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Phagocytosis of dying cells is a major homeostatic process that represents the final stage of cell death in a tissue context. Under

basal conditions, in a diseased tissue (such as cancer) or after treatment with cytotoxic therapies (such as anticancer therapies),

phagocytosis has a major role in avoiding toxic accumulation of cellular corpses. Recognition and phagocytosis of dying cancer

cells dictate the eventual immunological consequences (i.e., tolerogenic, inflammatory or immunogenic) depending on a series of

factors, including the type of ‘eat me’ signals. Homeostatic clearance of dying cancer cells (i.e., tolerogenic phagocytosis) tends to

facilitate pro-tumorigenic processes and actively suppress antitumour immunity. Conversely, cancer cells killed by immunogenic

anticancer therapies may stimulate non-homeostatic clearance by antigen-presenting cells and drive cancer antigen-directed

immunity. On the other hand, (a general) inflammatory clearance of dying cancer cells could have pro-tumorigenic or

antitumorigenic consequences depending on the context. Interestingly, the immunosuppressive consequences that accompany

tolerogenic phagocytosis can be reversed through immune-checkpoint therapies. In the present review, we discuss the pivotal role

of phagocytosis in regulating responses to anticancer therapy. We give particular attention to the role of phagocytosis following

treatment with immunogenic or immune-checkpoint therapies, the clinical prognostic and predictive significance of phagocytic

signals for cancer patients and the therapeutic strategies that can be employed for direct targeting of phagocytic determinants.
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Facts

� Recognition and clearance of dying cells is affected by the

molecular nature, spatiotemporal frame and overall balance

of ‘eat me’ and ‘don't eat me’signals exposed on the surface

of dying cells.

� During carcinogenesis, both cell death and phagocytic clear-

ancemechanisms tend to become inefficient and cooperate to

expand premalignant clones that resist antitumour immunity.

� The mechanisms of cancer cell death elicited by anticancer

therapy and the type of phagocytes (e.g., tumour-resident

versus therapy-recruited) interacting with dying cells are

decisive factors in making a difference between anti-

inflammatory or pro-inflammatory responses.

� At the two extremes of a spectrum, tolerogenic phagocy-

tosis represents a tolerogenic ‘eat me’ signal-dependent

engulfment of dying cancer cells that leads to active

immunosuppression. On the other hand, immunogenic

phagocytosis is an immunogenic ‘eat me’ signal-dependent

engulfment of dying cancer cells that facilitates immuno-

stimulatory clearance of cancer cell corpses.

Open Questions

� It is unknown to what extent the mechanisms and/or

consequences of phagocytic removal tend to be cell death

pathway specific.

� It is unknown if specific ‘eat me’ signals govern the

intracellular processing route of the engulfed cargo and

thereby regulate the presentation of cancer antigens.

� The mechanisms and immunological consequences of

immune cell-mediated endocytosis of cellular fragments,

microparticles and/or exosomes released from dying cells

need urgent characterization in near future.

� It remains enigmatic whether immune cells showing

preimmunosuppressed state can mature or turn immunos-

timulatory upon immunogenic phagocytosis.

� For a large majority of FDA-approved anticancer therapies,

there is no clarity on specific ‘eat me’ signals or immuno-

logical consequences of phagocytosis – this needs further

characterization.

� In the future, it would be crucial to characterize

whether immune-checkpoint therapies stimulate antibody-
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dependent cellular phagocytosis with immunogenic

consequences.

� An important challenge is to develop methodologies to

detect active phagocytosis in clinical tumour samples and

ascertain its prognostic or predictive impact.

Clearance mechanisms of dying cells. Homeostatic tissue

turnover is facilitated by regulated cell death, mainly in the

form of apoptosis (a physiological form of cell death; Box 1)

that avoids leaking contents and stimulates rapid, immuno-

logically ‘silent’ phagocytic clearance.1–3 Failure to clear

apoptotic corpses causes release of their intracellular

components possibly evoking undesired inflammatory

responses (e.g., autoimmunity).3,4 Clearance of dying cells

is carried out by both professional phagocytes of the innate

immune system (i.e., macrophages (MФ), immature dendritic

cells (DCs), neutrophils) and non-professional phagocytes

(e.g., epithelial cells in the skin or intestine). However, the

professional phagocytes are better adapted at antigen cross-

presentation (especially DCs, which are the principle antigen-

presenting cells (APCs)).5–9

To ensure their efficient removal, physiologically dying cells

emit ‘find-me signals’ (e.g., fractalkine (CX3CL1)) to recruit anti-

inflammatory phagocytes,10 or release ‘keep-out’ signals

(e.g., lactoferrin), to avoid inflammatory cells.7,11,12 Along with

these soluble signals, clearance of dying cells is regulated by a

constellation of ‘eat me’ signals, a collective term for surface-

tethered proteins, phospholipids or protein complexes facilitat-

ing cellular engulfment by binding to phagocytic receptors on

immune cells (Figure 1).5,7,11,12 Viable cells avoid phagocytic

clearance through retained presentation of surface-associated

‘don't eat me’ signals.6,13 On the other hand, recognition and

clearance of dying cells is affected by the molecular nature,

spatiotemporal frame and overall balance of pro-phagocytic

and antiphagocytic determinants,14 for example, dying cells

tend to reduce ‘don't eat me’ signals while increasing the ‘eat

Box 1 Major cell death pathways and their immunobiological profiles

Apoptosis:2 Is a physiological cell death pathway that is executed in a programmed or regulated manner by caspases and

involves the degradation of DNA, cellular shrinkage and membrane blebbing. In vivo, apoptosis tends to avoid leakage of

cellular contents until the phagocytes can arrive. Physiological apoptosis tends to facilitate immunologically ‘silent’

phagocytic clearance resulting in induction of tolerogenicity or even active immunosuppression.9 This is the reason behind

physiological apoptosis being also termed as ‘tolerogenic cell death (TCD)’ to emphasize its immunobiological profile.9

Secondary necrosis:2,9 Is a terminal process experienced by late-apoptotic cells, if they fail to be cleared by phagocytes, and

is characterized by general cellular-content spill over.

