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of Tokyo, Tokyo, Japan

Immunodominant T cell epitopes preferentially targeted in multiple individuals are
the critical element of successful vaccines and targeted immunotherapies. However,
the underlying principles of this “convergence” of adaptive immunity among different
individuals remain poorly understood. To quantitatively describe epitope immunogenicity,
here we propose a supervised machine learning framework generating probabilistic
estimates of immunogenicity, termed “immunogenicity scores,” based on the numerical
features computed through sequence-based simulation approximating the molecular
scanning process of peptides presented onto major histocompatibility complex (MHC)
by the human T cell receptor (TCR) repertoire. Notably, overlapping sets of intermolecular
interaction parameters were commonly utilized in MHC-I and MHC-II prediction.
Moreover, a similar simulation of individual TCR-peptide interaction using the same
set of interaction parameters yielded correlates of TCR affinity. Pathogen-derived
epitopes and tumor-associated epitopes with positive T cell reactivity generally had
higher immunogenicity scores than non-immunogenic counterparts, whereas thymically
expressed self-epitopes were assigned relatively low scores regardless of their
immunogenicity annotation. Immunogenicity score dynamics among single amino acid
mutants delineated the landscape of position- and residue-specific mutational impacts.
Simulation of position-specific immunogenicity score dynamics detected residues with
high escape potential in multiple epitopes, consistent with known escape mutations
in the literature. This study indicates that targeting of epitopes by human adaptive
immunity is to some extent directed by defined thermodynamic principles. The proposed
framework also has a practical implication in that it may enable to more efficiently prioritize
epitope candidates highly prone to T cell recognition in multiple individuals, warranting
prospective validation across different cohorts.

Keywords: T cell epitope, T cell receptor repertoire, immunogenicity, escape mutation, machine learning

INTRODUCTION

T cell epitopes bound to major histocompatibility complex [MHC; also called the human leukocyte
antigen (HLA) in humans] molecules activate T cells to initiate subsequent immunological
orchestration (1–3). MHC class I (MHC-I) molecules typically present 8- to 11-aa peptides
generated through proteasomal cleavage of intracellular proteins to activate CD8+ cytotoxic T
lymphocytes (CTLs), whereas MHC class II (MHC-II) molecules with an open-ended binding
groove accommodate peptides of more variable length derived from endocytosed proteins to
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activate CD4+ T helper (Th) cells (4). Evidence suggests
that not all peptides presented on MHC molecules are
immunogenic, i.e., trigger functional T cell activation (5–7).
T cells recognize peptide-MHC (pMHC) complexes by their
TCRs, most predominantly via complementarity determining
region 3 (CDR3) loops (8–10). However, the determinants of
epitope immunogenicity in association with their recognition
by T cells remain poorly understood. Given the fact that
different individuals have different TCR repertoires, in theory,
epitope immunogenicity should differ between individuals.
However, there are several examples of immunodominant
epitopes that are targeted by the adaptive immunity of different
individuals (11–15). Indeed, immunodominant epitopes have
already been clinically utilized, for example, in the interferon-
gamma release assay, a clinically available peripheral blood
assay to determine if the subject has previously been sensitized
by Mycobacterium tuberculosis (Mtb) (16, 17). To explain
this phenomenon, it is plausible to hypothesize that those
immunodominant epitopes share some intrinsic patterns which
render themmore prone to be recognized by the T cell immunity
of multiple individuals. Because TCR-epitope interaction is
governed by the physicochemical principles like other protein-
protein interactions, more immunodominant epitopes are
expected to have a higher chance of stronger interaction
when scanned by a large set of TCRs. In this scenario,
we could utilize TCR sequences as “baits” to probe highly
immunodominant epitopes. We assumed that commonly shared
TCR sequences among multiple individuals (referred to “public
TCR repertoire” hereafter) more likely reflect the hidden patterns
for immunodominant epitopes. Indeed, contrary to the long-
standing view that TCR repertoire is highly stochastic and
individualized, accumulating evidence suggests that the biased
generation of TCR repertoire due to non-random rearrangement
and positive/negative thymic selections leads to an extensive
utilization of a limited subset of possible sequences and larger-
than-expected overlaps of repertoires across individuals (18–25).
Moreover, it has been shown that even distinct TCR repertoires
can convergently recognize a limited set of pathogen-derived
immunodominant epitopes (12).

In this context, here we propose that a computational
framework mimicking the thermodynamic interactions between
pMHC complexes and public TCR clonotypes, termed TCR-
peptide contact potential profiling (CPP), generates probabilistic
estimates of immunogenicity which effectively recapitulate
essential characteristics of T cell immunity and enable
quantitative assessment of potential mutational impacts on
the dynamics of immunogenicity in a position-specific context.
Datasets and in-house codes to reproduce the entire work are
made available as the package Repitope (https://github.com/
masato-ogishi/Repitope).

RESULTS

The Concept of Repertoire-Wide
TCR-Peptide Contact Potential Profiling
The hypothesis underlying the overall study is that public
TCR repertoire is biased toward immunodominant epitopes

through evolutional adaptation and negative selection at thymus,
and therefore could be used as “baits” to probe peptides
with high immunogenic potential (Figure 1A). Because of the
sequence-level and structural diversity of TCR and pMHC,
it is unfeasible to comprehensibly characterize every single
TCR-pMHC interaction experimentally. To circumvent this
problem, we instead designed a sequence-based simulation
framework designed to mimic molecular scanning of pMHCs by
TCR repertoire, which we termed repertoire-wide TCR-peptide
contact potential profiling (CPP).

The concept of CPP relies on some simplifications. First, we
focused on TCR β chain CDR3 (CDR3β) loops, since this region
has the highest genetic variability and is primarily responsible for
the interactions with peptides presented onto the MHC grooves,
whereas more conserved CDR1 and CDR2 loops typically
interact with MHC α-helices (2, 3, 28, 29). Second, we assumed
that the recognition of MHC-presented peptides requires only a
small portion of the CDR3β loop, at least initially, that could be
approximated to linear structure (Figure 1B). This assumption is
based on the relatively low affinities (KD = 0.1 ∼ >500µM) of
TCR-peptide interactions compared to other immunoglobulin-
like molecules including antibodies, the relatively flat interfaces
observed in known TCR-peptide-MHC structures, and the
substantial conformational changes induced upon recognition
of pMHC complexes (30–33). Moreover, analysis of known
TCR-pMHC complex structures using PRODIGY (https://nestor.
science.uu.nl/prodigy/) (26, 27) revealed that around 50% and
more than 80% of the intermolecular contacts are limited within
the 3-aa and 5-aa ranges, respectively, in both peptides and
CDR3β regions (Figure 1C and Supplementary Data Sheet 1).

Based on these premises, we first defined the energetic
potential of intermolecular contacts between a portion of a
peptide and a fragment of a TCR CDR3β region as the sum
of amino acid pairwise contact potentials (Figure 1B). Next, we
approximated the “best-match” problem between a peptide and
the entire TCR repertoire to the pairwise sequence alignment
problem, where a set of fragments derived from a given TCR
repertoire are pairwise-aligned to the peptide sequence to identify
the “best-aligned” positions that maximize their alignment scores
(Figure 1D). Usually, a pairwise sequence alignment algorithm
attempts to maximize the alignment score that reflects sequence
homology. However, we utilize custom substitution matrices
during the alignment process so that the alignment scores reflect
the energetic potentials of intermolecular contacts (Methods). To
put it briefly, higher alignment scores are considered a hallmark
of epitope immunogenicity, as exemplified in Figure 1E. For
more accurate immunogenicity prediction through machine
learning, we defined CPP features as a set of descriptive statistics
(e.g., mean and standard deviation) of the alignment score
distribution (Methods).

