Having pro-

posed that MMPs promote mechanical hypersensitivity via

the proteolysis of myelin [5], we herein aimed to determine

the specific mechanisms involved. Our present experimen-

tal evidence suggests that MMP-mediated fragmentation of

MBP as a consequence of Wallerian degeneration exposes

cryptic MBP epitopes, which are normally sheltered from

immunosurveillance. These exposed immunodominant

MBP peptide epitopes induce mechanical allodynia in both

a T cell-dependent and -independent manner.

Methods
Reagents

Reagents were purchased from Sigma (St. Louis, MO) unless

indicated otherwise. MBP2-18 (ASQKRPSQRSKYLATAS),

MBP68-86 (AHYGSLPQKKSHGRTQDENP), MBP84-104

(ENPVVHFFKNIVTPRTPPPSQ), and scrambled MBP84-

104 (NKPQTNVVEPFHRTFPIPPVS; sMBP84-104) pep-

tides, derived from human MBP sequence (GenBank

#AAH08749), were synthesized by GenScript. To prevent

their degradation by exoproteinases, these 97% to 99% pur-

ity peptides were N- and C-terminally protected by acetyl-

ation and amidation, respectively. Because of the

incomplete homology between the human and rodent

MBP68-86 sequence, an additional Lys residue was

inserted in the MBP68-86 sequence (underlined in the se-

quence above) to make the resulting peptide more uni-

formly applicable for our studies. Primers and Taqman

oligonucleotide probes for rat MMP-9 (GenBank

#NM_031055), GAPDH (GenBank #XO2231), and tumor

necrosis factor-α (TNF-α, GenBank #NM_012675) were

designed using Primer Express 2.0 software (Applied Bio-

systems) and obtained from Biosearch Technologies [30].

Similarly, the probes for rat IL-17A (GenBank

#NM_001106897.1), were obtained from Applied Biosys-

tems (Assay ID Rn01757168_m1). GM6001, a broad-

spectrum MMP inhibitor, was purchased from Millipore.

SB-3CT, a selective MMP-2/9 inhibitor, was purchased

from EMD Biosciences. The following detection antibodies

were used in our studies: rabbit anti-rat MMP-9 (Torrey

Pines Biolabs, cat. #TP221, 1:500), goat anti-mouse MMP-

9 (R&D Systems, cat. #AF909; 1:250), rabbit anti-S100

(Dako, cat. #Z0311, 1:500), murine anti-CD68 (clone ED1,

Abcam, cat. #ab31630; 1:100), rabbit anti-von Willebrand

factor (vWF, Abcam, cat. #ab6994, 1:1,000), rabbit anti-

Iba1 (Wako, cat. #019-19741, 1:500), rat anti-MBP

(Abcam, cat. #ab40390, 1:250), murine anti-human MBP

(clone 22, AbD Serotec, cat. #MCA686S, 1:250), murine

anti-MHC II (clone OX6, Abcam, cat. #Ab6403, 1:200),

mouse anti-T cell receptor alpha/beta (TCR; AbD Serotec,

cat. #MCA453G, 1:200), mouse β-actin antibody (Sigma,

cat. #A53166, 1:30,000), goat anti-mouse conjugated with

Alexa 594 (Molecular Probes, 1:500, red), or goat anti-

rabbit conjugated with Alexa 488 (Molecular Probes,

1:500, green). The nuclei were stained with DAPI (Molecu-

lar Probes, 1:20,000, blue). We also used a rabbit anti-

MBP antibody (Millipore, cat. #AB5864, 1:1,000) that

recognizes degraded MBP and that was generated against

the YGSLPQKSQRSQDENPVV MBP69-86 synthetic pep-

tide (the guinea pig sequence) as an immunogen. Anti-

bodies were diluted in TBS containing 0.1% Tween-20 and

1% normal goat serum.

Animals, surgery, and therapy

All animals were housed at 22 °C under a 12 h light/dark

cycle with food and water ad libitum. Animals were

anesthetized with 4% isoflurane (Aerrane; Baxter) in 55%

oxygen or a rodent anesthesia cocktail containing Nembu-

tal (50 mg/mL; Abbott Labs) and diazepam (5 mg/mL) in
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0.9% PBS (Steris Labs). Sprague–Dawley rats (n=144,

200–225 g adult females), athymic nude rats (rnu−/−, Hsd:

RH-Foxn1rnu, n= 6, 8-week-old females) and their hetero-

zygous controls (rnu+/−, Hsd:RH-Foxn1rnu/Foxn1+, n=6,

8-week-old females) were obtained from Harlan Labs. The

common sciatic nerve was exposed unilaterally at the

mid-thigh level. Four loosely constrictive chromic gut

sutures were tied around the nerve to produce CCI [35].

SB-3CT (10 mg/kg body weight in 10% DMSO) was

injected i.p. twice: first at the initiation of CCI and then in

24 h. Sol-vent alone was used as a vehicle. In a separate

group of animals, the exposed naïve sciatic nerves

received an intraneural injection of an MBP peptide

(50 μg) in 5 μL PBS, or an equal volume of PBS as a ve-

hicle using a 33-gauge needle on a Hamilton syringe. For

a sham-operated control, the sciatic nerve was exposed

but otherwise not manipulated. The sciatic nerves and ip-

silateral dorsal horn of the spinal cords were collected for

analyses. FVB.Cg-Mmp9tm1Tvu/J (MMP-9−/−, n=6; 20 g,

adult females) and wild-type FVB/NJ (WT, n=6; 20 g,

adult females) mice were obtained from Jackson Labs. The

sciatic nerve was exposed unilaterally at the mid-thigh

level and crushed using fine, smooth-surface forceps twice

for 2 s each. The animals were sacrificed by an overdose

of the Nembutal/diazepam cocktail, followed by Beutha-

nasia (100–150 mg/mL, i.p., Schering-Plough Animal

Health). The animals were handled according to the NIH

Guide for the Care and Use of Laboratory Animals and

the required protocols were approved by the Institutional

Animal Care and Use Committee.

Two-dimensional liquid chromatography/tandem mass

spectrometry/mass spectrometry (2D-LC/MS/MS),

proteomics, and pathway analysis

The rat sciatic nerves were isolated, snap-frozen in liquid

N2 and stored at −80 °C. The samples were homogenized,

sonicated, extracted 60 min at ambient temperature in

100 mM Tris–HCl, pH 8.0, containing 8 M urea and the

protease and phosphatase inhibitor cocktails, and the in-

soluble material was removed by centrifugation (16,000xg;

15 min). The supernatant samples (at least 0.5 mg total

protein each) were then processed by the Proteomics Core

facility of the Sanford-Burnham Medical Research Insti-

tute. The samples were reduced (10 mM tris(2-carbox-

yethyl) phosphine, 37 °C, 30 min), alkylated (20 mM

iodoacetamide, 37 °C, 40 min in the dark), and digested

using Modified Trypsin, Mass Spectrometry Grade (Pro-

mega; 1:100 w/w ratio; 37 °C, 16–18 h). The samples were

desalted using a SepPack cartridge, dried using a SpeedVac

and re-suspended in 0.1 mL 5% formic acid. The resulting

peptides were separated into 24 fractions using an offline

Michrom MDLC pump (Michrom) with a Michrom

Strong Cation Exchange column. The 1/10 aliquot of each

peptide fraction was analyzed using an LTQ-Orbitrap XL

mass-spectrometer (Thermo Scientific) and a 15 cm

Michrom Magic C18 column coupled with a low-flow

Michrom ADVANCED device. The data were analyzed by

Sorcerer Enterprise v.3.5 software (Sage-N Research) using

the ipi.Rat.v3.56 protein database. 57 Da were added to

cysteines to identify carboxyamidomethylated cysteines,

16 Da were added to methionines to identify oxidated

methionines. The search results were sorted, filtered, and

statistically analyzed using a trans-proteomic pipeline

(TPP) (Institute for Systems Biology, Seattle, WA) with a

90% minimum probability score and an error rate ≤2%.