Autophagic cell death:2,157 Is a form of regulated cell death driven by autophagic proteins. It is often, but not uniquely, induced

by overactivation of autophagy, which results in irreversible and lethal cellular self-digestion.

Necrosis:2 Is a form of cell death that occurs in an accidental (primary necrosis) or regulated (e.g., necroptosis, ferroptosis

and parthanatos) manner and is characterized by cellular swelling and subsequent breakdown of the plasma membrane.

Normally, necrosis is accompanied by inflammatory consequences; however, in certain contexts it may also exhibit a

TCD-like low or null immunogenic profile.

Regulated necrosis:2 Is a form of programmed cell death, controlled by a signalling cascade and terminally resulting in

necrotic cell demise. Depending on the signalling cascade leading to regulated or programmed necrosis, it can be further

defined as necroptosis, ferroptosis or parthanatos. Necroptosis31 is executed by the interplay of proteins such as receptor

interacting protein kinase-1/-3 (RIPK1/3), mixed lineage kinase like (MLKL), caspase-8 and FADD (among others), often

collectively constituting a ‘necrosome’. Parthanatos is regulated by the hyper-activation of poly(ADP-ribose) (PAR)

polymerase 1 (PARP1) that leads to cellular depletion of NAD+ and consequent ATP and nuclear translocation of AIF.

Ferroptosis is mediated by iron-dependent production of reactive oxygen species (ROS), glutathione depletion and

inactivation of GPx4, which is elicited by pharmacological inhibition of the Na+ independent antiporter system (xc� )

exchanging extracellular cysteine for intracellular glutamate.

Immunogenic cell death (ICD):1,19 Is induced by an assorted set of therapies capable of activating danger signalling

pathways within the cancer cells leading to spatiotemporally defined emission of damage-associated molecular patterns

(DAMPs).1,21 DAMPs are normal endogenous molecules that are ‘hidden’ by the cancer cells under normal conditions but

tend to get exposed or secreted/released in certain stressed or cell death conditions and bind their cognate receptors on the

immune cells. The ability of ICD to expose certain DAMPs, such as surface-calreticulin (CRT), secreted-ATP and released-

high mobility group box 1 (HMGB1) that act as danger signals, mediates its immunogenic potential.1,55 Beyond danger

signals, especially in the context of anthracycline-induced ICD, immunogenic potential can also be mediated by secretion of

type I interferon (IFN) response-related cytokines (e.g., IFN-α/β)158 and release of Annexin A1, which can help in recognition

of dead/dying cells through immune cell-associated formyl peptide receptor-1 (FPR1).47
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me’ signals on the surface.5,7,11,12 Excessive cell death events

can overwhelm the clearance capacity of phagocytes thereby

causing a persistence of late apoptotic or secondary necrotic

cells capable of disturbing tissue homeostasis.14 Such corpses

are cleared through mechanisms that have been partially

deciphered15 and involve a complex repertoire of receptors,

opsonins and cell-associated ligands.14 Finally, the relevance

and contribution of non-apoptotic cell death mechanisms,

including various forms of regulated necrosis such as necrop-

tosis (Box 1),16 in tissue homeostasis remains unclear.

Besides physiological events, phagocytosis also has a vital

role in the control of injured, infected or diseased cells, such

that inefficient phagocytosis may exacerbate disease.15 For

example, during carcinogenesis the inefficient phagocytosis

of dying cancer cells, resulting from the overwhelming

of the phagocytic system, may cause the persistence of

necrotic cells in tumours (a prominent negative prognostic

factor).3,5,17,18 In a therapy-context, cancer cell death can

occur through different mechanisms (as discussed later),

which in turn can decisively affect the mechanisms of

phagocytosis and its immunological consequences.5 How-

ever, both cell death and phagocytic clearance mechanisms

become inefficient in a tumour-context, thereby cooperating to

expand premalignant clones resisting antitumour immunity. In

this scenario, the main purpose of anticancer treatments

should not only be limited to inducing cancer cell death but

should also involve facilitating efficient phagocytosis-based

transfer of crucial tumour-associated antigens (TAAs; that

include both classical and neo-antigens).3,5,17,18 This would

allow processing and presentation of TAAs on the level of

effector innate immune cells such as DCs with proper

co-stimulation.3,19,20 Such activated immune cells can further

activate the effector adaptive immune cells (e.g., CD4+ T cells

polarized for type-I antitumour immune reactions, that is,

Figure 1 A schematic representation of major ‘eat me’ and ‘don't eat me’ signals regulating phagocytosis of dying cancer cells and the spectrum of subsequent immunological
responses. (a) The immunological consequences of phagocytosis of dying cancer cells can be viewed as a spectrum of responses ranging from immunogenic and inflammatory
to semi-tolerogenic and tolerogenic. Here immunogenic phagocytosis (induced by ICD inducers or the presence of ADCP plus TLR/TLR agonists) and tolerogenic phagocytosis
(induced by non-immunogenic therapies or in basal conditions) occupy the two diametrically opposite poles of this spectrum, and consist of the most resolved immunological
responses. On the other hand, inflammatory or semi-tolerogenic phagocytosis may result in context-specific immunological responses that are less resolved and thus more
complex to decipher or exploit. (b) Cancer cells dying under basal conditions or following treatment with non-immunogenic therapies undergo tolerogenic phagocytosis mediated
by interaction between tolerogenic ‘eat me’ signals (on dying cancer cells) and their respective cognate receptors (on phagocytes). This facilitates immunosuppression driven by
anti-inflammatory cytokines. On the other hand, cancer cells dying following treatment with immunomodulatory therapies or inducers of ICD undergo immunogenic phagocytosis
mediated by interaction between immunogenic ‘eat me’ signals and their respective cognate receptors. This facilitates immunostimulation driven by pro-inflammatory cytokines.
Cancer cell death is also usually accompanied by downregulation of ‘don't eat me’ signals, such as CD47. CD, cluster of differentiation; Gas6, growth arrest-specific 6; ICAM3,
intercellular adhesion molecule 3; LRP1, low-density lipoprotein receptor-related protein 1; TGF, transforming growth factor
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interferon (IFN)-γ-producing CD4+ T cells or Th1 cells, and

cytotoxic CD8+ T lymphocytes (CTLs)).1,20 Properly activated

T cells are capable of targeting and eliminating the (residual)

malignant cells based on TAAs presented to them.3,19,20

Thus the nature, intensity and context of phagocytosis in a

tumour are pivotally positioned at the interface between

cancer cell death and the immune system.3 In the present

review, we discuss this pivotal role of phagocytosis in

regulating responses to anticancer therapy, in particular,

immunogenic and immune-checkpoint therapies. We also

discuss the prognostic and predictive significance of ‘eat me’/

’don't eat me’ signals for cancer patients and the clinical

translation of therapies targeting these signals.