Datasets and Analysis Workflow
We compiled epitope datasets comprising 21,162 8- to
11-aa HLA-I-restricted and 31,693 11- to 30-aa HLA-II-
restricted peptide sequences from various sources (Figure 2,
Supplementary Figure 1 and Supplementary Data Sheet 2)
(34–42). At this point, we did not filter peptide sequences
based on their sequence-level homologies, because even a single
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FIGURE 1 | TCR-peptide contact potential profiling. (A) Schematic of antigen-guided TCR repertoire convergence hypothesis. The present work is premised on the
notion that genome-level evolution and postnatal thymic selection selected certain intrinsic features of TCR repertoire that favor immunodominant epitopes.
(B) Schematic of the linear contact model. The underlying hypothesis is that only a small portion of the CDR3β loop structure is required (at least initially) to recognize a
corresponding epitope. Here, the net energetic potential of the contact is defined as a sum of pairwise amino acid contact potentials of contacting residues. The
structure of HIV reverse-transcriptase epitope (TAFTIPSI) and TCR CDR3β chain is shown as an example (PDB ID: 4MJI). (C) Mean-centered contact density
distributions of 51 unique peptide-TCR structures collected from public sources. Residues were defined in contact if any of their heavy atoms is within a distance of
5.5 Å. Contacting residues were determined using PRODIGY web server (https://nestor.science.uu.nl/prodigy/) (26, 27). Inset numbers indicate the proportions of
contacts falling into the color-specified ranges. (D) Simplification of the molecular scanning process of a peptide by a given TCR repertoire as a pairwise sequence
alignment problem. Pairwise alignment was conducted using custom substitution matrices so that the highest possible alignment score reflect the most robust
intermolecular contacts between a peptide and a TCR-derived fragment. An alignment score distribution for any peptide was thus defined using a set of TCR-derived
fragments. (E) Representative alignment score distributions calculated using 10,000 randomly selected public CDR3β-derived 3-aa fragments and the custom contact
potential matrix derived from the AAIndex scale “BETM990101inv.” Pairwise sequence alignment was conducted using the pairwiseAlignment function implemented in
the Biostrings package in R (Methods). Left, two HLA-I-restricted peptides. GILGFVFTL is an immunogenic epitope derived from the matrix protein 1 of influenza A
virus. LIIIFFIVLI is a non-immunogenic MHC binder derived from the protein I2 of vaccinia virus. Right, two HLA-II-restricted peptides. GAGSLQPLALEGSLQKRG is an
immunogenic self-epitope derived from insulin. QDPDNTDDNGPQDPDNTDDN is a non-immunogenic MHC binder derived from the latent membrane protein 1 of
Epstein-Barr virus. Vertical lines indicate the median.
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substitution could considerably affect their immunogenicity.
Annotations of qualitative T cell assay results (i.e., positive
or negative) were retrieved from source databases and
coalesced by individual peptides. For those obtained from
the Immune Epitope Database (IEDB), for which more
detailed annotations about the evidence of T cell reactivity
were available, only functional cell-based assay results were
considered (Methods). Peptides retrieved from the Los Alamos
National Laboratory (LANL) HIV and HCV databases and
the TANTIGEN database were assumed to be positive a
priori. In this manner, 21,162 and 31,693 HLA-I and HLA-
II-restricted peptides were identified, respectively, of which
1,873 (8.9%) and 4,505 (14.2%) had contradicting annotations
on immunogenicity. In such cases, peptides with at least
one positive annotation were considered immunogenic,
given that coexistence of negative assay results does not
necessarily preclude the possibility of being recognized by
any of the TCRs in the public TCR repertoire. Eventually,
6,957 (32.9%) and 16,642 (52.5%) HLA-I and HLA-II-
restricted peptides were considered immunogenic, respectively.
Collected peptide sequences and annotations are summarized in
Supplementary Data Sheet 2.

Next, we extracted 23,006,555 unique CDR3β sequences
from TCR repertoire datasets derived from healthy
individuals using MiXCR software (43). We obtained
191,326 unique CDR3β sequences identified in at least 22
out of 206 (∼11%) different datasets. Note that due to
limited annotation we were not able to strictly select one
repertoire dataset per one donor. However, the aim of
collecting CDR3β sequences from multiple datasets is to
delineate a public TCR repertoire and use that repertoire
as a “bait” for epitope immunogenicity. Therefore, we
proceeded to the computation of CPP features using the
191,326 CDR3β sequences.

TCR-Peptide Interaction Parameters
Explaining Epitope Immunogenicity and
TCR Affinity
We computed CPP features as well as other features
based on peptide physicochemical properties. The 32 and
27 most reproducibly selected features for MHC-I and
MHC-II predictions, respectively, were identified (Figure 2,
Supplementary Figure 2 and Supplementary Data Sheet 3).
Only nine of 32 and none of 27 features were derived
from peptide physicochemical descriptors, highlighting the
indispensable contributions of CPP features on immunogenicity
prediction. Common parameter usage patterns for CPP
features were observed in MHC-I and MHC-II (Figures 3A–C).
Notably, features derived from short fragments (i.e., 3-aa
and 4-aa) and the longest fragment (i.e., 8-aa and 11-aa
in MHC-I and MHC-II, respectively) appeared heavily
weighted (Figure 3A). Meanwhile, skewness- and kurtosis-
derived features showed markedly higher importance
values, indicating that distinct repertoire-wide contact
potential distributions are the hallmark of immunogenicity
(Figure 3B). The inverted version of BETM990101 (termed
“BETM990101inv”) (44) and other six AAIndex scales

of the highest importance for both MHC-I and MHC-II
(Figure 3C).

To test if the selected AAIndex scales reflect thermodynamic
aspects of TCR-peptide interactions, we next analyzed 82 TCR-
peptide complexes with experimentally determined affinities
collected from literature (Supplementary Data Sheet 2) through
a modified framework termed single-TCR contact potential
profiling (sCPP). We found that BETM990101inv and other six
AAIndex scales important for immunogenicity prediction also
generated sCPP features correlating with affinities (Figures 3D,E
and Supplementary Table 1). As expected, multivariate
regression did not find any correlation between affinity and
sCPP features computed if either peptide or TCR sequences
were permuted before sCPP feature computation, indicating the
importance of sequence-intrinsic hidden patterns (Figure 3F).
Collectively, these observations support the idea that our CPP
framework recapitulates the essential thermodynamic properties
of TCR recognition of pMHC complex which governs both
MHC-I and MHC-II systems.

Probabilistic Estimation of
Epitope Immunogenicity
We applied machine learning techniques to convert these
most predictive features into a unidimensional scale of
immunogenicity by averaging the probability estimates from
five times repeated 5-fold cross-validations (CVs). The estimates
were reasonably consistent across CVs; the normalized standard
deviations distributed with medians and interquartile ranges
(IQRs) of 8.3% (2.3 to 14.3%) and 5.0% (1.4 to 8.5%) in MHC-I
and MHC-II, respectively. We first tested several settings
for machine learning. Addition of MHC binding prediction
results as features for machine learning only marginally
improved the predictive performance for MHC-I and had
almost no effect for MHC-II. Reduction of the number of
features utilized during machine learning and removal of
peptides with high sequence-level homology (i.e., 80% or
higher) from the dataset before machine learning resulted in
only a modest decrease in predictive performance (Figure 4A
and Supplementary Figure 3). Based on these observations,
we decided to utilize the averaged probabilistic estimates
derived without MHC-associated features hereafter (termed as
“immunogenicity scores”) (Supplementary Data Sheet 4). Next,
we examined whether immunogenicity scores were applicable
to the entire dataset. Indeed, there was an apparent separation
of immunogenic epitopes and non-immunogenic MHC binders
across various subsets of the datasets. This was indeed the
case even when we focused on the epitope data obtained
from ex vivo assays using human subject-autologous antigen-
presenting cells and T cells (Figure 4B). Then, we examined
the applicability and implication of the immunogenicity score
system in various biological contexts. First, immunogenicity
score framework was extrapolated to non-human peptide
datasets by applying models trained from the human
peptide datasets. Overall, the classification performance of
extrapolated immunogenicity scores less efficiently distinguished
immunogenic epitopes from non-immunogenic binders
(Figure 4C and Supplementary Figure 4). Second, thymically
expressed self-epitopes obtained from a previous study (45)
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FIGURE 2 | Summary of datasets and analysis workflow. The flowchart describes the outline of data compilation and subsequent computation of the probabilistic
estimates of epitope immunogenicity, termed immunogenicity scores. Briefly, T cell epitope sequence data annotated with either in vitro or in vivo assay results