An additional search was performed using a Prolucid

search algorithm with a DTASelect function via an Inte-

grated Proteomics Pipeline (IP2) server. Relative levels of

the proteins in the samples were then analyzed using IP2

for a Label-Free differential peptide/protein analysis. The

final data were subjected to bioinformatics analyses using

Ingenuity IPA 8.7 software (Ingenuity Systems).

Real-time qRT-PCR, genome-wide transcriptional profiling,

and pathway analysis

The rat sciatic nerves were isolated and stored in RNA-

later (Ambion) at −20 °C. Primers and Taqman probes

were optimized to amplification efficiency of 100.1-

100.3% [30]. Total RNA was extracted using TRIzol

(Invitrogen) and purified on an RNeasy mini column

(Qiagen). The RNA purity was estimated by measuring

the OD260/280 and the OD260/230 ratios. The integrity

of the RNA samples was validated using an Experion

automated electrophoresis system (Bio-Rad). The sam-

ples were treated with RNase-free DNAse I (Qiagen).

cDNA was synthesized using a SuperScript first-strand

RT-PCR kit (Invitrogen). Gene expression levels were

measured in a Mx4000™ Multiplex Quantitative PCR

System (Agilent Technologies) using 50 ng of cDNA and

2x Taqman Universal PCR Master Mix (Ambion) with a

one-step program: 95 °C, 10 min; 95 °C, 30 s; 60 °C,

1 min for 50 cycles. Duplicate samples without cDNA (a

no template control) showed no contaminating DNA.

Relative mRNA levels were quantified using the com-

parative delta Ct method [36] and glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) as a normalizer.

The fold change between experimental and control sam-

ples was determined using the Mx4000 software.

For the genome-wide transcriptional profiling, the sam-

ples of total RNA (50 ng) from the wild-type and athymic

nude rat nerves and spinal cord tissues were labeled using

LowInput QuickAmp Labeling Kit and Cy3-CTP (Agilent

Technologies). The labeled RNA samples were hybridized

17 h at 65 °C to SurePrint G3 Rat GE 8x60K slides (Agi-

lent Technologies). Slides were scanned using an Agilent

C Scanner. The raw data were processed using Feature

Extraction software version 10.5. The initial analysis and

normalization to the median were performed using
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GeneSpring GX software (Agilent). Differentially

expressed mRNAs with signal intensities higher than two-

fold over the background standard deviation were filtered

by t-test. The statistically significant data only (P< 0.05)

were used to calculate gene expression ratios in the sam-

ples. The gene expression data have been deposited to

GEO database (accession # GSE34868, http://www.ncbi.

nlm.nih.gov/geo/info/linking.html). The final data were

analyzed using Ingenuity IPA 9.0 software.

MMP-9 purification and proteolysis of MBP in vitro

The recombinant pro-form of MMP-9 was purified from

the serum-free medium conditioned by the stably trans-

fected HEK293 cells using the gelatin-column chroma-

tography. The purity of the isolated MMP-9 samples was

confirmed using SDS-PAGE in a 4-20% gradient acryl-

amide gel followed by Coomassie staining. Only the

samples with purity over 95% were used in our studies.

Purified pro-MMP-9 was activated using 4-aminophe-

nylmercuric acetate. The concentration of the catalytic-

ally active MMP-9 was determined using a fluorescent

assay by active site titration against a standard solution

of a GM6001 of known concentration. (7-methoxycou-

marin-4-yl) acetyl-Pro-Leu-Gly-Leu-(3-[2,4-dinitrophe-

nyl]-L-2,3-diaminopropionyl)-Ala-Arg-NH2 (Bachem)

was used as a fluorescent substrate [27,37].

Human MBP (4 μg; approximately 11 μM) was co-incu-

bated with activated MMP-9 (1–100 nM; an enzyme-sub-

strate ratio 1:100–1:10,000) in 50 mM HEPES, pH 6.8,

supplemented with 10 mM CaCl2 and 50 μM ZnCl2, for

1 h at 37 °C. The total volume of the reactions was 20 μL.

Where indicated, GM6001 (2.5 μM) was added to the

reactions to inhibit MMP-9. The cleavage reaction was

stopped using a 5xSDS sample buffer. The digest samples

were analyzed by SDS-PAGE and by MALDI-TOF MS

using an Autoflex II MALDI TOF/TOF instrument (Bru-

ker Daltonics). For MS analysis, the reactions were cooled

on ice and equal volumes (2 mL) of a sample and of a

sinapic acid (20 mg/mL) in 50% acetonitrile-0.1% trifluor-

oacetic acid solution were mixed, spotted directly on a

MALDI target plate, air-dried, and co-crystallized for

10 min. Mass spectra were processed with FlexAnalysis

2.4 software (Bruker Daltonics). The singly charged cleav-

age products, which were observed only in the cleavage

reactions but not in the controls, were recorded and pro-

cessed further.

Gelatin zymography

Sciatic nerves were isolated, snap-frozen in liquid N2, and

stored at −80 °C. Proteins were extracted in 50 mM Tris–

HCl, pH 7.4, containing 1% Triton-x 100, 150 mM NaCl,

10% glycerol, 0.1% SDS. Extract aliquots (10–70 μg total

protein as determined by BCA Protein Assay, Pierce) were

analyzed using 10% acrylamide gels co-polymerized with

0.1% gelatin. After electrophoresis, gels were washed in

2% Triton X-100 for 30 to 60 min at ambient temperature,

incubated for 16 to 18 h at 37 °C in 50 mM Tris–HCl buf-

fer, pH 7.4, containing 10 mM CaCl2 and 1 μM ZnCl2 and

0.2 mM sodium azide, and stained with Coomassie Blue

R250 to visualize the gelatinolytic activity bands.