Impact of therapy-induced cancer cell death on phago-

cytosis. The mechanisms of cancer cell death elicited by

anticancer therapy and the type of phagocytes (e.g., tumour-

resident versus therapy-recruited) involved in their clearance,

are decisive factors between inducing anti-inflammatory

responses or TAA-directed immunity.21

In the past decades, compelling evidence has challenged

the original simplistic dichotomy that classified apoptosis as a

tolerogenic cell death (TCD) and necrosis as a pathological

cell death inherently pro-inflammatory/immunogenic (Box 1).

Indeed, certain forms of cancer cell apoptosis (termed

immunogenic cell death (ICD), Box 1)19 can be perceived as

‘non physiological’ by the immune system, which reacts by

engaging an efficient host immune defense.1 ICD triggered by

certain anticancer modalities inducing the combined occur-

rence of reactive oxygen species (ROS) and endoplasmic

reticulum (ER) stress19 is highly immunogenic owing to

emission of danger signals or damage-associated molecular

patterns (DAMPs) and other immunostimulatory molecules

(Box 1 lists the known DAMPs/immunomodulatory molecules

associated with ICD)21 and is able to elicit T-cell mediated

antitumour immunity.1 Based on the main immunological

profiles of cancer cell death (i.e., TCD and ICD), the

subsequent phagocytic contexts can also be mainly asso-

ciated with tolerogenic and immunogenic responses

(Figure 1). Here tolerogenic phagocytosis can be defined as

homeostatic engulfment of dying cancer cells that leads to

induction of tolerogenicity (also owing to anti-inflammatory

factors released by dying cells, Box 1) (Figure 1). Conversely,

immunogenic phagocytosis can be defined as a non-

homeostatic engulfment of dying cancer cells19 that causes

increased production of pro-inflammatory cytokines/chemo-

kines (also owing to further co-stimulation provided by danger

signals21 and/or Toll-like receptor (TLR) agonists released by

dying cells, Box 1), resulting in immunostimulatory clearance

of cancer cell corpses (Figure 1).1 It is also possible (albeit still

poorly characterized) that the immunological consequences of

phagocytosis are differentially modulated by the type of

phagocytes that are recruited by TCD (anti-inflammatory MФ

or neutrophils) or ICD (inflammatory monocytes or specific

DCs, for example, CD11c+CD11b+Ly6ChiDCs22 or CD8α+

DCs)1 and the (inflammatory) microenvironment where

clearance takes place.

However, it should be noted that tolerogenic phagocytosis

and immunogenic phagocytosis represent two extreme polar-

ends of the clearance mechanism. In reality, phagocytosis of

dying cancer cells can give rise to a spectrum of inflammatory

responses, which may be associated with ambiguous

immunological reactions23,24 that can facilitate pro- or

antitumorigenic responses in a context-dependent manner

(Figure 1).25,26 Such responses tend to be quite distinct from

pure tolerogenic or immunogenic responses on the levels of

cytokines, chemokines, DAMPs and balance or misbalance

between ‘eat me’ or ‘don't eat me’ signals23–26 (as detailed

more exhaustively elsewhere27–29). For the sake of clarity and

focussed discussion, in this review wewill only elaborate upon

the two extreme polar-ends of this continuum (i.e., tolerogenic

and immunogenic phagocytosis; Figure 1).

Anticancer therapies evoke various cancer cell death

mechanisms, which may even coexist. The biological or

therapeutic contexts where apoptosis or necrosis can evoke

tolerogenicity or immunogenicity have been described.30

However, similar knowledge is seldom available for other cell

death pathways2 such as necroptosis, autophagic cell death,

mitotic catastrophe, parthanatos and ferroptosis (Box 1) – a

gap in knowledge that requires urgent attention. For instance,

necroptosis31 and autophagic cell death32 offer a therapeutic

alternative to kill apoptosis-resistant cancer cells,33 but

recognition and clearance of necroptotic/autophagic cells by

phagocytes is not completely understood. It is presumable that

the uptake of necroptotic cells involves similar inflammatory

mechanisms as applicable to necrosis owing to a resemblance

in their terminal morphologies.14,16,34 However, it is also

possible that kinase-driven signalling events during necropto-

sis modify cellular components, generating a different

immunobiology, for example, immunosuppression.35 How-

ever, recent evidence suggests that heightened autophagy in

cancer cells can suppress the emergence of immunogenic

‘eat me’ signals, such as surface-calreticulin (ecto-CRT).36–38

In another context, autophagic dying cells have been found to

undergo (phosphatidylserine (PtdSer)-based)8 phagocytosis

associated with inflammatory response.39 Thus in the future it

would be crucial to identify the molecular determinants driving

the recognition and phagocytic removal of cancer cells dying

through these non-apoptotic pathways.

Tolerogenic ‘eat me’ signals: from PtdSer to DD1α.