(Continued)
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FIGURE 2 | (positive or negative) were retrieved from various public databases. Peptide data were not necessarily accompanied by the restricting MHC metadata. In
the meantime, public TCR sequence data were extracted from previous studies. A set of features were computed for each of the peptides, including the CPP features
(see also Figure 1 and Methods). Minimal sets of the most predictive features were selected through the feature selection process through twice repeated 5-fold
cross-validation (CV). In other words, the entire dataset was split into five chunks, and machine learning was conducted on a leave-one-chunk-out basis. Feature
importance was estimated, and the top 100 features were retained. The consensus of the five feature sets was retained. The entire process was repeated twice, and
the final consensus of the feature sets was identified as the most predictive features. Finally, probabilistic estimates of immunogenicity were computed through five
times repeated 5-fold CV only using the most predictive features. This procedure ensures that an immunogenicity score for any peptide is an average of five
machine-learned classifiers trained without using the target peptide itself.

FIGURE 3 | Contact potential profiling parameters linked epitope immunogenicity and TCR affinity. (A–C) Feature importance estimates through the feature selection
process (see also Figure 2). Estimates from twice repeated 5-fold CV were aggregated. (A,B) Importance estimates for all CPP features stratified by (A) fragment
length and (B) descriptive statistics to summarize the distribution of alignment scores (see also Figure 1E and Methods). (C) Importance estimates for the most
predictive 21 and 26 CPP features for MHC-I and MHC-II, respectively, stratified by their source AAIndex scales. The seven AAIndex scales commonly utilized in the
most predictive features for MHC-I and MHC-II are shown. Larger dots indicate means. (D–F) Regression analysis against individual TCR affinities. Single-TCR contact
potential profiling (sCPP) was conducted for 82 wildtype (WT) TCR-peptide complexes with known affinities identified through literature search (Supplementary

Data Sheet 1). Thirteen mutant (MT) TCRs were excluded from correlation analysis but shown for visual comparison purposes (red points). Adjusted squared
Pearson’s correlation coefficients are presented. (D) Representative univariate regression using the top sCPP feature “sCPP_BETM990101inv_Skew_4.” Note that
CPP and sCPP feature names are designed to indicate (i) the AAIndex scale, (ii) the descriptive statistics, and (iii) the length of the TCR-derived fragments. (E)
Multivariate regression with five sCPP features derived from immunogenicity-predicting AAIndex scales. (F) Permutation experiments with 1,000 iterations. Multivariate
regression was performed as in (E) using sCPP features computed from either randomly permuted peptide sequences or CDR3β sequence fragments (Methods). The
blue vertical line represents the result of the non-permuted regression analysis. Dashed lines represent medians.
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were compared to the rest of the peptides. Interestingly, based
on database annotation, the ratio of immunogenic epitopes was
lower among thymic self-peptides than the rest of the peptide
data. In addition, even peptides annotated as immunogenic
had overall lower scores than non-thymus immunogenic
epitopes, but comparable scores to thymically expressed non-
immunogenic peptides (Figures 4D,E). Third, immunogenic
peptides from various organisms generally had higher scores
than non-immunogenic counterparts, with some exceptions such
as MHC-I peptides derived from human and Mtb. Meanwhile,
immunogenicity scores fit particularly well into IEDB-derived
HIV and HCV peptides (Figures 4F,G), and this was also
the case in the epitopes from the Los Alamos HIV and HCV
immune epitope databases (Figure 4H). Likewise, MHC-I-
restricted tumor-associated epitopes obtained from TANTIGEN
database also exhibited higher scores than non-immunogenic
peptides from various origins (Figure 4I). Tumor-associated
antigens yielding peptides of high predicted immunogenicity
included CTG1B and MAGB1 (Figure 4J). As a comparison,
we tested the MHC-I immunogenicity prediction tool currently
available in IEDB (http://tools.iedb.org/immunogenicity/)
(34) using the same MHC-I epitope dataset but only found
marginal predictive power (Supplementary Figure 5). Note
that there is no tool available for MHC-II immunogenicity
prediction to compare. Collectively, immunogenicity scores are
the quantitative metric of the probability of functional T cell
recognition, and would provide another layer of criteria for
robust prioritization of MHC-I and MHC-II epitopes with high
expected immunogenicity.

Dynamics of Epitope Immunogenicity by
Single Amino Acid Alterations
Single amino acid mutations can affect peptide immunogenicity
bidirectionally, namely, acquisition and loss of immunogenicity,
in sequence space (Figure 5A). We termed the discordance
of annotated immunogenicity between neighbors, i.e., single-
aa mutants, as “immune transition,” and defined peptides with
evidence of immune transition as “transitional.” Note that
we cannot confidently define “non-transitional” peptides solely
based on our datasets, because the lack of evidence of immune
transition could simply be the lack of experimental data. We
identified 1,360 and 976 transitional peptides for MHC-I and
MHC-II, respectively. We noted that immunogenicity scores
were less applicable to transitional peptides (Figures 5B,C and
Supplementary Figure 6), which may result from suboptimal
machine learning due to the dearth of transitional peptide data.
To test if the integration of neighbor information improves
immunogenicity prediction for transitional peptides, we next
constructed neighbor networks for transitional peptides using
all possible single-aa mutants simulated computationally (N =

232,723 and 292,437 for MHC-I and MHC-II, respectively), and
compute immunogenicity scores by extrapolation. We termed
this process as “in silico mutagenesis.” As expected, the averaged
extrapolated immunogenicity scores more accurately predicted
the immunogenicity of transitional peptides (Figures 5B,C).
To further characterize the position- and residue-specific
mutational impacts, we next focused on the immunogenicity
dynamics between neighbor pairs. We screened our datasets to

identify 6,179 and 3,076 MHC-I and MHC-II-restricted single-
aa mutated peptide pairs. Immunogenicity scores changed more
dynamically in transitional pairs (Figure 5D). This observation
was also the case when we focused on the neighbor pairs of the
same organismal origins (Figure 5E). We also noted that scores
changed more eminently among MHC-I-restricted neighbor
pairs with mutations in their anchor residues (Figure 5F).
This is an interesting observation since our framework does
not utilize any positionally defined features. To gain insights
into the residue-specific mutational impacts, we next analyzed
2,580,890 and 3,101,092 neighbor pairs from all simulated
single-aa mutants of transitional MHC-I- andMHC-II-restricted
peptides, respectively (Figures 5G,H). We utilized simulated
peptide data because neighbor pairs identified in experimentally
tested epitope datasets were too sparsely distributed and likely
biased. Heatmap clustering analysis revealed residue-specific
impacts on immunogenicity that are partially interpretable
with known physicochemical properties of amino acid residues
[e.g., hydrophobic/aliphatic (V, L, and I), negative (D and E),
and aromatic (F and W)]. However, some exceptions were
also notable [e.g., positive (K and R) in MHC-I]. Collectively,
our systematic characterization delineates the landscape of
bidirectional effects of single-aa mutations on immunogenicity
in a position- and residue-dependent context.