Neuropathology, immunohistochemistry, and microscopy

Plastic-embedded transverse nerve sections (0.75 μm

each) were used for neuropathologic evaluation. Sciatic

nerves were isolated and placed in 2.5% glutaraldehyde in

0.1 M phosphate buffer, osmicated, dehydrated, and em-

bedded in araldite resin. Sections were cut with a glass

knife on an automated Leica RM2065 microtome and

stained using methylene blue Azure II. Immunohisto-

chemistry was performed in tissues fixed in 4% para-for-

maldehyde, embedded in paraffin, or cryoprotected in

graded sucrose and embedded into OCT compound in

dry ice. The 10-μm sections, when required, were deparaf-

finized using xylene and rehydrated in ethanol and PBS,

immersed in 0.5% sodium borohydride followed by treat-

ment with the antigen retrieval reagent (Dako) for 5 min

at 95 °C, then for 20 min at ambient temperature. Teased

nerve fibers were prepared from the transected and de-

sheathed sciatic nerves. Nerve bundles were separated

using a pair of fine smooth microforceps. Individual fibers

were teased out using 0.20-0.22 mm acupuncture needles

(Vinco, Oxford Medical Supplies) on a glass slide, dried at

ambient temperature and stored at −20 °C. Non-specific

binding was blocked using PBS containing 5% normal

goat serum and 0.25% Triton X-100. The sections were

incubated with a primary antibody (4 °C, 16–18 h) fol-

lowed by an Alexa 488-conjugated (green) or Alexa 594-

conjugated (red) species-specific secondary antibody (Invi-

trogen, 1 h, ambient temperature). The nuclei were

stained with DAPI (5 min). Sections were mounted using

a Slowfade Gold antifade reagent (Molecular Probes). The

images were acquired using a Leica DMR microscope and

Openlab 4.04 imaging software (Improvision).

Behavior tests

Sensitivity to non-noxious mechanical stimuli was mea-

sured by von Frey testing [38]. Rats were acclimated to

being on a suspended 6-mm wire grid. The plantar surface

of the hindpaw was stimulated within the spinal nerve in-

nervation area using calibrated von Frey filaments (Stoelt-

ing). Stimuli were applied for 4 to 6 s with a 0.4 to 15.0 g

buckling force to the mid-paw plantar surface. In the

event of a positive response, the next weaker stimulus was

chosen for the next measurement. In the absence of a re-

sponse, a stronger stimulus was presented. This consecu-

tive way of applying filaments was continued until six

responses in the immediate vicinity of the 50% threshold

were obtained. The resulting sequence of positive and
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negative responses was used to interpolate the 50% with-

drawal threshold, determined using the up-down method.

Stimuli were separated by several seconds or until the ani-

mal was calm with both hind paws placed on the grid.

Paw withdrawal latency to a thermal stimulus was mea-

sured by a Hargreaves testing device [39]. The hind paw

was stimulated by a radiant heat source. Withdrawal of

the paw from the heat source was measured four times to

calculate the mean withdrawal latency. A maximal cut-off

of 20 s was used to prevent tissue damage. The interval

between two trials on the same paw was at least 5 min.

Spontaneous pain-like behavior was measured as

described in [40]. Each animal was placed in a 19 x 31 cm

plexiglass cylinder and allowed to habituate. A 2 min test-

ing period included continuous pressing of one of six (0–5)

numerical keys on a computer keyboard, corresponding to

the instantaneous behavior of the animal, rated by the posi-

tions of the injured hind paw as follows: 0, the paw is placed

normally on the floor; 1, the paw is placed lightly on the

floor and the toes are in a ventroflexed position; 2, only the

internal edge of the paw is placed on the floor; 3, only the

heel is placed on the floor and the hind paw is in an inverted

position; 4, the whole paw is elevated; 5, the animal licks the

paw. The measurements were repeated twice within 2 h. An

index for noxious behavior was calculated by multiplying

the time that rat spent in each behavior by a weighting fac-

tor for that behavior, and divided by the length of the obser-

vational period, using the formula: [0 t0+1 t1+2 t2+

3 t3+4 t4+5 t5]/120 s, where t0-t5 are the time in sec spent

in behaviors 0–5, respectively. The three values correspond-

ing to three blocks of 120 s were averaged to determine the

spontaneous pain score for each rat. All tests were per-

formed daily for 3 days before peptide injection and then

daily thereafter by an investigator blinded to the experimen-

tal groups.

Data analyses

Statistical analyses were performed using KaleidaGraph

4.03 (Synergy Software) or SPSS 16.0 (SPSS) software by

a two-tailed, unpaired Student’s t-test for comparing two

groups, or analyses of variance (ANOVA) for repeated

measures for comparing three or more groups, followed

by the Tukey-Kramer post-hoc test, unless specified

otherwise. P values≤ 0.05 were considered significant.

Results
Proteomics identifies prominent Th cell signaling that

follows nerve injury

The importance of the unbiased screening of the neurobio-

logical mechanisms contributing to neuropathic pain has

been recently emphasized [41]. Specifically, proteomics

analysis of the nerve using mass spectrometry has an ad-

vantage of simultaneously assaying the axonal, glial and im-

mune cell proteins and peptides ultimately involved in the

generation of action potentials in the course of the NP de-

velopment [42]. Thus, mass spectrometry analysis of the

rat sciatic nerve proteome at week 1 post-CCI, when T

cells infiltrate the nerve [9-11,43], and control (sham-oper-

ated) nerves unambiguously identified 1,845 common in-

dividual proteins in normal and CCI nerves. A total of 320

and 441 additional individual proteins were detected only

in the CCI and sham nerve samples, respectively (Add-

itional file 1: Table S1 and Additional file 2: Table S2, re-

spectively). Ingenuity software was used to analyze these

results further and to identify the canonical signaling path-

ways, which were representative for our dataset. Thus, the

infectious disease, the CD28 T-helper signaling, and the

calcium-induced T cell apoptosis pathways are the major

pathways that characterize the CCI proteome samples

relative to the sham samples (Figure 1). Table 1 identifies

the individual molecules that contribute to these T cell

related pathways in CCI samples. According to Ingenuity,

other up-regulated pathways in our CCI samples as com-

pared with the sham-operated nerve samples also include

inflammatory response, phospholipase C, and protein

kinase A signaling pathways.

These unbiased data highlighted the principal role of the

infiltrating T cells in the nerve post-CCI and guided, at

least partly, our follow-up research efforts. Having impli-

cated MMP proteolysis of myelin in initiating mechanical

allodynia [5], we hypothesized that the MMP-generated

MBP digest peptides in the course of nerve injury com-

prise the cryptic T cell epitopes, which are sheltered from

immunosurveillance in the intact nerve.

Acute MMP-2/9 inhibition blocks CCI-induced allodynia

and neuroinflammation

Broad-spectrum MMP inhibition suppressed immune cell

infiltration after nerve injury [5]. Within week 1 post-CCI,

when T cells infiltrate the nerve, MMP-2 and MMP-9 ac-

tivity was differentially induced in the nerve (Figure 2A).

MMP-9 was undetectable in the naïve nerve but it was

sharply up-regulated following CCI. MMP-9 appeared as a

prominent 92 kDa latent pro-enzyme, an active 88 kDa

monomer and high molecular weight homo- and hetero-

dimers at 3 h after CCI. A heterodimer of MMP-9 with a

tissue inhibitor of metalloproteinases (TIMP)-1, found in

nerve within day 1 post-injury [44], partially protected gel-

atin from degradation (Figure 2A). Constitutive expression

of the 72 kDa MMP-2 latent proenzyme was observed in

the naïve nerve. By day 1, MMP-2 was partially activated,

resulting in a 68 kDa enzyme band. We quantified the in-

crease in the MMP-9 expression at day 1 post-CCI.