Tolerogenic ‘eat me’ signals are predominantly exposed not

only by cells dying through TCD or physiological apoptosis

but also sometimes by necrotic cells40 (Box 1, Figure 1).29

Differential phagocytosis of disintegrated cells is still a matter

of debate although recently F-actin was documented as an

engulfment signal for (primary or secondary) necrotic cells,

binding Clec9a on CD8α+ DCs.41

The best known of the tolerogenic ‘eat me’ signals is

externalized PtdSer (Figure 1).8,15,40 PtdSer is a phospholipid

that normally faces the inner lumen of the bilayered plasma

membrane in living cells. However, during the early apoptotic

phases it becomes externalized on the outer leaflet of the

plasma membrane owing to the coordinated activity of

caspases and scramblases (and inactivation of flip-

pases).29,42,43 PtdSer binds a large number of immune

receptors in a phagocyte-type- and context-specific manner

(please refer to other reviews for further insight29). The pro-

phagocytic task of PtdSer is further assisted by the presence

of phagocytosis-augmenting bridging molecules, for example,
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Milk-fat globule-EGF factor VIII (MFG-E8) and Gas6

(Figure 1). Such bridging molecules can also support

pro-tumorigenic immune reactions. For example, MFG-E8

promotes tumour progression/invasion by favouring tolero-

genic phagocytosis-mediated recruitment of immunosuppres-

sive T regulatory cells (Tregs), which are major inhibitors of

antitumour immunity.44

Beyond PtdSer, some other surfacemembrane moieties act

as tolerogenic ‘eat me’ signals in a context-dependent manner

(although the exact compositional balance of these with

PtdSer is still debatable). These include externalized

cardiolipin,45 oxidized low-density lipoproteins, annexin-A1,

thrombospondin, complement C1q and changes in membrane

glycosylation status or charges (Figure 1).6,15,46 Interestingly,

in the context of chemotherapy-induced ICD, secretion of

annexin-A1 by dying cancer cells followed by its binding to the

formyl peptide receptor 1 on DCs, was found to facilitate

recruitment of tumour-infiltrating DCs in close vicinity to the

dying cancer cells and the formation of dead corpse/DC

conjugates, resulting in immunogenic phagocytosis.47 This

finding further reinforces the concept that the inflammatory

context and array of spatiotemporally exposed/secreted

factors by the dying cancer cells govern the ultimate

immunological responses.48

Themost recentmolecule to join the ‘club’ of tolerogenic ‘eat

me’ signals is a p53 target, namely, immunoglobulin super-

family receptor death domain 1α (DD1α) (Figure 1).49Of all the

known ‘eat me’ signals, DD1α exhibits the most unique and

complex immunoregulatory mechanism. On one hand, the

(homophilic) DD1α–DD1α interactions between apoptotic

cells and phagocytes help in the uptake of the apoptotic cells.

On the other hand, these interactions also inhibit the

proliferation of CD4+/CD8+ T cells.49 Moreover, the

p53-induced expression of DD1α facilitates apoptotic (cancer)

cells’ phagocytosis in a PtdSer-independent manner.49 This

establishes DD1α as a major immune checkpoint.

Immunogenic ‘eat me’ signals: the role of surface-

exposed CRT and heat shock protein 90 (HSP90). Immu-

nogenic phagocytosis is mediated by a limited number of

known ‘eat me’ signals, namely ecto-CRT50 and surface-

HSP90 or ecto-HSP90 (Figure 1), which facilitate antitumour

immunity.20,51,52 The co-existence of an array of such

surface-exposed signals is predominantly elicited by cells

dying through ICD (Box 1).3,53–55 However, in some contexts,

specific chemotherapeutics (e.g., melphalan)56 or targeted

therapies (e.g., BRAFV600E inhibitor, vemurafenib)57 that are

not bona fide ICD inducers can evoke a partial and specific

subset of these ICD-associated ‘eat me’ signals/DAMPs and

thereby mediate phagocytic clearance with partial immuno-

genic properties. A very complex interplay between ER stress

(centred on the ER stress sensor, protein kinase RNA-like ER

kinase (PERK))58 and ROS helps in trafficking of ecto-CRT

through the conventional secretory pathway.1,59,60 This core

trafficking mechanism displays some degree of plasticity3

and has been found to be also regulated by some pro-

apoptotic proteins (BAX/BAK/caspase-8), cytosolic Ca2+ or

the unfolded protein response signalling proteins (ERp57/

eIF2α), depending on the ICD inducer utilized.1,59–61 For

more on danger signalling pathways, please refer to other

recent reviews.1,3,19,54,62 On the surface of cancer cells, ecto-

CRT tends to dock on either lipid rafts and/or LRP1,50,59

whereas ecto-HSP90 binds prevalently to LRP1 (Figure 1).63

Interaction of these ‘eat me’ signals with some phagocytic

receptors on immune cells (e.g., LRP1) aids in removal of

cancer cells undergoing ICD (Figure 1, Box 1).38,52,64 Ecto-

CRT elicits the production of pro-inflammatory cytokines,

such as interleukin (IL)-6 and tumour necrosis factor-α

(TNF-α) from DCs, thereby facilitating Th1 and/or Th17

polarization.65,36 Moreover, overall expression of CRT mRNA

(CALR) in tumour tissue samples (derived from ovarian or

lung cancer patients treated with paclitaxel or radiotherapy,

respectively) linearly correlates with the levels of genes

coding for phagocytosis-related proteins (involved in phago-

some maturation or degradation).52 In fact, dying cancer cells

naturally incapable of presenting ecto-CRT (owing to an

intrinsic resistance mechanism) fail to mediate an anticancer

vaccination effect.52 Similarly, HSP90–CD91 binding on

immune cells facilitates DC maturation and Th1/17

priming.65 In some contexts, ecto-HSP90 and ecto-CRT are

interchangeable in mediating immunogenicity;66 while in

other cases, ecto-CRT is the superior immunogenic

signal.56 In fact, an in silico analysis suggests that CRT

(but not HSP90) possesses close homologues of crucial

phagocytosis-assisting motifs.61 Also, ecto-CRT may corre-

late better with a phagocytosis increase than ecto-HSP90 in

the context of anthracycline-induced ICD.67

Surface CD47: a ubiquitous ‘don't eat me’ signal? A

number of ‘don't eat me’ signals have been characterized that

act in a context-dependent manner (with the context being

type of tissue, type of cells or type of phagocytes).13,29

However, evidence over time has characterized CD47 as a

rather ubiquitous ‘don't eat me’ signal (Figure 1). The binding

of CD47 to the immune-receptor signal regulatory proteins α

(SIRPα) on phagocytes, inhibits the phagocytosis of CD47-

proficient cells.13 Thus, not surprisingly, CD47-deficient cells

are critically sensitive to phagocytic clearance.68–71 Concern-

ing cell death, there are two prevailing models that explain

CD47’s antiphagocytic functions. The most widely accepted

model entails downregulation of CD47 paralleled by upregu-

lation of ‘eat me’ signals (Figure 1).50 The second model

entails spatial repositioning of CD47 away from ‘eat me’