Inference of Escape Mutations From
Simulated Neighbor Network Architecture
Escape mutations are the principal obstacle for vaccine
development. Neither reactivity of the specific T cell clones
tested in vitro against target epitopes or immune activation
after administration in vivo does not guarantee a sustainable
immune response in the real-world setting because of the
possibility of deleterious escape mutations. We tackled this
fundamental problem by quantifying position-specific “escape
potentials” from neighbor network architecture. Figure 6A

shows two representative neighbor networks constructed
from observed neighbors of immunodominant influenza A
virus epitopes GILGFVFTL (GIL) and SRYWAIRTR (SRY).
Apparently, GIL seems more robustly immunogenic than SRY
because the Cluster4 in the SRY network was enriched with
non-immunogenic peptides, suggesting a path for escaping.
In silico mutagenesis followed by neighbor network clustering
analysis revealed position-specific dynamics of predicted
immunogenicity (Figure 6B). P6 and P4 were indicated to
have the most substantial impact on escaping for GIL and SRY,
respectively. Intriguingly, P6 of GIL peptide has been shown
to be involved in two hydrogen bonds with two distinct TCR
clones F50 and JM22 (46). Furthermore, five P4 mutants of
SRY peptide have been shown to result in an undetectable level
of cytolysis by at least three CTL clones (47). Encouraged by
these observations, we next examined two MHC-II-restricted
epitopes. GAGSLQPLALEGSLQKRG (GAG) is a self-epitope
derived from insulin. Our simulation indicated that P8-11
and P15-16 were required for its immunogenicity. Strikingly,
immunodominant epitope LALEGSLQK has been localized
previously, showing a complete match with the prediction (48).
It is worth mentioning that LALEGSLQK is usually degraded
proteolytically during the maturation of the insulin molecule.
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FIGURE 4 | Probabilistic prediction of epitope immunogenicity. Averaged probabilistic estimates from iterative machine learning were termed “immunogenicity
scores.” Throughout the figure, orange and blue represent immunogenic epitopes and non-immunogenic MHC binders, respectively, as in Figure 1A. For the
definition of immunogenicity, see the main text and Methods. (A) Comparison of probabilistic estimates generated through machine learning in various settings. MHC
binding: MHC binding predictions were incorporated as features in addition to the default CPP and peptide features for machine learning. +R, percentile ranks; +B,
binding strength categories. Feature: the cutoff number for feature selection process was changed as indicated. The numbers of features retained after feature
selection under the cutoff of 100, 75, 50, and 25 were 32, 26, 19, and 7 for MHC-I, and 27, 23, 21, and 12 for MHC-II, respectively. Clustering: highly homologous
peptides were eliminated before machine learning using the IEDB Epitope Cluster Analysis Tool (http://tools.iedb.org/cluster/) with the sequence-level homology
threshold of either 100% (i.e., no homology-based peptide removal) or 80%, where one peptide per each homology-based cluster was randomly chosen. The
numbers of peptides retained after 80% homology clustering were 16,765 and 23,983 for MHC-I and MHC-II, respectively. (B) Immunogenicity scores generated for

(Continued)
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FIGURE 4 | various subsets of our epitope datasets. Machine learning was conducted with 32 and 27 pre-selected features for MHC-I and MHC-II, respectively, but
without predicted MHC binding information. Evidence: IEDB-derived peptides with functional T cell assay evidence (i.e., epitopes from non-IEDB sources lacking T cell
assay annotation were excluded); Human: epitopes tested in human (i.e., epitopes tested only in transgenic animal models were excluded); ex vivo: IEDB-derived
peptides annotated from direct ex vivo assays using autologous effector and antigen-presenting cells in human. The numbers of peptides included after applying each
filter were 21,162, 13,058, 11,084, and 6,048 for MHC-I, and 31,693, 31,693, 30,188, and 2,023 for MHC-II, respectively. (C) Immunogenicity scores of human
epitopes and extrapolated scores for primate and rodent epitopes (N = 411 and 8,756 for MHC-I and 76 and 8,445 for MHC-II, respectively). (D,E) Distributions of
(D) annotated immunogenicity and (E) immunogenicity scores for the human thymus MHC-I peptidome (45). (F,G) Immunogenicity scores among IEDB-derived (F)

MHC-I- and (G) MHC-II-restricted peptides of various origins. HS, homo sapiens; HIV, human immunodeficiency virus type I; HBV, hepatitis B virus; HCV, hepatitis C
virus; IAV, influenza A virus; DGV, dengue virus; PF, Plasmodium falciparum; TB, Mycobacterium tuberculosis. (H) Immunogenicity scores among MHC-I-restricted
peptides from various sources. HIV, Los Alamos HIV Epitope Database; HCV, Los Alamos HCV Epitope Database. (I,J) Immunogenicity scores of MHC-I-restricted
tumor-associated epitopes (TAEs) identified from TANTIGEN database. In (J), TAEs were grouped by their source tumor antigens. Red points and bars represent
median and interquartile ranges, respectively. In (A–D) and (F–H), bars represent medians. In (E–I), ns, not significant; *P < 0.05; ***P < 0.001; ****P < 0.0001.

Since our framework does not integrate factors affecting
intracellular peptide processing and presentation, appropriate
peptide presentation onto MHC should be considered a
prerequisite for performing immunogenicity score-based
analysis. PKGQTGEPGIAGFKGEQGPK (PKG) is another
self-epitope derived from collagen. The simulation indicated that
P10, P11, P13, and less evidently, P14 and P16 were required for
its immunogenicity. Indeed, mutations at P10, P13, and P16 have
been shown to almost diminish the T cell reactivity collected
from pre-immunized transgenic mice, and mutations at P14
partially impaired the response (49).

One possibility is that the epitope- and position-specific
dynamics of simulated immunogenicity scores originated from
overfitting of machine-learned models to the single amino acid
variants of the target peptide of interest in the source dataset.
To test this possibility, we repeated the entire analysis from
machine learning to the computation of immunogenicity scores
to neighbor network simulation using datasets in which both the
target peptide of interest and all of its neighbors were removed.
Indeed, the most prominent escape-prone positions for every
peptide tested, namely, P6 of GIL, P4 of SRY, P8-P14 of GAG,
and P10/P13 of PKG, were still identifiable regardless of the
presence or absence of neighbor peptides in the source datasets
(Figure 7). Meanwhile, it is also notable that some positions
such as P7 of SRY and P16 of PKG became less prominent after
removal of neighbor peptides from the source datasets, indicating
that epitope-specific patterns could also be incorporated from
their neighbors as well as some pan-epitope principles of
immunogenicity learned from a general set of epitopes.

The methodology to computationally prioritize epitopes of
high immunogenicity and low escape potential would have
enormous practical implication for developing immunotherapies
applicable to global populations. To this end, we introduced
another metric termed “escape potential,” which was defined
as the maximal difference of cluster-averaged immunogenicity
scores between the cluster of interest (containing the target
peptide of interest) and other clusters in the neighbor network
constructed from all possible single amino acid variants. A
negative escape potential means that the target peptide belongs
to the least likely immunogenic cluster. Immunogenicity score-
escape potential (IS-EP) two-dimensional plots indicated that,
although there was a moderate correlation between IS and
EP, considerable variation also existed (Figures 8A,B). Of
note, HIV and dengue virus (DGV)-derived immunogenic

epitopes had higher EP than human epitopes compared, and
this trend was not observed in non-immunogenic binders
(Figure 8C). Two representative HIV-derived MHC-I epitopes
with high (GGKKKYKL) and low (ITTESIVIW) EPs were
shown in Figure 8D. Interestingly, there are known naturally
occurring escape mutations at P3, P5, and P7 of GGKKKYKL
(50), of which P3 and P5 appeared consistent with our
analysis (Figure 8D). Although we did not find information
on escape variants of ITTESIVIW from the literature, this
epitope represents the most common sequence found in the
circulating HIV-1 clade B population in the Los Alamos HIV
Sequence Database, suggesting that this epitope may be less
prone to undergo mutations (51). Likewise, two representative
MHC-II epitopes with high and low Eps derived from P.
falciparum and two from Mtb were shown in Figures 8E,F,
respectively. Indeed, the prevalence of T cell reactivity to the
low-EP epitope GKLLSTGLVQNFPNTIISK was reported to
be 25% in a Kenyan cohort (16). Moreover, 29.4% of South
African patients with either latent or active Mtb infection were
shown to be positive by ELISpot assay against the epitope
VRAVAESHGVAAVLFAATAA, C-terminus of which is identical
to the low-EP peptide AESHGVAAVLFAATAA (17). Collectively,
these observations indicate that the proposed framework would
serve as a valuable tool, along with other bioinformatics
tools such as intracellular antigen processing prediction and
MHC binding prediction, to screen a large set of epitope
candidates before experimental validation based on the two
newly introduced metrics, namely, the immunogenicity score
and escape potential.