MMP-9 mRNA levels increased 284-fold and 42-fold

compared with the naïve and sham-operated nerve sam-

ples, respectively (Figure 2B). According to our immmu-

nostaining studies, the crescent-shaped Schwann cells and

the vessel endothelial cells expressed MMP-9 at this time-
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point (Figure 2C). The MMP-2 immunoreactivity was

detected in the perivascular areas, and also on the Schwann

cell plasma and/or basement membranes. The MMP-9

immunoreactivity was also observed in the axoplasm of

myelinated fibers in nerve post-injury [44]. Schwann cells

(identified by S100) and macrophages (identified by CD68)

were the main source of MMP-9 in injured nerve at day 1

and week 1 post-CCI, respectively (Figure 2D). Vessel endo-

thelial cells (identified by vWF) produced MMP-2 at both

time-points. These MMP expression patterns are consistent

with the previous reports [45,46].

Ongoing therapy using the broad-spectrum MMP or se-

lective MMP-2/9 inhibitors suppressed the development of

NP [5,33]. To test if the acute selective MMP-9/2 inhibition

suppressed the CCI-induced pain, we employed SB-3CT.

SB-3CT is a selective, mechanism-based MMP-2/9 inhibi-

tor (ki=14-600 nM) [47] shown efficacious in promoting

the functional recovery from brain and spinal cord injury

[48,49]. SB-3CT (10 mg/kg, i.p.) was administered twice,

during the CCI operation and then in 24 h. A significant

and stable drop in the mechanical withdrawal threshold (se-

vere allodynia) was evident readily after CCI in the vehicle-

treated animals (Figure 2E). In contrast, acute SB-3CT ther-

apy maintained the high threshold levels for up to 9 days in

the animals. As measured at the end of the behavioral tests

(day 9 post-CCI), acute SB-3CT therapy decreased the

levels of the pro-nociceptive TNF-α and IL-17A in the CCI

samples compared to the vehicle group (Figure 2F). There

was no significant change in the corresponding lumbar 4/5

DRG and spinal cord expression of either TNF-α or IL-17A

at this time-point (data not shown). Thus, immediate and

acute inhibition of MMP-9/2 proteolysis prevented the

CCI-induced mechanical allodynia and neuroinflammation

for longer than week 1 of injury.

MMP-9 degrades MBP in vitro and in vivo

Next, we tested if MBP cleavage by MMP-9 uncovered

cryptic T cell epitopes normally sheltered from immuno-

surveillance.A noticeable level of MMP-9 proteolysis of

human MBP (18.5 kDa) was observed in vitro in 1 h at an

enzyme-substrate molar ratio as low as 1:10,000, while the

Figure 1 T-helper cell signaling is induced after CCI. Ingenuity pathway analysis of the canonical pathways (A) and signaling cascades (B)

using the proteins unique to sciatic nerve proteome at day 7 after CCI or sham operation. The bars represent -log (P value) for a system or a

pathway to be represented with a threshold set at 1.4 (P< 0.05) in n= 3/group. CCI presents as an infectious disease, with CD28 Th cell signaling

and T cell apoptosis among unique pathways activated relative to sham-operated nerve (asterisks).

Table 1 List of molecules in T cell-related canonical

pathways in CCI

Biological function P value Molecules

Infectious disease 2.41E-03
to

4.67E-02

AFG3L2, AHCTF1, ALKBH3, BCLAF1,
C1R, DDX23, DPM1, ETHE1, FLII,
GANAB, HLA-DQB1, IMPDH1, MAPT,
MERTK, NUP62, PPP3CA, PPP3CB,
PYCRL, RAB6A, RANBP2, RPL10A
(includes EG:4736), SFRS2, STXBP1,
STXBP1, TIMM8A, TOP2B, TPPP,
TPPP, USP39, ZMPSTE24

CD28 signaling in
T-helper cells

1.25E-02 FYN, HLA-DQB1, PDPK1, PPP3CA,
PPP3CB, PTPN6

Calcium-induced
T lymphocyte
apoptosis

3.87E-03 ATP2A3, HLA-DQB1, PPP3CA,
PPP3CB, PRKCI

Ingenuity pathway analysis of the 2D-LC-MS/MS sciatic nerve proteome (day 7)

after sham operation (normal) or CCI. P values for each biological function

calculated by Fisher’s exact test are indicated.
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degradation of MBP was largely accomplished at a 1:1,000

molar ratio (Figure 3A). GM6001, a broad-spectrum

MMP inhibitor, abolished MMP-9 proteolysis of MBP.

The mass of the MBP digest fragments and, consecutively,

their peptide sequence was determined by MALDI-TOF

MS (Figure 3B; Table 2). The MBP digest fragments com-

prised the known immunogenic sequence regions of MBP,

MBP84-104, and MBP68-86 sequences, capable of causing

experimental autoimmune encephalomyelitis or neuritis

in animal models [50-54].

In the PNS, MBP is presented as several splice variants

(14, 17, 18.5, and 21.5 kDa) and charge isoforms with the

potentially different posttranslational modifications [22,23].

We have previously demonstrated that the nerves of MMP-

9 null mice accumulated different MBP isoforms both early

(day 1) and later (day 10) post-injury [5,32]. Consistent with

Figure 2 Acute MMP-9/2 inhibition attenuates CCI-induced allodynia and neuroinflammation. (A) Gelatin zymography of sciatic nerve

extracts (70 μg total protein/lane) obtained at 3 h, 6 h, 1 day, 3 days, 5 days, and 7 days post-CCI. The arrows point to the MMP-9 and MMP-2 species. (B)

Taqman qRT-PCR for MMP-9 in the sham (Sh) and CCI sciatic nerves (day 1). The mean relative mRNA±SEM of n=6/group normalized to GAPDH

compared to naïve (N) nerve (**, P< 0.01). (C) Immunostaining of MMPs (2’2-diaminobenzidine, brown) in the sciatic nerve at day 1 and week 1 post-CCI.

Methylene Blue, counterstain. MMP-9 is in the Schwann cells (asterisks) and axoplasm (arrowheads). MMP-2 is at the blood-nerve barrier (arrow),

surrounding the vessel (V) endothelium, perivascular areas and at the Schwann cell plasma and basement membranes. Representative of n=3/group.