signals.50,71 CD47 is abundantly overexpressed on cancer

cells (especially on cancer stem cells) belonging to various

cancer types,72 representing a potent strategy for immune

evasion. Moreover, CD47–SIRPα interaction and subsequent

SIRPα signalling restricts the efficacy of cancer therapeutic

antibodies.73 Beyond SIRPα, CD47 can also interact with

some integrins or thrombospondins to modulate IgG

antibody-mediated phagocytosis and other inflammatory

responses.74–76 On the level of cancer cells, a HIF1α target

protein BNIP3 has been found to regulate CD47 expression

levels;77 however, further clarity on CD47-regulating signal-

ling pathway is urgently needed, as it is not entirely known

how cancer cell death links with CD47 downregulation or re-

localization. Nevertheless, CD47 forms a formidable barrier

against cancer cell clearance and thus represents an

interesting therapeutic target.
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Antibody-dependent cellular phagocytosis: bypassing

the ‘eat me’/‘don't eat me’ signals’ interplay? Phagocytes

possess Fcγ receptors (FcγRs) through which they interact

with the Fc regions of antibodies to further exert antigen-

specific effector functions.78 Interestingly, FcγRs can also

mediate antibody-dependent cellular phagocytosis (ADCP)

that bypasses the need for canonical phagocytic determi-

nants. More specifically, predominantly type I FcγRs on

macrophages or DCs can help in phagocytosis of targets

bound to antibodies or antibody complexes (mainly IgG

antibodies).78 Such IgG-bound target cells can be efficiently

processed and the resulting TAAs can be used for

cross-presentation by APCs, thereby enhancing cancer

antigen-directed CD4+/CD8+ T-cell responses.78 Importantly,

while ADCP proceeds through interactions with type I FcγRs

alone, the subsequent immunogenic consequences of such

uptake are more tightly governed. In particular (especially in

DCs), the activating effects of type I FcγRs are balanced by

the inhibitory FcγRIIb receptors,78 which are overcome only if

phagocytosis of target cells happens in the presence of

additional co-stimulatory signals (e.g., TLR ligands).78 This

latter point shows that ADCP might have immunogenic

consequences only if the cancer cells die through ICD or

necrosis, cell death routines known to release danger signals,

including TLR agonists.

Tolerogenic and immunogenic consequences of phago-

cytic clearance. Besides the nature or balance of the ‘eat

me’ signals, the differentiation state of phagocytes can also

be a critical factor in defining immunological consequences.

In general, tolerogenic ‘eat me’ signals interacting with

immature APCs and/or APCs exhibiting immunosuppressive

phenotypes (e.g., M2 MФ, N2 neutrophils, myeloid-derived

suppressor cells or MDSCs)79 might favour tolerogenic

phagocytosis (Figure 1).20,25 Instead, immunogenic ‘eat me’

signals interacting with immature APCs might favour

immunogenic phagocytosis (Figure 1).20,25 It is unclear

whether APCs showing a preimmunosuppressed state

(e.g., M2 MФ, MDSCs) can mature upon immunogenic

phagocytosis; however, based on available literature this is

plausible.80 Of note, ‘eat me’ signals alone are not exclusive

immunological determinants as their exposure is invariably

accompanied by the emission of other signals (e.g., DAMPs

or immunosuppressive cytokines/chemokines).3,19,53 Thus,

APC’s commitment to tolerogenicity or immunogenicity is

regulated by a complex program integrating a variety of

signals (Figure 1).

APCs performing phagocytosis (and ADCP) eventually

prime the T cells for respective TAAs81 (owing to innate

programming of APCs, which constantly process and present

any captured antigens to the T cells).82,83However, APCs that

carry out tolerogenic phagocytosis fail to reach functional

maturation and thus present TAAs to CD4+ T cells in the

absence of proper co-stimulatory signals (e.g., surface CD80/

CD86/CD40/CD83) but possibly in the presence of immuno-

suppressive cytokines (IL-10/TGF-β), ultimately facilitating the

formation of immunosuppressive Tregs (overexpressing

immune-inhibitory CTLA-4/PD-1).9,25,84–86 Treg cells not only

fail to attack the cancer cells, as their immunosuppressive

phenotype categorizes them as ‘safe’/‘self’,9,86,87 but also

actively secrete pro-tumorigenic cytokines (e.g., IL-6/TNF)

and directly eliminate CTLs (through FasL or TRAIL expres-

sion).9,85,86 Also, APCs that have carried out tolerogenic

phagocytosis facilitate cancer progression by disrupting the

cross-talk between CD4+ T cells and CTLs. More specifically,

tolerogenic APCs present TAAs only to CTLs but not to CD4+

T cells, thereby causing sub-optimal CTL activation.9

Eventually, if re-exposed to TAAs, such CTLs may orchestrate

a deranged cytotoxic response that also targets the CD4+

T cells (through TRAIL), thereby facilitating tolerance in the

long run.9Beyond TAA presentation, tolerogenic phagocytosis

actively suppresses the secretion of pro-inflammatory

Figure 2 Therapeutic exploitation of phagocytosis of dying cancer cells for T-cell-
mediated cancer cell elimination. Treatment with antibody-based anticancer therapies
induces FcγR-mediated, ADCP of cancer cells that facilitates antitumour immunity in
the presence of co-stimulatory signals such as TLR agonists. Similarly, treatment with
ICD-inducing anticancer therapies induces immunogenic phagocytosis driven by
immunogenic ‘eat me’ signals or immunogenic DAMPs, components that eventually
facilitate antitumour immunity. On the other hand, under basal conditions or after
treatment with non-immunogenic anticancer therapies, dying cancer cells undergo
tolerogenic phagocytosis that tends to inhibit antitumour immunity by facilitating
immunosuppression. Despite these distinct mechanisms and immunological
consequences, all three scenarios result in the transfer of cancer antigens (‘classical’
or mutational neo-antigens) from dying cancer cells to the phagocytes. The
immunosuppression propagated by tolerogenic phagocytosis can be reversed by
treatment with ICT. Antitumour immunity resulting from these treatment scenarios is
expected to culminate into cancer cell-eliminating activity exerted by CTLs through
IFN-γ (exerts cytostatic effects and polarizes immune cells towards type I-immune
reactions), FasL–CD95 interactions (exerts extrinsic apoptosis) or granzyme-
perforins secretion (exerts direct cytotoxicity through perforin-driven membrane-pore
formation followed by granzyme-induced cell death)
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cytokines and causes an exaggerated polarization of MФ into