DISCUSSION

This study provides a novel viewpoint that targeting of epitopes
by human adaptive immunity is actually to some extent
predictable by defined thermodynamic principles recapitulating
the thermodynamic interaction profiles betweenMHC-presented
peptides and the host TCR repertoire. Although previous
studies have suggested the relevance of the physicochemical
property of TCR-contact residues of the peptides and population-
level frequency of peptide-specific T cell clones to epitope
immunogenicity (35, 52), this study is to our knowledge the
first to illustrate, through leveraging the largest-ever epitope
datasets, quantitative prediction of immunogenicity for each
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FIGURE 5 | Systematic characterization of the impacts of single amino acid mutations on immunogenicity in sequence space. (A) Schematic of the concept of
immune transition in sequence space. We termed the change in immunogenicity between neighbors, i.e., single-aa mutants, as “immune transition,” and defined

(Continued)
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FIGURE 5 | peptides with evidence of immune transition as “transitional.” (B,C) Immunogenicity scores among (B) MHC-I- and (C) MHC-II-restricted transitional
peptides, i.e., peptides with at least one neighbor of opposite immunogenicity annotation in our dataset. We identified 1,360 and 976 transitional peptides for MHC-I
and MHC-II, respectively. We expanded their neighbor networks by computing immunogenicity scores for 232,723 and 292,437 all possible single-aa mutants of
transitional MHC-I- and MHC-II-restricted peptides, respectively. Original, original immunogenicity scores; Overall, mean immunogenicity scores of all neighbors.
Cluster, mean immunogenicity scores of neighbors assigned to the cluster containing the parent peptide. Others, original immunogenicity scores for peptides with no
evidence of immune transition (shown for comparison). Orange and blue denote immunogenic and non-immunogenic peptides, respectively. (D–F) Immunogenicity
score dynamics among observed neighbor pairs. We identified 6,179 and 3,076 single-aa mutated peptide pairs for MHC-I and MHC-II, respectively. (D) Score
dynamics for all possible peptide pairs, regardless of their origins. (E) Score dynamics for pairs of peptides derived from the same organism. Blue and red denote
non-transitional and transitional pairs, respectively. (F) Score dynamics of MHC-I peptide pairs stratified by their mutated positions. Cter, C-terminal residue. (G,H)

Heatmap clustering analysis of immunogenicity score dynamics by mutating residue pairs. We generated 2,580,890 and 3,101,092 neighbor pairs from 232,723 to
292,437 all possible single-aa mutants of 1,360 and 976 transitional MHC-I- and MHC-II-restricted peptides, respectively. Color represents median normalized score
changes. Gray indicates unobserved residue pairs. In (D–F), ns, not significant; *P < 0.05; **P < 0.01; ****P < 0.0001.

FIGURE 6 | Identification of escape-prone positions from in silico mutagenesis and neighbor network analysis. (A) Example neighbor networks of MHC-I-restricted
influenza A virus epitopes GILGFVFTL and SRYWAIRTR and their observed neighbors. Consensus sequences are indicated below the cluster IDs. (B,C) Relative score
changes estimated from all possible simulated neighbors for (B) MHC-I-restricted influenza A virus epitopes GILGFVFTL and SRYWAIRTR and (C) MHC-II-restricted
insulin-derived epitope GAGSLQPLALEGSLQKRG and collagen-derived epitope PKGQTGEPGIAGFKGEQGPK. Red letters indicate residues known to have escape
mutations shown by in vitro T cell assays from the literature. Representative peptides were chosen based on their high immunogenicity scores with manual literature
inspection. ns, not significant; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.

individual epitope with sufficiently high consistency with T cell-
based assays. However, it should be noted that our framework
is not intended for replacing other bioinformatic tools for

epitope prediction or experimental testing but rather adding an
additional filter to expedite the discovery of potent epitopes.
For example, our framework does not take into account the
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FIGURE 7 | Assessment of the potential impact of overfitting for estimating the position-specific escape potentials. To test if the observed patterns of score
dynamics originated from overfitting during the machine learning, for representative (A) MHC-I and (B) MHC-II peptides shown in Figure 6, probabilistic estimates of
immunogenicity were re-computed without using any of the data of the single amino acid variants of the target peptide during machine learning (Red). The scores with
no filteration were shown for comparison (Blue). See the legend of Figure 6 for further information.

intracellular processing of proteinous antigens, which is taken
into account in other tools (53, 54). Moreover, our framework
a priori takes peptide presentation on MHC for granted;
therefore one must test whether the peptides of interest are

presented on MHC by either bioinformatic approach such as
NetMHC or experimental verification (55, 56). The MHC allele
frequency of the target population should also be taken into
consideration if population-level immunogenicity is of interest.
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FIGURE 8 | Two-dimensional assessment of epitope quality using the immunogenicity score and escape potential.(A,B) Immunogenicity score-escape potential
(IS-EP) plots for (A) MHC-I and (B) MHC-II peptides. Cluster-mean immunogenicity scores determined from neighbor network analysis of all simulated neighbors were
utilized. (C) IS and EP distributions among pathogen-derived peptides. ns, not significant; *P < 0.05; **P < 0.01. (D–F) Relative score changes estimated from all
possible simulated neighbors for (D) representative MHC-I-restricted HIV epitopes, and (E,F) representative MHC-II-restricted epitopes derived from (E) P. falciparum

and (F) M. tuberculosis. In (D–F), representative peptides were chosen based on their high and low EPs with manual literature inspection.
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Finally, experimental testing by comparing with established
immunodominant epitopes is indispensable as illustrated by
others in search of immunodominant Mtb-derived epitopes (57).

Analysis of contact potential profiling (CPP)-based features
predictive of epitope immunogenicity is likely to provide novel
clues for describing the molecular scanning process of pMHCs
by the host TCR repertoire. It is of note that short (i.e., 3-aa
and 4-aa) TCR fragments in combination with a restricted set
of AAIndex scales generate features contributing to both MHC-
I and MHC-II immunogenicity prediction and also correlating
with individual TCR-pMHC affinities because these commonly
utilized parameters could potentially reflect some pan-epitope
principles governing TCR-pMHC interactions regardless of
MHC classes and alleles. The utilization of short fragment
features is consistent with the induced fit model that only
a limited complimentary region of TCR is involved at least
in initial engagement (31–33). Meanwhile, the best AAIndex
scale BETM990101 reflects interaction energies between amino
acid residues under physiological conditions (44), and hence
the inverted version of BETM990101, giving larger values for
stronger interresidue contacts, is a reasonable scale for contact
potential estimation. Indeed, a positive skewness in the contact
potential distribution, implying the coexistence of a small and
a large proportion of TCR fragments with high and low
contact potentials, respectively, was associated with stronger
affinities in our analysis. TCR affinity has been correlated with
T cell activation (58), although there remains a debate as to
whether other parameters such as avidity, on- and off-rates
are also essential (59). Further studies are required to fully
elucidate the biological relevance of simulated TCR-peptide
contact features quintessential for immunogenicity prediction to
the thermodynamic parameters of TCR-pMHC interactions and
subsequent T cell activation.