Scale bar, 40 μm. (D) Top panel, MMP-9 (red, left; green, right) co-localizes (yellow) with the S100-positive Schwann cells (left) at day 1 and with the

CD68-positive macrophages (right) at week 1 post-CCI. Bottom panel, MMP-2 (red) localizes along the blood-nerve barrier and vWF-positive endothelial

cells (green) at both time-points. Representative of n=3/group. Scale bar, 40 μm. (E) von Frey testing after CCI and administration of SB-3CT (10 mg/kg) or

the vehicle (10% DMSO) i.p., twice, at days 0 and 1 post-CCI. Decline in the withdrawal threshold in the ipsilateral (ipsi) to CCI hind paw corresponds to

allodynia. SB-3CT-treated rats displayed no sensitivity to stimuli below 10–15 grams, comparable to that of contralateral (contra), uninjured hind paws. The

mean withdrawal threshold (gram force; g) ± SEM of n=6/group (**, P< 0.01; *, P< 0.05). (F) Taqman qRT-PCR for TNF-α and IL-17A analyzed at the

completion of E (day 9 post-CCI). The mean relative mRNA±SEM of n=5/group normalized to GAPDH compared to the contralateral nerve (*, P< 0.05).
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our previous data and the ability of MMP-9 to proteolyze

18.5 kDa MBP in vitro, the 18.5 kDa MBP and also the low

molecular weight MBP species accumulated in the MMP-

9-deficient nerves within 1 day post-injury (Figure 3C). At

day 1 post-injury, MMP-9 co-localized with the degraded

MBP in myelinating Schwann cells in the wild-type ani-

mals [5], as detected using a specific AB5864 antibody

against degraded myelin.

The endogenous MBP epitopes in Schwann cells,

monocytes, and A-fibers of the injured nerve

Because monocytes infiltrate the nerve only after day 2

post-injury, we aimed to determine the cells involved in

MBP degradation and antigen presentation at day 1

post-CCI. The AB5864 antibody to the degraded MBP

we used was generated against the MBP69-86 peptide as

an immunogen. As a result, in the areas of demyelin-

ation, this antibody efficiently recognized the MBP69-86

cryptic epitope from the central portion of MBP rather

than the full-length intact MBP in which this epitope

was sheltered [55]. Non-lesioned nerves were not react-

ive with the AB5864 antibody [5], and the immunoreac-

tivity patterns of MBP69-86 and intact MBP were clearly

distinct in the injured nerve (Figure 3D). Note that mye-

linating Schwann cells present as crescent structures due

to their association with myelinated axons (reactive for

intact MBP) at a 1:1 ratio. At day 1 post-CCI, the en-

dogenous MBP69-86 epitope was detected in MHCII-

Figure 3 MMP-9 proteolysis yields MBP epitopes. (A) In vitro cleavage of MBP (18 kDa) by MMP-9. Human MBP (4 μg; 11 μM) was co-

incubated with MMP-9 at an enzyme-substrate ratio of 1:100–1:10,000 in 50 mM HEPES, pH 6.8, 10 mM CaCl2 and 50 μM ZnCl2 for 60 min at 37 °

C. Where indicated, GM6001 was added to the reactions. The digests were analyzed using SDS-PAGE. M, molecular weight markers. (B)

Representative MALDI-TOF MS spectra of the MBP samples. MBP (11 μM) was co-incubated for 60 min at 37 °C with MMP-9 (10 nM). The digests

were analyzed using a Bruker Daltonics Autoflex II MALDI TOF mass spectrometer to determine the molecular mass of the resulting peptides. The

high and low molecular mass fragments are shown in the top and bottom panels, respectively. The spectra represent arbitrary units (AU) for the

MBP digest (magenta), the intact MBP (red), and the buffer alone (green). The numbers in parentheses show the numbering of the peptide in the

MBP sequence. (C) Western blotting for MBP in the sciatic nerves at 1 day and week 1 post-crush or contralateral (normal) nerves in MMP-9 null

(−/−) or a wild-type (WT) mice (pooled from n= 3 mice/lane). β-actin, protein loading control. (D) Immunostaining of MBP69-86 using a specific

antibody (AB5864, Millipore, red) and MHCII (green, top) or intact MBP (green, bottom) in the myelinating Schwann cells (arrows) and other cells

(arrowheads) at day 1 post-CCI. DAPI, blue. Representative of n= 3/group. Scale bar, 10 μm.
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reactive Schwann cells as well as in certain other cell

types (Figure 3D).

The distribution of endogenous MBP69-86, MHCII and

MMP-9 within the domains of myelinated fibers was ana-

lyzed in the teased rat sciatic nerve preparations at day 1

and week 1 after transection (Figure 4). Due to Wallerian

degeneration altering the integrity of A-fibers in the distal

segment, we analyzed the fibers from the segment immedi-

ately proximal to transection, the site where MMP-9 ex-

pression and activity were induced [44,56]. MMP-9 co-

localized with MBP69-86 in the Schwann cell cytoplasm

and perinuclear areas of the teased nerve fiber preparations

(Figure 4A). Intriguingly, at day 1 post-injury, MBP69-86

localized in the paranodal/nodal regions, in close proximity

to MMP-9 (Figure 4B) and MHCII (Figure 4C) on the

Schwann cell plasma and/or basement membranes.

MHCII-positive round small cells adjacent to the myelin-

ated fibers were reactive for MBP69-86 at day 1 (Figure 4D)

and, especially week 1 (Figure 4E) post-injury. A number of

MBP69-86-reactive macrophages (identified by CD68) were

adjacent to the fibers (Figure 4F). The later finding may

represent phagocytosed myelin in hematogenous or resi-

dent macrophages, or the degraded Golli-MBP, expressed

in immune cells [26].

MBP peptides induce allodynia

Our data indicate that as a result of MMP-9 proteolysis of

MBP in vitro, cryptic epitopes are released at the N-

terminal and central portions of the MBP sequence, in-

cluding MBP68-86, MBP84-104 (summarized in

Figure 5A). In agreement, the immunodominant MBP69-

86 peptide sequence was produced in the injured nerve.

Next, we analyzed the effect of the synthetic MBP pep-

tides on pain-like behaviors. Mechanical and heat hyper-

sensitivity and spontaneous pain-like behavior parameters

were assessed in rats after a single intraneural injection of

MBP84-104, MBP68-86, MBP2-18 and scrambled

MBP84-104 (sMBP84-104) peptides (>97-99% pure,

50 μg each) into a naïve sciatic nerve (Figure 5B). A drop

in the mechanical withdrawal threshold after the injection

of the MB-P84-104 and MBP68-86 peptides corresponded

to robust allodynia lasting for up to 9 days. In contrast, in-

jection of MBP2-18 and sMBP84-104 was without effect

and resulted in a withdrawal threshold comparable to PBS

injection. Robust decline in the mechanical withdrawal

threshold was also readily observed after a single injection

of 10 μg of MBP68-86 or MBP84-104 (data not shown).

