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Abstract The global coronavirus disease 2019 (COVID-19) pandemic has deranged the recent history
of humankind, afflicting more than 27 million individuals to date. While the majority of
COVID-19 patients recuperate, a considerable number of patients develop severe compli-
cations. Bilateral pneumonia constitutes the hallmark of severe COVID-19 disease but an
involvement of other organ systems, namely the cardiovascular system, kidneys, liver, and
central nervous system, occurs in at least half of the fatal COVID-19 cases. Besides
respiratory failure requiring ventilation, patients with severe COVID-19 often display
manifestations of systemic inflammation and thrombosis as well as diffuse microvascular
injury observed postmortem. In this review, we survey the mechanisms that may explain
how viral entry and activation of endothelial cells by severe acute respiratory syndrome
coronavirus 2 can give rise to a series of events including systemic inflammation,
thrombosis, and microvascular dysfunction. This pathophysiological scenario may be
particularly harmful in patients with overt cardiovascular disease and may drive the fatal
aspects of COVID-19.We further shed lighton the roleof the renin–angiotensin aldosterone
system and its inhibitors in the context of COVID-19 and discuss the potential impact of
antiviral and anti-inflammatory treatment options. Acknowledging the comorbidities and
potential organ injuries throughout the course of severe COVID-19 is crucial in the clinical
management of patients affecting treatment approaches and recovery rate.
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Introduction

The novel coronavirus disease 2019 (COVID-19) has rapidly
progressed to a global pandemic infecting over 23 million
people in 188 countries by the middle of August 2020.1 The
basis underlying COVID-19 is infection with severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), which
originates from the Coronaviridae family of viruses that are
usually associatedwith respiratory infections.2,3Although the
respiratory manifestations of COVID-19 are well docu-
mented,4,5 recent studies have also observed cardiovascular
complications in patients.6,7 Viral infection is associated with
increased inflammatory biomarkers including interleukin-6
(IL-6) andD-dimer,8whichmay influence severe cardiovascu-
lar clinical features such as thrombosis and cardiac injury as
observed in limited cohorts of COVID-19 patients.9–11

It is well established that outbreaks of acute respiratory
infections such as influenza may trigger an increase in
coronary deaths due to myocardial infarction or stroke.12,13

Previously, similar viral epidemics including severe acute
respiratory syndrome (SARS) reported common cardiovas-
cular complications such as acute myocardial infarction and
increased susceptibility to thrombosis.14,15 In the case of
SARS-CoV-2, however, the risk of ischemic stroke was 7.5-
fold higher than that of influenza patients.16 Furthermore,
emerging evidence from the current COVID-19 pandemic
suggests that individuals with preexisting cardiovascular
risk factors including heart failure, hypertension, and diabe-
tes may be more susceptible to severe infection.4,17–19

Although the interactions between COVID-19 and cardio-
vascular inflammation require further investigation, this
review will focus on the potential mechanisms by which
SARS-CoV-2 infects its host with a particular focus on
vascular endothelial cell dysfunction. Specifically, we seek
to describe the immunoinflammatory mechanisms that may
disproportionately affect COVID-19 patientswith underlying
cardiovascular pathologies leading to their hypercoagulable
states and cardiac injury. Finally, we discuss promising
therapeutic options targeting the hyperinflammation asso-
ciated with severe SARS-CoV-2 infection.

Mechanisms of Cellular Entry and Infection

Viruses cause infections in hosts by entering the cells to exploit
the cellular machinery of the host to further replicate and
spread from cell to cell. It has been established that the SARS-
CoV-2 uses the protein angiotensin-converting enzyme-2
(ACE2) efficiently, even more so than the original SARS-CoV,
to invade the host cells.20–22 ACE2 is an extensively present cell
surface enzyme. Li and colleagues recentlyanalyzed the expres-
sion of ACE2 across 31 human tissues using datasets provided
from Genotype-Tissue Expression (GTEx) and The Cancer
Genome Atlas (TCGA). They found the highest expression of
the receptor in the small intestines, testes, kidneys, heart,
thyroid, and adipose tissue, whereas the lowest expression
was observed in the blood, spleen, bonemarrow, blood vessels,
andmuscle.23Moderate expression levels were reported in the
lungs, colon, liver, bladder, and adrenal gland. Nevertheless,