Immunodominance, an immunological phenomenon in
which adaptive immunity preferentially targets only a few
of the antigenic peptides out of the many others, has been
extensively described in multiple cases (15). For instance, only
0.03% of potential MHC-I-presented peptides derived from
vaccinia virus account for >90% of the CD8+ T cell response
in B6 mice (60). Similarly, diverse TCR repertoires specific
for two immunodominant viral epitopes have been reported
in human (12). Population-level immunity against various
immunodominant epitopes is another line of evidence (16,
17). The fact that diverse TCRs can be utilized to achieve
protective immunity against immunodominant epitopes in
multiple individuals indicates the existence of some epitope-
intrinsic qualities guiding “convergent evolution” of human TCR
repertoire at both genomic and thymic level. To elucidate the
hitherto unknown pan-epitope principles governing productive
TCR-peptide contacts, we took an inductive approach using a
large set of in vitro T cell epitope assay results which may
vary depending on the specific T cell clones or TCR repertoires
utilized. Our findings indicate that, unexpectedly, a limited
set of TCR-peptide contact features reproducibly serve as the
principal determinants of T cell reactivity. Moreover, we show
that the averaged probabilistic estimates, termed immunogenicity
scores, are consistently higher in epitopes with positive results

from various functional T cell reactivity assays. Interestingly,
peptides physiologically presented on the thymus have lower
immunogenicity scores than non-thymus counterparts, which is
consistent with the biased formation of human TCR repertoire
owing to negative selection (25, 45). Practically speaking, the
probabilistic scoring system would be particularly useful for
prioritizing peptide candidates to expedite the development of
population-level immunotherapies for various infectious diseases
and cancer. However, it is notable that immunogenicity scores do
not distinguish immunogenic and non-immunogenic peptides
from any origin. A particularly notable exception is Mtb; the Mtb
epitopes with positive T cell reactivity were assigned with lower
immunogenicity scores compared to those from other pathogens,
like the thymically-presented self-epitopes with positive T cell
reactivity. This observation implies that, from the T cells’ point of
view, thoseMtb epitopes “look like” non-targetableMHC binders
like the self-epitopes presented in the thymus. Note that the
immunogenicity score is a repertoire-based probabilistic metric,
whereas T cell-based assay determines the presence or absence of
individual T cell clones reactive of the peptide of interest. Given
the∼70,000 years of co-evolution betweenMtb and humans (61),
one hypothesis is that Mtb has evolutionarily adapted to human
T cell immunity to mimic self-epitopes (again, not in terms of
sequence-level homology but from “T cells’ perspective”), and
only highly distinct T cell clones can recognize thoseMtb-derived
epitopes. Whether these clones function as pro-inflammatory
or regulatory is another layer of a question. Notably, it has
been shown that T cell epitopes of Mtb are evolutionary
hyperconserved and the bacteria seems to actually benefit
from recognition by, rather than evasion from, human T cell
immunity (62, 63). Nevertheless, we still believe that our scoring
system can be useful to identify potentially immunodominant
Mtb-derived epitopes, because the Mtb-derived HLA-I and
HLA-II epitopes with the highest scores (KLAGGVAVI and
DWYSPACGKAGCQTYKWETF), derived from the 65 kDa heat
shock protein and the antigen 85B, respectively, have previously
been described as potently immunodominant epitopes (64, 65).
Further characterization of T cell reactivity for Mtb epitopes with
high and low immunogenicity scores may unveil critical insights
into the uniqueness of anti-mycobacterial T cell immunity.

One remarkable feature of our immunogenicity score system
is that the score dynamics between single-aa mutants are,
at least to some extent, predictive of the mutational impacts
on immunogenicity. In order to drive potent and sustainable
immunity against highly mutable pathogens such as HIV
and HCV, the criteria of high immunogenicity may not be
sufficient because of potential escape mutations. By simulating
all possible single amino acid variants, our framework allows
us to estimate the potential impacts of such escape mutations.
It should be noted that this all-mutant strategy leads to
overestimation of escape potential, because, in a real-world,
some of the amino acid variations are unfeasible due to many
factors such as codon usage patterns in the genome of the
target organism, decreased replication fitness, loss-of-function
of essential enzymes. However, since our primary interest is
to obtain epitopes with relatively high immunogenicity and
yet with relatively low escape potential, overestimation of
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escape potential may not be a critical problem. In contrast,
underestimation of escape potential could lead to failure of
filtering out candidates that may lose their immunogenicity by
only a single mutation. Practically, the proposed two-metrics-
based approach of epitope prioritization could expedite the
development of vaccines applicable to a wide range of individuals,
and could also improve the predictability of the responsiveness
to checkpoint blockade immunotherapies when combined with
known biomarkers such as tumor mutational burden (66–68).

There are indeed several caveats to be noted in this
study in addition to those discussed in the above sections.
First, our current model may be suboptimal because only a
small fraction of possible sequence space is experimentally
covered so far, and there is considerable heterogeneity of the
experimental methodologies employed. T cell-based assays of
identical readouts (e.g., IFN-γ secretion) using cells obtained
from multiple individuals for all candidate epitopes and their
single amino acid variants would be ideal for defining a universal
scale of the probability of T cell reactivity through machine
learning. Second, due to the lack of sufficient annotations,
we did not distinguish TCR repertoires from different T cell
subsets such as CD8+ and CD4+ T cells with either pro-
inflammatory or regulatory functions. Since the dynamics of TCR
repertoires in these subsets are distinct, utilization of subset-
specific TCR repertoire may further improve the predictability
of epitope immunogenicity. Third, in a real-world setting in
vivo, we need to take into consideration the spatiotemporal
proximity of multiple epitopes simultaneously presented at the
focus of inflammation. In such circumstances, the “threshold”
of epitope immunogenicity itself is likely altered, and bystander
activation also likely contributes to the gross immune outcome.
Nevertheless, it is encouraging that the proposed framework
predicted many epitopes consistently with previous experimental
studies. Further validations both in vitro and in vivo (in
animal models and from observational studies in humans) are
warranted. Elucidation of the pan-epitope principles of epitope
targeting by human T cell immunity would have significant
clinical and biological implications, and we hope that our study
serves as a starting point for future investigations.

MATERIALS AND METHODS

Computational Analysis
All computational analyses were conducted using R ver. 3.5.0
(https://www.r-project.org/) (69). The latest versions of R
packages were consistently used. Compiled datasets and essential
in-house functions are available as the R package Repitope
on GitHub (https://github.com/masato-ogishi/Repitope). Other
scripts are available upon request.

Peptide Sequence Datasets
HLA-I-restricted peptide sequences of 8-aa to 11-aa lengths
with T cell assay results were collected from public databases
[Immune Epitope Database (IEDB, as of May 7th, 2018) (42),
the best-characterized CTL epitopes from Los Alamos National
Laboratory (LANL) HIV Sequence Database (38), LANL HCV
Sequence Database (36), EPIMHC (40), MHCBN (37), and

TANTIGEN (39)], and previous publications (34, 35, 41). HLA-
II-restricted peptide sequences of 11-aa to 30-aa lengths with T
cell assay results were collected from the IEDB database (as of
May 7th, 2018). As for peptides retrieved from the IEDB database,
only those with evidence of functional T cell response were
included. The list of evidence included is as follows: activation,
antibody help, CCL2/MCP-1 release, CCL3/MIP-1a release,
CCL4/MIP-1b release, CCL5/RANTES release, CXCL10/IP-10
release, CXCL9/MIG release, cytotoxicity, decreased disease,
degranulation, disease exacerbation, GM-CSF release, granulysin
release, granzyme A release, granzyme B release, IFNg release,
IL-10 release, IL-12 release, IL-13 release, IL-17 release, IL-
17A release, IL-1b release, IL-2 release, IL-21 release, IL-22
release, IL-23 release, IL-3 release, IL-4 release, IL-5 release, IL-
6 release, IL-8 release, lymphotoxin A/TNFβ release, pathogen
burden after challenge, perforin release, proliferation, protection
from challenge, survival from challenge, T cell- APC binding, T
cell help, TGFβ release, TNF release, TNFα release, tolerance,
tumor burden after challenge, and type IV hypersensitivity
(DTH). Peptides presented on non-human MHC molecules
were discarded, whereas those presented on HLA molecules
in non-human hosts (e.g., transgenic mice) were included.
Peptides retrieved from LANL and TANTIGEN databases
were a priori assumed to be immunogenic. In this manner,
21,162 and 31,693 HLA-I and HLA-II-restricted peptides were
identified, respectively, of which 1,873 (8.9%) and 4,505 (14.2%)
had contradicting annotations on immunogenicity. In such
cases, peptides with at least one positive annotation were
considered immunogenic, given that coexistence of negative
assay results does not necessarily preclude the possibility of
being recognized by any of the TCRs at a population-level.
Eventually, 6,957 (32.9%) and 16,642 (52.5%)HLA-I andHLA-II-
restricted peptides were considered immunogenic, respectively.
Collected peptide sequences and annotations are summarized in
Supplementary Data Sheet 2.