Further investigation was done using MBP-84-104 (the

most potent modulator of allodynia) and its scrambled pep-

tide control. The neuropathology of the respective nerves

at the injection sites was analyzed at day 3 after the

MBP84-104 or sMBP84-104 injection, when the difference

in pain-like behavior was highly significant. In contrast with

sMBP84-104, MBP84-104 produced focal myelin splitting,

endoneurial edema and infiltration of phagocytic immune

cells (Figure 5C). These findings were accompanied by an

Table 2 MMP-9-digested MBP peptides in vitro

ASQKRPSQR10 HGSKY#LATAS20 TMDHARHGFL30 PRH#RDTGILD40 SIGRFFGGDR50 GAPKRGSGKD60 SHHPARTAHY70 GSLPQKSHGR80

TQDENPVVHF90 F#KN#IVTP#RTP100 PP#SQGKGRGL110 SLSRFSWGAE120 GQRPGFGYGG130 RASD#YKSAHK140 GFKGVDAQGT150

LSK#IFKLGGR160 DSRSGSPMAR170 R171

Peptide sequences Molecular mass, Da

Calculated Measured

A2SQKRPSQRHGSKYLATASTMDHARHGFLPRHRDTGILDSIGRFFGGD 14,482 14,498

RGAPKRGSGKDSHHPARTAHYGSLPQKSHGRTQDENPVVHFFKNIVTP

RTPPPSQGKGRGLSLSRFSWGAEGQRPGFGYGGRASD134

L16ATASTMDHARHGFLPRHRDTGILDSIGRFFGGDRGAPKRGSGKDSH 10,229 10,247

HPARTAHYGSLPQKSHGRTQDENPVVHFFKNIVTPRTPPPSQGKGRG109

L16ATASTMDHARHGFLPRHRDTGILDSIGRFFGGDRGAPKRGSGKDSH 8,357 8,356

HPARTAHYGSLPQKSHGRTQDENPVVHFF91

S103QGKGRGLSLSRFSWGAEGQRPGFGYGGRASDYKSAHKGFKGVDA 7,307 7,296

QGTLSKIFKLGGRDSRSGSPMARR171

R34DTGILDSIGRFFGGDRGAPKRGSGKDSHHPARTAHYGSLPQKSH 7,010 7,018

GRTQDENPVVHFFKNIVTP97

I94VTPRTPPPSQGKGRGLSLSRFSWGAEGQRPGFGYGGRASDYKSAHK 6,293 6,284

GFKGVDAQGTLSK153

MMP-9 proteolysis of human MBP was performed as detailed in Figure 3, followed by MALTI-TOF MS analysis of the digest fragments. The proteolysis of MBP by

MMP-9 was performed at a 1:1,000 enzyme-substrate ratio. The sequences of intact MBP and digest fragments are shown. The arrows indicate the MMP-9

cleavage sites. The dot indicates the initiating Met-1.
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increase in the number of T cell receptor (TCR) and

MHCII-reactive cells at the MBP84-10 injection site com-

pared with the sMBP84-104 group (Figure 5D). Mono-

cytes/macrophages (identified by Iba1) and Schwann cells

(identified by S100) expressed MHCII after the MBP84-104

injection (Figure 5E). The effects of the MBP84-104 injec-

tion on the activation of the inflammatory pathways in the

naïve nerve were analyzed further using the genome-wide

gene expression profiling and bioinformatics analyses.

T cell deficiency diminishes the pro-nociceptive MBP84-

104 action

Athymic nude (rnu−/−) rats exhibit depleted T-cell popula-

tions in thymus-dependent areas of peripheral lymphoid

Figure 4 Accumulation of MBP69-86 at the nodes/paranodes of myelinated fibers. Dual-immunostaining of MBP69-86 using a specific

antibody (AB5864, Millipore, red, A-F) and MMP-9 (green, A-B), MHCII (green, C-E) or CD68 (green, F) in teased nerve fibers at day 1 (A-D) or week

1 (E-F) after and immediately proximal to transection. DAPI, blue. MMP-9 and MBP69-86 co-localize in the perinuclear and cytosolic regions of the

myelinating Schwann cells (A). MMP-9, MBP69-86 and MHCII co-localize in the paranodal/nodal areas of presumably, A-fibers (arrows, B, C, D).

Additionally, MBP69-86 is found in small, MHCII-positive cells adjacent to the fibers (E, arrowhead), such as CD68-reactive macrophages (F,

arrowheads). Representative of approximately 20 individual fibers in n= 3/group. Scale bars, 10 μm.
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organs. Because rnu−/− rats are less susceptible to the devel-

opment of NP [9], we used this strain to test our hypothesis

that the pro-nociceptive effect of MBP84-104 depended on

T cell production, infiltration or homing to the nerve and

the corresponding spinal cord (Figures 6 and 7).

The mechanical withdrawal thresholds readily declined

following a single MBP84-104 injection in the wild-type

(rnu+/−) rats (Figure 6A). In turn, incomplete attenuation of

allodynia was observed in nude rats. The threshold levels

significantly increased by day 3 post-injection, although

remained below the baseline. The injection of MBP84-104

did not cause a change in thermal withdrawal latencies

(Figure 6B) or spontaneous pain-like behaviors (Figure 6C)

in both rat types. We concluded that immunodominant

MBP peptides, specifically MBP84-104, initiated mechan-

ical but not thermal hypersensitivity in naïve animals, and

that the pro-nociceptive activity of MBP84-104 was, at least

partly, T cell-dependent.

At the completion of behavioral analyses (1 week after

the MBP84-104 injection), the sciatic nerve (the injected

and the contralateral side) and the dorsal horn spinal cord

(the lumbar enlargement and above-the-level thoracic

Figure 5 Pro-nociceptive activity of MBP peptides. (A) The 1–171 sequence of human MBP (GenBank #AAH08749). The immunogenic regions

are shown at the bottom of the panel using human MBP residue numbering. Following MBP cleavage by MMP-9, the mass and, consecutively,

the sequence of the digest fragments was determined by MALDI-TOF MS. The italicized numbers indicate the positions of the cleavage sites. (B)

von Frey testing after the intraneural injection of MBP peptides (50 μg in 5 μL) or vehicle (PBS) into a naïve rat sciatic nerve. Within 1 day a

decline in mechanical withdrawal thresholds was observed after the MBP84-104 and MBP68-86 injection. Control MBP2-18 and MBP84-104

scrambled (sMBP84-104) peptide induced no significant change in thresholds compared to PBS. The mean withdrawal thresholds (gram force;

g) ± SEM of n= 6/group (**, P< 0.01, *; P< 0.05). (C) Methylene Blue Azure II staining in 1-μm-thick sciatic nerve sections. MBP84-104 produced

myelin splitting and cell infiltration 3 days post-injection into the naïve nerve. Uncompromised axons, surrounded by a compact rim of myelin

are observed in the nerves after the sMBP84-104 injection. Representative micrographs of n= 4/group. Scale bars, 20 μm. (D) Immunostaining of

MHCII (green) or T cell receptor (TCR, green) in the nerve at 3 days after the MBP injection into the intact nerve. Scale bars, 25 μm. The graph

represents morphometry of the mean MHCII-positive cell numbers in the sciatic nerves ± SEM of n= 4/group and three sections per n (*, P< 0.05).