these findings do not specify cell-specific expression of the
receptor and remain to be further validated in protein levels. A
study by Chen et al examined the cellular expression of ACE2 in
the human heart via single nuclear transcriptome analysis and
found that ACE2 expressionwas low in cardiomyocytes, where-
as it was high and specific to pericytes.24 Moreover, another
study by Nicin and colleagues using single nuclei RNA sequenc-
ing likewise reported ACE2 expression particularly in peri-
cytes.25 They also reported the expression of the receptor in
cardiomyocytes as well as mural cells and lower levels of
expression were also observed in fibroblasts, endothelial cells,
and leukocytes. Furthermore, cardiomyocyte expression of
ACE2 was found to be significantly increased in patients with
heart disease. The extensivepresenceof this receptormaybe an
explanation to the wide spectrum of symptoms and complica-
tions of COVID-19, such as respiratory and gastrointestinal
distress, loss of taste and smell, and multiorgan dysfunction
including cardiac and liver injuryaswell as renal failure. ACE2 is
a central regulator in the renin–angiotensin aldosterone system
(RAAS), a hormone systemcrucial for themaintenance of blood
pressure as well as the fluid and electrolyte homeostasis in the
body (►Table 1).26 Imbalances in RAAS can lead to hyperten-
sion, and the components of this system are known to further
augment cardiovascular risk factors such as inflammation,
thrombosis, insulin resistance, and obesity (►Table 1).27There-
fore, the doorway receptor of SARS-CoV-2, ACE2, plays a pivotal
role in cardiovascular health and disease among other factors.

RAAS is activated in response to renin released by kidneys
in the events of low blood supply and low sodium load.
Circulating renin then cleaves its substrate angiotensinogen
produced by the liver, which produces the peptide hormone
angiotensin I. Predominantly occurring in the lungs, angio-
tensin I is further cleaved by ACE to produce angiotensin II
(►Table 1).28 Angiotensin II constricts blood vessels and
increases blood pressure to replenish the blood supply to
the kidneys in addition to stimulating aldosterone synthesis
in the adrenal cortex for renal sodium reabsorption.29 Con-
sequently, RAAS activation leads to increased blood pressure
and pharmacological blockade of the RAASvia ACE inhibitors
(ACEis) and angiotensin II receptor blockers (ARBs) are used
widely to treat hypertension in patients suffering from
cardiovascular disease (CVD).27

While the RAAS is fulfilling its aim in assisting the kidneys
viatheeffectsofangiotensin II, its impactonthevasculaturecan
introduce adverse cardiac outcomes such as left ventricular
hypertrophydue tohypertension.30This impactmaybefurther
detrimentalespecially inthecaseofpresentunderlying risksfor
CVDs including atherosclerosis. Angiotensin II and its receptor
angiotensin II receptor type I (AT1) promote inflammation at
the vascular wall by several mechanisms including increased
oxidative stress via reactive oxygen species, NF-kB-mediated
adhesion molecule expression, and cytokine and chemokine
release (►Table 1).31 These events vastly contribute to endo-
thelial dysfunction and arterial leukocyte recruitment, which
are major drivers of atherosclerotic plaque development.28

Moreover, RAAShas been shown to enhance insulin resistance.
In the clinic, it could be demonstrated that type II diabetes in
humans may be dependent on actions of angiotensin II as

Thrombosis and Haemostasis Vol. 120 No. 12/2020 © 2020. Thieme.