a pro-tumorigenic phenotype (owing to the production of pro-

tumorigenic cytokines TGF-β and IL-10)88, while promoting

the production of anti-inflammatory factors.5,7,11,12,88

Instead, APCs that carry out immunogenic phagocytosis

present TAAs to CD4+ T cells in the presence of heightened

levels of co-stimulatory molecules and increased levels of pro-

inflammatory cytokines (e.g., IL-6/IL-12/IL-1β) (Figure 1).25,52,55

This, in concert, facilitates the differentiation of Th1 cells that

orchestrate a type-I immunity-based anticancer programme

(consisting of IFN-γ-driven cancer-directed cytostatic effects and

suppression of Treg differentiation).19,36,89,90 Simultaneously,

these immunogenic APCs allow a productive cross-talk between

Th1 cells and CTLs and thereby facilitating CTL-elicited

malignant cell elimination (mediated through IFN-γ, FasL–

CD95 interaction and perforin-granzyme action) (Figure 2).19,90

Phagocytic clearance by anticancer therapies. Clinical

anticancer therapies that either augment immunogenic poten-

tial of cancer cells (e.g., through ICD) or facilitate ADCP in the

presence of co-stimulatory ligands are most likely to encourage

immunogenic phagocytosis and thus warrant urgent identifica-

tion (Figure 2). However, clinical therapies that encourage TCD,

although less preferable, also need to be identified in order to

design smart combinatorial strategies (Figure 2).

To gain a wider view on this important point, we carried out a

survey of PubMed publications to ascertain what was known

about the immunological consequences of phagocytosis

associated with various anticancer therapies (including

several FDA-approved ones) (Table 1). To our dismay, only a

handful of FDA-approved drugs had some clarity on specific

‘eat me’ signals or immunological consequences of phagocy-

tosis (Table 1). Among these, some agents, such as tamoxifen,

sorafenib, bevacizumab, vinblastine and vincristine, exhibited

the unfavourable activity of directly inhibiting phagocytic

activity of APCs, while others tended to divide between three

phagocytic profiles, that is, tolerogenic or immunogenic

phagocytosis and ADCP (Table 1).

Harnessing immunogenic phagocytosis via immunogenic

anticancer therapies: A number of major anticancer thera-

pies can induce ICD associated with immunogenic

phagocytosis-driven anticancer immunity.1 Known ICD indu-

cers, as Table 1 details, include some chemotherapeutics,

photodynamic therapy (PDT), radiotherapy, some oncolytic

viruses and some physical therapies (Figure 2).1 The

immunogenic ‘eat me’ signal mostly characterized for these

ICD inducers and confirmed through blockade or intervention

strategies (at least for anthracyclines, oxaliplatin, bortezomib,

hypericin-PDT, radiotherapy; Table 1) is ecto-CRT. Of note,

while many of these anticancer therapies induce apoptotic

ICD, it has also emerged that ICD can be necroptotic if

induced by the oncolytic Newcastle disease virus.91 It will be

important to discover more ICD inducers capable of eliciting a

high diversity of immunogenic ‘eat me’ signals.

Encouraging immunogenic phagocytosis via antibody-

based immunotherapies. Various anticancer therapeutic

antibodies induce ADCP (Table 1), such as rituximab (anti-

CD20 antibody), trastuzumab (anti-HER2 antibody) and

cetuximab (anti-EGFR antibody). Rituximab and trastuzumabT
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can induce FcγR-mediated anticancer immunity possibly

through immunogenic phagocytosis.92 Some clinical obser-

vations suggest a correlation between FcγRIIIa (CD16) or

FcγRIIa (CD32) polymorphisms and a response to rituximab,

trastuzumab and cetuximab.93 Moreover, few of these

therapies can liberate co-stimulatory signals from cancer

cells (required to make ADCP immunogenic), for example,

rituximab causing release of the TLR agonist, HMGB1.94,95

Overall, these results show that besides their targeted

activities, ADCP can help antibody-based therapies to

achieve the desirable ‘off-target’ induction of antitumour

immunity (Figure 2).93 This raises similar precedence for

other immunotherapies targeted towards the cancer cells,

that is, anti-PD-L1 antibodies. This is further supported by

recent observations of FcγRs modulating the activity of the

PD-1/PD-L1 axis.96 In the future, it would be crucial to

characterize better the ADCP-associated immunogenic con-

sequences of these antibody-based therapies.

Tolerogenic phagocytosis: foundation for eventual

responses to immune-checkpoint therapy (ICT)? As

TAAs are ultimately transferred from cancer cells to the

APCs during tolerogenic phagocytosis, does this TAA

transfer matter? If so, can the immunosuppressive conse-

quences be reversed? Recent evidence emerging from the

ICTs51 suggests that such immunosuppressive conse-

quences can still be reversed (Figure 2). ICTs are therapeutic

agents that target regulatory pathways in T cells (e.g.,

CTLA-4 or PD-1) to enhance antitumour immunity.97–99 ICTs,

however, do not induce a de novo immune reaction,97–99

since they simply block the immunosuppressive molecules on

preexisting T cells already primed for TAAs.97–99 It is

presumable that most of this initial TAA priming of T cells

occurred through APCs performing tolerogenic phagocytosis

in the tumour microenvironment (Figure 2).97–99 In the future,

it would be crucial to find new targets for ICTs that are

exploited by tolerogenic phagocytosis.98,99 Moreover, con-

sidering that currently many clinically applied anticancer

therapies tend to induce TCD, and thereby facilitate

tolerogenic phagocytosis (Table 1),30 it would be crucial to

combine these with ICTs (Figure 2).100

Clinical applications of pro-phagocytic and antiphagocy-

tic determinants. Beyond therapeutic induction of immuno-

genic phagocytosis/ADCP or reversing the consequences of

tolerogenic phagocytosis through ICTs, phagocytic clearance

of cancer cells can be more directly exploited for clinical

benefits (Figure 3). In the following subsections, these direct

applications of pro-phagocytic and antiphagocytic determi-

nants are discussed in further details (Figure 3).