Sequences of peptides restricted on non-human MHC
molecules were collected from the IEDB database (as of as of
May 7th, 2018) as described above. The following species were
considered primate: bonobo, chimpanzee, gorilla, marmoset, and
rhesus macaque. Meanwhile, mouse and rat were considered
rodent. Eventually, 411 and 8,756 MHC-I-restricted peptides,
and 76 and 8,445 MHC-II-restricted peptides were identified for
primates and rodents, respectively. Collected peptide sequences
and annotations can be found in Supplementary Data Sheet 2.

TCR Sequence Datasets
TCR repertoire datasets were collected from the NCBI Sequence
Read Archive (SRA) and a previous study led by Britanova
et al. (21). Repertoire datasets derived from healthy donors
were searched through SRA, and the following BioProjects
were included: PRJNA389805, PRJNA329041, PRJNA273698,
PRJNA258001, PRJNA229070, PRJNA79707, and PRJNA79435.
Also, pooled sequence data from 39 healthy donors were
retrieved from the paper by Britanova et al. In this manner, a
total of 206 datasets, of which only five were pooled datasets, were
collected. Pooled and individual datasets were derived from a
total of 561 and 103 healthy donors, respectively. Fastq files were
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obtained using fastq-dump script with the following options: –
gzip –skip-technical –readids –read-filter pass –dumpbase –split-
files –clip –accession [SRA run number]. A total of 23,006,555
CDR3β sequences were extracted using MiXCR software (43).

Public TCR clonotypes, the ones commonly observed in
multiple datasets, were identified from the pool of CDR3β
sequences mentioned above. Britanova et al. (21) reported
that 10,691 clonotypes were shared between at least six of 39
(15.4%) donor-derived top 100,000 clonotype sets. Based on
their findings, we decided to extract CDR3β sequences identified
in at least 22 out of 206 (10.8%) different datasets, and we
subsequently identified 191,326 (0.83%) public clonotypes. A
randomly sampled 10,000 clonotypes were used for TCR-peptide
contact potential profiling.

TCR-Peptide Contact Potential Profiling
T cell epitopes presented on the MHC molecules must be
recognized by the TCRs of CD8+ CTLs and CD4+ Th cells with
sufficiently high affinity to trigger subsequent immunological
cascades. Undoubtedly, the vast majority of TCR repertoire is
not involved in recognition of any given peptide. Moreover,
considering the substantial conformational flexibility observed
upon binding of TCRs to pMHC complexes, one can assume
that only a subset of residues of the peptide and the epitope-
recognition domain, namely, the CDR3β loop, serve as a
“seed” of intermolecular docking during the early phase of
molecular scanning (29, 32). With these in mind, identifying
the best contact site between a given pair of peptide and
CDR3β sequences is conceptually similar to solving a local
pairwise sequence alignment problem. One caution is that higher
scores must be given to more strongly interacting residue
pairs instead of more biochemically similar residue pairs as
opposed to ordinary alignments. For this purpose, amino acid
pairwise contact potential (AACP) scales from the AAIndex
database (70) (http://www.genome.jp/aaindex/AAindex/list_of_
potentials) were adopted to generate custom substitution
matrices. As stronger interresidue interactions yield smaller free
energy values (negative numbers), and as the Smith-Waterman
local alignment algorithm attempts to maximize the alignment
score of a given sequence (TCR fragment) against the whole
target sequence (peptide), the optimal pairwise alignment using
a custom substitution matrix derived from the sign-inverted
version of a pairwise contact potential scale would in principle
correspond to the best intermolecular contact. For comparative
purposes, both inverted and non-inverted versions were tested.
Values were rescaled to a range from zero to one for subsequent
analyses. A set of non-inverted, non-rescaled AACP scales is
provided as Supplementary Data Sheet 6. For repertoire-wide
CPP analysis, the 191,326 pooled public CDR3β sequences were
randomly down-sampled to 10,000 sequences with the relative
abundance ratios retained. The sequences were then fragmented
by a sliding window strategy to generate a fragment library.
Since the interacting orientations (either forward parallel or
antiparallel) are unknown for most of the cases, reversed CDR3β
sequences were also fragmented and combined. The sizes of
fragments were from 3-aa to 8-aa and from 3-aa to 11-aa

for MHC-I and MHC-II predictions, respectively. For single-
TCR CPP (sCPP) analysis, every single TCR instead of public
TCR repertoire was used to generate a fragment library. To
perform sequence alignments, the pairwiseAlignment function
implemented in the Biostrings package in Bioconductor (https://
www.bioconductor.org/) (71) was utilized. This function seeks
an optimal alignment which maximizes the overall alignment
score defined as a sum of pairwise scores. Alignment type was
set “global-local” to obtain an optimal alignment of a given
set of TCR fragments against the consecutive subsequences
of any given peptide. Gaps were not allowed. A set of
alignment scores was summarized by calculating representative
statistics. Following statistics were calculated using the functions
implemented in the psych package: mean (Mean), standard
deviation (SD), standard error of the mean (SE), median (Med),
median absolute deviation (MAD), interquartile range (IQR),
10% quantile (Q10), 90% quantile (Q90), skewness (Skew), and
kurtosis (Kurt). Predictive features were generated by combining
the fragment length, the AACP scale, and the type of statistics.
In this manner, 700 CPP features per one fragment length were
generated for each of the peptides.

Peptide Descriptors
Apart from CPP features, sequence-based estimates of
physicochemical properties were also calculated. Each
peptide sequence was converted into a set of consecutive
fragments of a defined amino acid length, and peptide
descriptors were calculated against each of the fragments
using functions in the Peptide package. Following functions
were utilized: aIndex, blosumIndices, boman, charge,
crucianProperties, fasgaiVectors, hmoment, hydrophobicity,
instaIndex, kideraFactors, mswhimScores, pI, protFP, vhseScales,
and zScales. The distributions of the values were summarized
similarly to CPP features. Additionally, 20 binary features
indicating whether the peptide of interest is free from a specific
amino acid residue were included. The peptide length was also
included as a feature.

Feature Selection
Preprocessing followed by importance-based feature selection
was repeated ten times with different random seeds. The analysis
workflow consisted of the following steps. First, the peptide
set was randomly split in a ratio of 4:1 for the training and
testing subdatasets. Second, using the training subdataset, a
preprocessing function was defined; numerical features were
centered and scaled; a peptide length and binary features
representing existence or absence of each residue were left
unaltered. The same preprocessing filter designed from the
training subdataset was also applied to the testing subdataset.
Third, highly correlated features were removed, with the
threshold of correlation coefficient being 0.75. Fourth, features
were filtered based on the importance values calculated using
the generateFilterValuesData function with the random forest
(RF) method (randomForestSRC.rfsrc) implemented in the mlr
package (72). The 100 most important features were retained
unless otherwise stated. In the first five repeats, the names of
the peptide descriptors and the CPP features were ordered in
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ascending order. In the latter five repeats, on the other hand,
the names of those features were ordered in descending order.
In this manner, the inherent bias of feature selection owing to
the lexicographical order of the names of features was avoided.
Finally, features kept in all the ten repeats were defined as the
most predictive features and were utilized hereafter.