Immunoinflammatory, Thrombohaemostatic, and Cardiovascular Mechanisms in COVID-19 Gencer et al.1630

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



several studies have shown improved insulin resistance in
patients treated with ACEis as well as ARBs (►Table 1).32,33

Furthermore, additional components of RAAS, such as
aldosterone, renin, and angiotensinogen, were shown to be
elevated in the circulation of obese patients revealing a
significant link between RAAS and obesity (►Table 1).34–38

RAAS is also upregulated locally in adipose tissue during
obesity, which links angiotensin II to increased adipocyte
growth and inflammation within the tissue.39,40 In conclu-
sion, activation of RAAS and thus its predominant effector
hormone, angiotensin II, introduces several deleterious con-
sequences which are critical mechanisms driving the patho-
physiology of CVDs and its comorbidities.41 The key switch
antagonizing angiotensin II-driven effects of RAAS is the
action of ACE2. Although structurally homologous to ACE,
the physiological function of ACE2 is actually to counterbal-
ance the functions of ACE and to establish a vital equilibrium
in RAAS.42 By hydrolyzing angiotensin II, ACE2 produces
angiotensin (1–7) and ultimately diminishes angiotensin II
levels and function. Moreover, angiotensin (1–7) reduces
blood pressure by acting as a vasodilator in contrast to
angiotensin II. Angiotensin (1–7) and its receptor MAS1
oncogene (Mas) offer further cardioprotective effects such
as reduced insulin resistance, antithrombotic effects through
nitric oxide release, and decreased inflammation by NF-kB
pathway blockade (►Table 1).43–46 Therefore, ACE2 is a
crucial regulator of RAAS, overcoming its hostile side effects
and thereby supporting cardiac health.47

In spite of its extensively protective roles as mentioned
above, ACE2 provides an invasion pathway to SARS-CoV-2 via

its extracellular domain that is recognized and targeted by the
virus to gain intracellular access.48 The virus expresses a class I
fusion protein, known as the Spike (S) protein, on its envelope
establishing its characteristic “crown-like” exterior hence its
name “corona.”49 The S protein facilitates the engagement of
the virus to thehost cell via its subunit S1,which possesses the
binding region to the extracellular domain of ACE2.50 Viral
attachment is followed by fusion and internalization of the
virus into the target cell via theSprotein subunit S2.51Acrucial
event enabling the S2 subunit-driven fusion is the priming of
the S protein, which is executed by the host transmembrane
protease serine 2 (TMPRSS2). Notably, TMPRSS2 is expressed
in endothelial cells giving rise to their susceptibility as a target
cell. Confirming its role inviral entry, an inhibitor of this serine
protease involved in S proteinpriming can blockcellular SARS-
CoV-2 entry.20,52 Internalization of the virus entails endocy-
tosis of the virus presumably along with its bound receptor
ACE2. As a result, the virus entry eliminates ACE2 from the cell
surface and subsequently attenuates the receptor activity and
its protective roles through the angiotensin (1–7)–Mas path-
way leading to unbalanced RAAS.47,53 This is supported by the
findings that SARS-CoV-infectedmice displayed reducedACE2
levels in their lungs, which was likewise observed upon the
recombinant SARS S protein treatment.54 Moreover, Zhong
and colleagues showed that angiotensin II infusion in ACE2-
deficient mice led to hypertension, pathological hypertrophy,
myocardial fibrosis, and diastolic dysfunction. However, this
phenotypewas alleviated inwild-typemicewith recombinant
humanACE2 (►Table 1).55 Therefore, in addition to theknown
pulmonary consequences of COVID-19-related inactivation of

Table 1 The role of RAAS in cardiovascular comorbidities associated with severe COVID-19 infection

Pathology Relevant role of RAAS References

Hypertension • RAAS is activated in response to renin released by kidneys with low blood supply and it increases blood
pressure via its vasoconstrictive hormone angiotensin II

26–28

• Zhong et al showed that angiotensin II infusion in ACE2-deficient mice leads to hypertension as well as
diastolic dysfunction

55

• In contrast to angiotensin II produced by ACE, angiotensin (1–7) produced by ACE2 acts as a
vasodilator and reduces blood pressure

26–28

Insulin
resistance

• RAAS is shown to enhance insulin resistance and thus type II diabetes in humans via angiotensin II 32,33

• RAAS inhibition by losartan, an angiotensin receptor blocker, in patients showed improved insulin
resistance as well as glucose homeostasis

148

• Angiotensin (1–7)/MasR axis is shown to promote glucose uptake by rat skeletal muscle in vivo and
thereby improves insulin sensitivity