‘Eat me’ or ‘don't eat me’ signals as prognostic or

predictive biomarkers in cancer. Prognostic and predictive

biomarkers, especially those that can be detected in human

tumour samples, are valuable for patient management and

clinical decision-making (Figure 3a).101–104 It is technically

challenging to detect surface localization of phagocytic

determinants in tumour tissue samples90 – a hurdle that

has hampered research in this direction. This is particularly

important as elevated surface presence of immunogenic ‘eat-

me’ signals, such as CRT, should be distinguished from their

overall intracellular expression, which is often elevated as a

result of stress adaptation and leads to increased cancer cell

resistance.105 However, in the right context, the overall

expression of the respective molecules can be utilized for

patient prognostic analysis or to predict therapy response.90

Figure 3 Clinical exploitation of phagocytic determinants for therapeutic targeting or biomarker-driven patient treatment/management. (a) Phagocytosis determinants (i.e.,
‘eat me’ signal such as calreticulin (CALR) or ‘don't eat me’ signal such as CD47) can be used as prognostic or predictive biomarkers for stratification or segregation of cancer
patients into different risk groups allowing further decision-making regarding specific treatment options. For instance, overall tumour-associated expression levels of CD47 and
CALR can be used in synchrony to segregate patients in different treatment groups who would eventually receive different treatments or combinations thereof involving ICD
inducers, ICTs and/or anti-CD47 therapy. (b) Phagocytic determinants can also be more directly exploited to therapeutic ends, for example, by targeting through antibodies
(against CD47, MFG-E8 or PtdSer) and/or by exogenously providing recombinant versions (e.g., recombinant calreticulin or rCRT), as applicable. CD, cluster of differentiation
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Table 2 summarizes the prognostic or predictive impact of

major phagocytic determinants, among which CRT/CALR

and CD47 are the most studied (Table 2). High expression of

CD47 is a definitive negative prognostic factor across various

cancer types (Table 2),106 whereas the overall picture is much

more complex for ecto-CRT/CALR.106 Increased ecto-CRT or

high CALR levels predict positive responses to immunogenic

anticancer therapies, such as anthracyclines, radiotherapy,

paclitaxel and DC vaccines (Table 2).106 However, as a

prognostic factor the utility of CALR is limited to only a few

cancer types.90 This discrepancy could be because of

differences in phagocytic context. In a prognostic biomarker

set-up, no differentiation is made between treated or

untreated patients, thereby meaning that tumour tissues with

both tolerogenic and immunogenic phagocytosis might be

tested for CALR levels, thereby confounding the ultimate

prognostic impact. On the other hand, in a predictive

biomarker set-up, a clear distinction is made between treated

and untreated patients.106 This would explain why in contexts

of immunogenic anticancer therapies (where immunogenic

phagocytosis is likely) high CALR/ecto-CRT levels are

positive predictive factors.52 Indeed, in this context,

CALR levels tend to positively correlate with levels of

phagocytosis-related genes.52 We propose that CD47 and

Table 2 Summarization of prognostic or predictive effects of ‘eat me’ or ‘don't eat me’ signals in human cancer patients

Parameter Cancer Treatment No. of
patients

Prognostic or predictive impact Ref.

Phosphatidylserine
(PtdSer)

Ovarian
carcinoma

— 76 Increased PtdSer expression is associated with
higher tumour grade and poor overall survival

144

Calreticulin
(CRTor CALR)

Acute myeloid
leukemia

Anthracyclines 20 Ecto-CRT on blasts correlated with improved
relapse-free survival

145

Bladder
carcinoma

Surgery 195 High CALR correlated with poor disease outcome 13

Breast
carcinoma

Surgery 23 High CALR correlated with poor metastasis-free
survival

146

Breast
carcinoma

Surgery alone or combined with
chemotherapy

1115 High CALR correlated with marginally improved
overall survival

90

Colorectal
carcinoma

Surgery+chemotherapy 68 High CALR correlated with improved five-year
survival

147

Gastric
carcinoma

Gastrectomy and lymphadenectomy 79 High CALR correlated with poor disease outcome 148

Lung
carcinoma

Radiotherapy 23 High CALR correlated with prolonged overall
survival

52

Lung
carcinoma

— 58 High CALR correlated with tumour grade and
malignancy

149

Lung
carcinoma

Surgery alone or combined with
chemotherapy/chemo-radiotherapy

1432 High CALR correlated with poor overall survival 90

Mantle cell
lymphoma

Surgery 163 High CALR correlated with poor disease outcome 13

Neuroblastoma Surgery alone or combined with
chemotherapy

729 High CALR correlated with poor disease outcome 13

Neuroblastoma Surgery alone or combined with
chemotherapy

68 High CALR correlated with good disease outcome 150

Non-Hodgkin’s
lymphoma

Autologous cancer cell-based
vaccine

18 Ecto-CRT associated with positive clinical
responses

66

Ovarian
carcinoma

Paclitaxel 220 High CALR correlated with prolonged disease-free
survival and overall survival

52

Ovarian
carcinoma

Surgery alone or combined with
chemotherapy

1436 HighCALR correlatedwith improved overall survival 90

CD47 Acute myeloid
leukemia

— 137 High CD47 correlated with poor overall survival 72

Breast
carcinoma

Surgery alone or combined with
chemotherapy

255 High CD47 correlated with poor overall survival 151

Breast
carcinoma

— 738 High CD47 in bone marrow or peripheral blood
associated with poor disease-free survival