TCR-pMHC Structure Analysis
The structures of TCR-pMHC complexes with known
experimentally determined affinities were collected manually
from the literature using the ATLAS database (https://zlab.
umassmed.edu/atlas/web/) (73). A total of 95 structures were
retrieved, of which 82 contained non-mutated (wildtype) TCRs.
Contact sites were identified using the PRODIGY server (26, 27).
TCR contact footprints were defined as the distributions of the
numbers of contacts at each of the peptide positions.

For the analysis of correlation with affinities, sCPP features
were computed as described in the above sections, and the single
best feature was selected from a univariate analysis for each of
the AAIndex scales. Multivariate regression with stepwise feature
selection was conducted using the stepAIC function implemented
in the MASS package. The variance inflation factors (VIFs) were
computed using the vif function implemented in the car package.

Sequence permutation experiments were performed as
follows. Peptide sequences were replaced with a set of random
sequences of the same lengths. In contrast, because of the
fragmentation strategy employed, a simple replacement would
lead to incomplete disruption of hidden but essential motifs.
Therefore, we instead replaced the TCR-derived fragment library
with a randomly chosen set of random fragments that do
not overlap with the original fragment library. Permutation
experiments were iterated 1,000 times.

HLA Binding Prediction
Predicted binding strength against twelve representative
HLA-I alleles (A∗01:01, A∗02:01, A∗03:01, A∗24:02, A∗26:01,
B∗07:02, B∗08:01, B∗27:05, B∗39:01, B∗40:01, B∗58:01, and
B∗15:01) from NetMHC 4.0 (74) and six representative HLA-II
alleles (DRB1∗0101, DRB3∗0101, DRB4∗0101, DRB5∗0101,
DPA1∗0103-DPB1∗0101, and DQA1∗0101-DQB1∗0201) from
NetMHCIIpan 3.2 (56) for MHC-I andMHC-II immunogenicity
prediction, respectively, were incorporated in the machine
learning process for immunogenicity prediction because the
stability of the peptide-MHC complex is a known correlate
of immunogenicity (75). Default parameters were used for
prediction. Thresholds of percentile ranks for strong and weak
binders were set at 0.5 and 2% in MHC-I, and 2 and 10% in
MHC-II, respectively.

Machine Learning
The most predictive peptide descriptors and CPP features, with
or without predicted HLA bindings, were compressed into a
linear coordinate system through machine learning. We utilized
extremely randomized trees (ERT) algorithm implemented in the
extraTrees package (76) because of its computational efficiency
and robustness against overfitting. The model-specific parameter
mtry was set 5. Other hyperparameters were set as defaults.

Class weights were provided to compensate for imbalanced
class distributions. Probabilistic estimates were computed by
conducting five times repeated 5-fold cross-validations (CVs).
This strategy ensures that any peptide is subjected to five
times repeated predictions by models trained from a set of
peptides that do not contain the peptide in question. The
averaged probability estimates were termed “immunogenicity
scores.” Unless otherwise stated, we utilized immunogenicity
scores from machine learning without predicted HLA binding-
based features. For peptides not included in our epitope dataset,
immunogenicity scores are defined as the averaged probability
estimates of the 25 ERTmodels generated during CVs. Prediction
variances were evaluated by computing coefficients of variance
which are defined as standard deviations divided by means.

The IEDB Epitope Cluster Analysis Tool (http://tools.iedb.
org/cluster/) was utilized to test the effect of sequence-level
peptide homology on immunogenicity prediction. Clustering was
performed with the homology threshold of 80%.When clustering
filter was applied, only a single peptide was randomly chosen
from each of the clusters before feature preprocessing in the
machine learning workflow.

Neighbor Network
Single amino acid mutations, namely, substitutions, insertions,
and deletions, havemultifaceted effects on the immunogenicity of
MHC-presented peptides. To systematically analyze their effects
on immunogenicity, we adopted a network-style representation
of the epitope data structures, termed a “neighbor network,”
where pairs of peptide sequences (nodes) with just one edit
distance were defined as “neighbors” and regarded as edges. Each
edge was directed from the peptide with a lower immunogenicity
score to the peptide with a higher score. Edge weight was
defined as the ratio of the lower score to the higher score
so that less immunogenically similar peptides were mapped
more distant from each other in sequence space due to the
smaller edge weight. Clustering was performed using a walktrap
algorithm implemented in the igraph package (77). For each
cluster, sequences were aligned using the ClustalW algorithm
implemented in the msa package (78). A consensus sequence
was generated using the method implemented in the Biostrings
package with an ambiguity threshold of 0.5. Gaps were treated
equally to ambiguities. Gaps/ambiguities were expressed as “X.”

In silico Mutagenesis
For a given “parental” peptide, the neighbor network was
computationally expanded by simulating all possible single
amino acid substituted mutant peptides. Insertions and
deletions were not taken into consideration. These artificially
introduced mutations could affect various aspects of T cell
immunity, including aberrant proteolytic cleavage and altered
MHC presentation, these possibilities were not rigorously
examined since our primary interest is on exploring the net
immunogenicity of mutated peptides if appropriately presented
and scanned by TCRs. Immunogenicity scores for simulated
peptides were computed by extrapolation using the classifiers
trained using all experimentally annotated data. Neighbor
network analysis was conducted as described. Extrapolated
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immunogenicity scores of all neighbors and neighbors residing
in the same cluster with the parental peptide were averaged
to yield overall-mean and cluster-mean immunogenicity
scores, respectively.

Immune Transition
Loss of immunogenicity due to mutation is also called escaping,
evasion, and sometimes immunoediting. In the present study,
we refer to this phenomenon as escaping. In contrast, there is
no appropriate terminology for the mutation-driven acquisition
of immunogenicity, and thus we refer to this phenomenon
as “epitope formation.” For the sake of simplicity, we do
not take into consideration epitope-extrinsic mechanisms such
as impaired intracellular antigen processing, somatic loss of
HLA heterozygosity (79, 80), and checkpoint-mediated T cell
exhaustion and apoptosis (81) in this work. Escaping and epitope
formation due to mutations can be understood as two sides of the
same coin in sequence space, and therefore, we propose a higher-
order concept, “immune transition,” which is defined as a change
in immunogenicity between any MHC-presented peptide and its
single amino acid variant. Note that the synergistic effects of two
ormoremutations on the changes in immunogenicity are beyond
the scope of the present study.

To further characterize the theoretical boundary of
immunogenic and non-immunogenic peptides, we categorized
peptides with evidence of immune transition found in our
dataset as “transitional” and analyzed separately. Note that
we cannot certainly define “non-transitional” peptides, as the
lack of immune transition in our dataset may merely reflect
the lack of experimental evaluation. For transitional peptides,
in silico mutagenesis followed by neighbor network analysis
was conducted. Mean immunogenicity scores of both all single
amino acid mutants and those within the same cluster to the
parental peptide were computed.

Immunogenicity Score Dynamics
For quantitative comparison of immunogenicity for a given pair
of peptides, either the ratio of immunogenicity scores (divided
by the lower score), termed “relative score change,” or the

absolute difference of immunogenicity scores divided by the
lower score, termed “normalized score change,” was used as a
metric. To systematically explore the position-specificmutational
impacts for a given parental peptide, relative score change was
computed for every pair of computationally simulated mutants.
For heatmap analysis, peptide pairs were grouped based on
their mutated residue combinations, and median normalized
score changes were calculated for each group. Heatmaps were
visualized using the ComplexHeatmap package (82).

Escape Potential
Escape potential of a given peptide was defined as the maximum
difference of the cluster-mean immunogenicity scores between
the cluster to which the target peptide belongs and the
other clusters in the neighbor network constructed from all
possible single amino acid variants assigned with simulated
immunogenicity scores. A large escape potential means that
a single mutation could cause a significant loss of predicted
immunogenicity. A negative value indicates that the target
peptide resides in the least immunogenic cluster, and the target
epitope would not likely lose its immunogenicity further by any
single mutation.
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