(E) Immunostaining of MHCII (green) and Iba1 in the monocytes/macrophages (red) or S100 in the Schwann cells (red) in the nerve after the

MBP84-104 injection in the wild-type rats. Macrophages (arrowheads) and Schwann cells (arrows) represent MHCII-reactive cells in the nerve,

exposed to the immunodominant MBP84-104 peptide. DAPI, blue. Representative micrographs of n= 4/group. Scale bars, 10 μm.
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segments) from the wild-type and nude rats were collected

for the further genome-wide transcriptional profiling. The

aim of these experiments was two-fold: (1) correlate the de-

cline in MBP84-104-induced allodynia with the decline in

T cell response via the unbiased screening; and (2) identify

T cell-independent changes induced by MBP84-104 that

might persist longer in the T cell-deficient tissues. The top

biological functions and pathways induced by the

intraneural MBP84-104 injection both in the nerve and the

cord were categorized as canonical inflammatory response,

immune cell trafficking, inflammatory disease and antigen

presentation pathways (Figure 7 and Table 3). In the nerve,

1 week after the MBP-84-10 injection the antigen presenta-

tion function was elevated approximately 10-fold

(Figure 7A), communication signaling between innate and

adaptive immune cells signaling was elevated five-fold

Figure 6 MBP-induced allodynia is T cell-dependent. (A) von Frey testing for mechanical allodynia in athymic nude (rnu−/−) and wild-type

heterozygous (rnu+/−) rats after the MBP84-104 injection (50 μg in 5 μL) into the naïve sciatic nerve. The mean withdrawal thresholds (gram force,

g) ± SEM of n= 6/group decline rapidly after the MBP84-104 injection into normal rats, corresponding to allodynia (arrow), but remain significantly

higher in nude rats (**, P< 0.01; *, P< 0.05). (B) Hargreaves testing for thermal sensitivity. The mean paw withdrawal latency ± SEM of n= 6/group

after thermal stimulation (radiant heat) before (baseline) and at the indicated days after the MBP84-104 injection were not different between the

groups. (C) Spontaneous pain scoring of the MBP84-104 injected paw positioning for 6 min (3 x 120 s) using a 0–5 numerical scale demonstrates

the absence of spontaneous pain-like behaviors in both rat types. The mean score ± SEM of n= 6/group.

Figure 7 Functional analysis of global gene expression in nerves and spinal cords after intraneural MBP84-104 injection. Ingenuity

pathway analysis of the gene expression used as the input list for generation of the top functional categories and canonical pathways (X-axis).

The bars represent -log10 (P value) for a function or a pathway to be represented with a threshold (dashed line) set at 1.3 (P <0.05) in n= 6/

group (right-tailed Fisher's exact test). Biological functions and canonical pathways are listed from most to least significant in the experimental

MBP-injected animals in the injected compared to control contralateral sciatic nerves (A, B) or in the dorsal horns of the corresponding lumbar

compared to control thoracic spinal cords (C, D) of the same animals. LXR, liver X receptor; RXR, retinoid X receptor; VDR, vitamin D receptor.
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(Figure 7B) and the T cell activation pathway was elevated

7.8-fold (Table 3), as compared to contralateral nerve in

the same animals. In lumbar dorsal horn spinal cord, the

intraneural MBP84-104 injection produced an over three-

fold increase in antigen presentation function (Figure 7C),

an about 1.8-fold increase in IL-17 signaling (Figure 7D)

and 2.6-fold increase in T cell activation pathway (Table 3)

relative to the thoracic segment in the same animals. The

signaling cascades representative of autoimmune demye-

lination were activated at the MBP84-104 nerve injection

site of the wild-type but not the nude rats (Figure 7B, Add-

itional file 3: Figure S1). In addition, MBP84-104 activates

calcium, liver X receptor (LXR), retinoid X receptor

(RXR), and vitamin D receptor (VDR) signaling in the

nerve and the corresponding spinal cord (Figure 7).

Discussion
Definite progress in elucidating the immunological

mechanisms of NP has been achieved in recent years

[17,57-60]. However, the molecular and cellular processes

that cause myelinated Aβ-afferents to enter nociceptive cir-

cuits after nerve damage remain poorly understood as yet

[1,61]. There is growing evidence for the direct relationship

between axonal demyelination and pain [2-4,6]. We have

implicated MMP proteolysis of myelin, specifically MBP, in

mechanical hypersensitivity [5]. Herein, we provide strong

evidence that the MMP-generated MBP digest peptides

comprising the potent immunogenic epitopes are released

during Wallerian degeneration. We also demonstrated that

these immunogenic MBP peptides initiate mechanical allo-

dynia in both T cell-dependent and -independent manners.

Multiphasic roles of MMPs in MBP/golli-MBP cleavage and

NP

MMPs are key degrading proteases of MBP. The peptides

generated because of MMP-9 proteolysis of various MBP/

Golli-MBP isoforms include MBP84-104, 69–86, as well as

other immunodominant regions [27,28,37,62,63]. At least

six distinct peptides in the 6–14.5 kDa range are formed as

a result of MMP-9 proteolysis of pure human 18.5 kDa

MBP in vitro. Accordingly, an 18.5 kDa and other MBP iso-

forms accumulated in the MMP-9-deficient nerves. Further,

more in-depth studies are required to assess the in vivo kin-

etics of MMP-9 proteolysis of multiple MBP/Golli-MBP se-

quence and post-translationally modified isoforms [23] over

the course of nerve injury. The ability of MMP-9 to affect

the MBP expression by regulation of Schwann cell signaling

[56] also needs to be taken into consideration.

MMP-9 co-localizes with the endogenous MBP69-86 in

the myelinating Schwann cell cytoplasm [5] and perinuclear

areas, and in the paranodal/nodal regions of myelinated

fibers. In addition, macrophages deposit MBP69-86 in the

nerve. Among the Golli-MBP splice forms produced by im-

mune cells, BG21 and J37 contain the cryptic epitope

sequences [21,64-66] that we have found to be released by

MMPs [27,37]. Because of the cleavage redundancy among

the MMP family, several MMPs are likely to proteolyze

MBP/Golli-MBP over the course of nerve injury. The dif-

ferential ability of MBP84-104, 68–86, and 2–18 peptides

to produce allodynia suggests that proteolysis of MBP influ-

ences susceptibility to NP.

In addition to protecting myelin from proteolysis, on-

going broad-spectrum MMP inhibition may prevent allody-

nia by protecting DRG neurons from apoptosis [5] and

suppressing the expression of certain voltage-gated sodium

channels [44], although the latter effect may also relate to

the myelin integrity [2,4]. MMP-2/9 also release the pro-

nociceptive cytokines (TNF-α and IL-1β) from their trans-

membrane precursors, promoting peripheral and spinal

glial activation and immune cell-mediated pain [33,34,58].

The nerves acutely treated immediately post-CCI with the

MMP-9/2 inhibitor, SB-3CT, sustain the low levels of the

TNF-α expression (produced by Schwann cells, macro-

phages, endothelial, Th1, and other cells) and the IL-17A

expression (produced by Th17 and other cells) [11,15,67].

Because MMP-9 and not MMP-2 is induced immediately

post-injury and has been implicated in the initiation of NP

[5,33], we attribute the effects of acute SB-3CT therapy

mainly to MMP-9 inhibition. Likewise, therapy with TIMP-

1 prevents NP by MMP-9 inhibition [33], as TIMP-1 binds

MMP-9 stoichiometrically and blocks access of its catalytic

site to substrates [29].