152

Esophageal
carcinoma

Surgery 102 High CD47 correlated with poor overall survival 153

Gastric cancer Surgery 115 High CD47 was an adverse prognostic factor 154

Ovarian
carcinoma

Surgery 86 Low CD47 correlated with good disease outcome 155

HSP90
(or HSP90AA1)

Breast
carcinoma

Surgery alone or combined with
chemotherapy

1115 High HSP90AA1 correlated with poor overall
survival

90

Colorectal
carcinoma

— 182 High serum levels of HSP90 correlated with
oncogenesis

156

Lung
carcinoma

Surgery alone or combined with
chemotherapy

1432 High HSP90AA1 correlated with improved overall
survival

90

Non-Hodgkin’s
lymphoma

Autologous cancer cell-based
vaccine

18 Ecto-HSP90 associated with positive clinical
responses

66

Abbreviations: CD, cluster of differentiation; Ecto-, surface exposed; HSP, heat shock protein.
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CALR could be used in synchrony for efficient stratification of

high- or low-risk cancer patients and for further decision-

making regarding the choice of anticancer therapy to be

given, as depicted in Figure 3a.106

It is clear that very few phagocytic determinants have been

tested so far as prognostic or predictive biomarkers and more

studies are needed to reach further clarity. Another challenge

would be to detect active phagocytosis in human tumour

tissue and directly detect its prognostic or predictive impact.

Combinatorial therapy with recombinant immunogenic

‘eat me’ signals in cancer. Chemotherapeutic ICD inducers

cannot be integrated in clinical cell-based vaccination

protocols owing to their residual amounts being capable of

exerting side effects or toxicity.107 This is one of the primary

reasons why clinical anticancer vaccines (whole-tumour-cell

or DC vaccines) utilize physicochemical cancer cell

death inducers.108 However, while some physicochemical

strategies can induce ICD (e.g., radiotherapy, PDT) yet

certain others cannot (e.g., freeze/thawing-based necro-

sis).1,52,59,109 In the latter cases, exogenous addition of

recombinant immunogenic ‘eat me’ signals (such as recom-

binant CRT)52,56,64,110,111 can complement immunogenic

phagocytosis (Figure 3b). In line with this, several studies

have used recombinant CRT to augment the immuno-

genicity of otherwise low immunogenic cancer vaccines

(Figure 3b),52,56,64,110,111 or to promote the immunogenic

potential of cancer cells treated with loco-regionally applied

chemotherapeutics, such as melphalan.56 Melphalan is a

genotoxic drug used often for treatment of limb-confined

melanoma through an isolated-limb perfusion/infusion

(ILP/ILI) procedure, which involves shunting the limb circula-

tion in order to allow high-concentration melphalan treatment

for a limited time followed by its withdrawal from

circulation.112,113 This raises a further prospect of adminis-

tering the cancer patients with melphalan plus recombinant

CRT in an ILP/ILI set-up. This is an exciting prospect that

could be safer than systemic treatment (which has

autoimmunity-related concerns).7

Combinatorial therapy involving blockade of ‘don’t eat

me’ or tolerogenic signals in cancer. Direct blockade of a

‘don’t eat me’ signal (CD47) or a tolerogenic ‘eat-me’ signal

(PtdSer)114 are interesting strategies to combine with antic-

ancer therapies/ICTs (Figure 3b). Anti-CD47 antibodies

can achieve durable tumour regression in preclinical

settings.13,46,72 Interestingly, anti-CD47 blockers can syner-

gize with rituximab/trastuzumab in increasing cancer cell

clearance and preclinical tumour regression.46 Moreover,

while initially anti-CD47 therapy was presumed to mainly

involve macrophages, recently it was reported to also activate

DC-based priming of antitumour T cells.115 All these promising

preclinical results have paved the way for multiple clinical trials

with anti-CD47 monoclonal antibodies (Figure 3b), whose

results are eagerly awaited (NCT02216409, NCT02367196,

NCT02447354, NCT02488811).116 PtdSer can also be a

negative prognostic factor (Table 2) and thus an attractive

therapy target (Figure 3b).43 In fact, an anti-PtdSer therapeutic

antibody, that is, bavituximab has yielded positive results

(improved progression-free and overall survival) in a Phase II

trial involving lung carcinoma/NSCLC patients.98 Based on

these encouraging results and FDA approval, a Phase III trial

of bavituximab as a second-line therapy is currently underway

for lung carcinoma.98 Preclinical studies have recently also

shown that anti-PtdSer can synergize with ICTs to exert

antitumour effects.98 Last but not least, pro-phagocytic-

bridging molecules can also be therapeutically targeted

(Figure 3b). For instance, systemic MFG-E8 blockade

increases the effectiveness of conventional chemo-

radiotherapy and anticancer vaccines by augmenting apopto-

sis and potentiating DC-driven immunity.117

Conclusions. The process of phagocytosis was discovered

more than a century ago, much before the finer details of cell

death regulation and mechanisms came to be described.

Despite this, phagocytosis and cell death research have not

progressed in synchrony and it is only in the past decade that

finer details of cell death pathway-specific phagocytic

mechanisms have emerged. Most researchers recognize

that the currently known ‘eat me’ and ‘don’t eat me’ signals

are only a fraction of what might exist; however, discovery of

new phagocytic determinants has been slow. This has also

further affected research on immunological consequences of

phagocytosis. Although the differentiation between tolero-

genic and immunogenic phagocytosis is now starting to

emerge, much remains to be resolved. Very few immuno-

genic ‘eat me’ signals have been discovered. During ICD,

while both immunogenic and tolerogenic ‘eat me’ signals co-

exist, it still remains unclear how the immunogenic ones

ultimately supersede the effects of the tolerogenic ones. Last

but not least, not enough FDA-approved therapies have been

associated with relevant ‘eat me’ signals, thereby hampering

knowledge on the immunogenic or tolerogenic consequences

of such therapies. With the clinical success of cancer

immunotherapy, it is imperative that more research is carried

out on dying cancer cells’ phagocytosis as this is the major

route for ordered acquisition of cancer antigens.
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