T cells in pain and pro-nociceptive action of MBP

T cell-deficient animals are less susceptible to NP

[9,11,12,14]. Progress has been made in identifying T cell

subset phenotypes involved in NP. For example, a decline

in hypersensitivity in CD4 null mice in the spinal nerve

ligation model was resumed with adoptive transfer of CD4

+ Th cells [12]. Specifically, transfer of Th1 cells (that pro-

duce pro-inflammatory cytokines) restores allodynia, as

Th2 cells (that produce anti-inflammatory cytokines)

Table 3 MBP84-104 activates inflammatory pathways in

nerve

Functions annotation Nerve, -log
(P value)

Spinal cord, -log
(P value)

WT Nude WT Nude

Immune response 20.2 - 4.32 -

Inflammatory response 15.8 - 2.79 1.42

Activation of T lymphocytes 7.8 - 2.64 -

Chemotaxis/aggregation of APCs 5.5 2.39 2.54 2.88

Chemotaxis of monocytes 4.2 2.61 1.86 2.36

Ingenuity pathway analysis of the genome 1 week after the MBP84-104 injection

into the intact sciatic nerve in the wild-type and nude rats. Up-regulated functions

as a result of inflammatory response in the injected nerve compared to the

contralateral sciatic nerve and in the lumbar compared to the thoracic spinal cord,

dorsal horn, are shown. Cutoff is set at P< 0.05 (−log10> 1.3). Minus indicates that

the Ingenuity software did not detect the presence of the pathway in the sample.
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sustain resistance to CCI-induced pain in nude rats,

strongly implicating Th1 but not Th2 cells in promoting

NP [9]. IL-17A, produced by a unique subset of Th17 cells,

is detected at week 1 post-CCI [11], and IL-17 deletion pro-

tects from the development of NP [15].

Activated T cells patrol the intact PNS during immuno-

surveillance irrespective of their antigen specificity [31].

They infiltrate the nerve at 1 week after a physical nerve

damage [9-11,43] via the coordinated action of chemokines,

cytokines, and MMPs that compromise the blood-nerve

barrier and trigger demyelination [31,68,69]. T cell infiltra-

tion into the spinal cord also contributes to the develop-

ment of peripheral NP [13,14,16]. It is plausible that

repeated exposure of MBP/Golli-MBP epitopes results in

the formation of MBP-specific T cell clones, which then in-

filtrate the corresponding central segments, where antigen-

presenting systems are in place [14,16,19]. It is interesting

to point out that the classic MBP and Golli-MBP differen-

tially regulate T cell signaling [70].

The ability of MBP84-104 to initiate allodynia is dimin-

ished in nude rats, indicating the presence of the T cell-

dependent mechanism of MBP action in neuropathic pain.

In agreement, our data clearly demonstrated that following

the MBP84-104 injection there was no increase in the in-

flammation and antigen presentation signaling in both the

nerve and the corresponding spinal cord in nude animals.

However, both the ability of MBP84-104 to initiate pain

shortly after the injection and residual hypersensitivity in

the nude rats imply that there is an additional, T cell-inde-

pendent component in the ability of MBP84-104 to pro-

mote pain. For example, MBP regulates intracellular

calcium flow [71,72], a key factor in pain facilitation [73]. It

appears that MBP84-104 (in a T cell-independent manner)

affects calcium flow in the wild-type and nude rats.

1Schwann cells in myelin clearance and antigen

presentation

MBP84-104 injection into the intact nerve induced MHCII

in the macrophages and Schwann cells. The endogenous

cryptic MBP69-86 epitope was detected in MHCII-reactive

myelinating Schwann cells within day 1 post-injury. This is

not surprising, since during the first few days post-injury,

Schwann cells are actively involved in the degradation and

removal of the myelin debris and in the presenting of mye-

lin antigens [69,74-78]. The deposits of the endogenous

MBP69-86 in CD68-reactive injured nerve may represent

phagocytosed myelin debris or the Golli species, expressed

by monocytes and other blood cells [26]. Overall, myelin

degradation and clearance in the damaged PNS appears to

consist of an early phase mediated by Schwann cells and

resident macrophages [31] and an antibody-dependent later

phase mediated by hematogenous macrophages [25,69].

Each phase of this event may have distinct function in the

NP state.

Neuro-immune interactions at A-fibers: mechanical vs.

thermal hypersensitivity

Accumulation of MBP69-86 and MHCII around the nodes

of Ranvier is intriguing. We speculate that MBP69-86 both

activates the pro-nociceptive changes in the calcium flow

[71,72] and facilitates the T cell homing at these action-gen-

erating sites on A-afferents. In agreement, MBP84-104

induced mechanical allodynia but not thermal hyperalgesia,

at least in the intact nerve environment, and T cell-deficient

IL-17 null mice develop resistance to mechanical allodynia

but not thermal hyperalgesia [15]. There is a growing appre-

ciation that differential mechanisms underlie these NP states,

as A-afferents mediate mechanical allodynia and heat-noci-

ceptive C-fibers mediate thermal hyperalgesia [79,80]. The

MBP degradation and T cell homing to the regions which

are immediately proximal to transection and in which ele-

vated MMP-9 levels and other features of Schwann cell acti-

vation manifest [44,56,81], may explain pain facilitation

despite the fiber loss at the lesion site. Finally, the present

study does not distinguish between the myelinated afferents

and efferents, supporting a model that demyelinating motor

efferents contribute to nociceptive pain [3].

Conclusions
The present data implicate proteolyzed MBP in pain. Over

the course of Wallerian degeneration, the repeated expos-

ure of the MBP epitopes normally sheltered from immuno-

surveillance may lead to the formation of the MBP-specific

T cell clones and a self-sustaining immune reaction both of

which contribute to the transition of ‘protective auto-

immunity’ and acute pain to a chronic NP state. Thus, pre-

venting proteolysis of MBP may prove as a viable

therapeutic strategy against neuropathic pain. It is tempting

now to hypothesize that our findings broadly relate to pain

associated with autoimmune demyelinating neuropathies

and neurodegenerative disorders where the formation of

cryptic MBP epitopes has also been documented [24,82].
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Additional file 1: Table S1. Unique proteins in CCI nerve listing, based

on the 2D-LC-MS/MS of the sciatic nerve proteome after CCI (day 7).

Additional file 2: Table S2. Unique proteins in normal nerve listing

based on the 2D-LC-MS/MS of the sciatic nerve proteome after sham

operation (day 7).

Additional file 3: Figure S1. Autoimmune demyelination signaling

in nerve after intraneural MBP84-104 injection. Ingenuity Pathway

Analysis of the gene expression used for generation the autoimmune

demyelination signaling cascades at week 1 after intraneural MBP84-104

injection in wild-type rats and nude rats. Up-regulated expression of

chemokine receptors and ligands are indicated in red. The intensity of

red color corresponds to fold-change of expression level of respective

genes. Activated T cells, producing CCR5 and CXCR3 (vertical rectangles)

and monocytes, producing CCR5 and CCR1 receptors, are recruited into

the intact nerve after MBP84-104 injection into the wild-type rats but not

nude rats. CXCL9, CXCL10, and CXCL11 are ligands for CXCR3. CCL5,

CCL3, and CCL4 are ligands for CCR5 and CCR1.
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