43

Obesity • RAAS is activated in adipose tissue during obesity and promotes adipocyte growth and inflammation 36,39

• Components of the RAAS were shown to be increased in obese patients 34,35,38

Endothelial
dysfunction

• AT1 receptor in activated RAAS drives endothelial oxidative stress and adhesion molecule expression
via the NF-kB pathway, thus impairs endothelial function

28,31

• Angiotensin (1–7)/MasR axis promotes nitric oxide release 44

Inflammation • Angiotensin II–AT1 axis promotes inflammation at the vascular wall via increased oxidative stress and
NF-kB-mediated adhesion molecule expression along with cytokine and chemokine release

31,149

• Angiotensin II supports endothelium–immune cell adhesion by stimulating endothelial vascular cell
adhesion molecule-2 via NF-kB

149

• ACE2/angiotensin (1–7) axis exerts anti-inflammatory and antifibrotic effects by inhibiting the
MAPK/NF-kB pathway

45,46

Abbreviations: ACE2, angiotensin-converting enzyme-2; AT1, angiotensin II receptor type I; RAAS, renin–angiotensin aldosterone system.
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ACE2 receptors such as the acute respiratory distress syn-
drome (ARDS), ACE2 inactivation has great potential to also
impair cardiovascular health in several ways.56,57 Low ACE2
expression, due to various reasons such as older age, diabetes,
orhypertension, inpatientsmay increase the severityof SARS-
CoV-2 infection.58 This notion is also in linewith the epidemi-
ological statistics revealing that significant numbers of
patients facing serious and even fatal manifestations of the
COVID-19 consist of elderly and CVD patients.59

SARS-CoV-2 and Endothelial Dysfunction

Asmentionedpreviously, SARS-CoV-2 canpromoteendothelial
dysfunction by shifting the balance in RAAS to the angiotensin
II/AT1 axis, which elevates oxidative stress and inflammation.
Endothelial dysfunction is characterized by a decrease in nitric
oxide levels as a consequence of impaired endothelial nitric
oxide synthase function. Nitric oxide is a vasodilator and its
deficiency leads to hypertension by constricting the blood
vessels, and it can further elicit thrombosis and vascular
inflammation.60–62 In addition to the RAAS-mediated effects,
emerging evidence revealed that SARS-CoV-2 can also directly
cause endothelial dysfunction by infecting endothelial cells.
Varga and colleagues showed accumulation of viral bodies in
endothelial cells of several organs, including the kidneys and
small intestines, fromCOVID-19 patients, whichwas accompa-
nied by increased endothelial cell inflammation and apopto-
sis.63 The authors also reported “lymphocytic endotheliitis in
lung, heart, kidney, and liver.”63Moreover, SARS-CoV-2 induces
systemic inflammation in the host leading to significantly
increased levels of proinflammatory cytokines in the circula-
tion, such as IL-6 and tumor necrosis factor-α (TNF-α).17 As the
vascular endothelium forms a protective layer between the
organs and the circulatory system, endothelial cells are con-
stantly exposed to various circulating molecules. Therefore, in
the event of SARS-CoV-2-induced cytokine release, endothelial
cells are primarily influenced by the potent effects of these
inflammatory cytokines. Increased adhesion molecule expres-
sion and chemoattractant release are critical processes medi-
ated by activated endothelial cells in response to inflammatory
stimuli. These events further augment inflammation of the
vascular wall by promoting leukocyte recruitment. In conclu-
sion, SARS-CoV-2 can impair endothelial function by several
mechanisms includingdirect-viral-infection-inducedendothe-
liitis and endothelial injury leading to shifts in the angiotensin
II/AT1 axis and host inflammatory response.

Furthermore, Chen et al point out that pericytes express
high levels of ACE2, which was especially increased in
patients with basic heart failure leading to their evaluation
of pericytes as the “cardiac target cell of SARS-CoV-2.”24

Additionally, the authors speculated that pericyte injury
may lead to endothelial dysfunction at the capillary level
and might compromise the microcirculation. Further com-
plicating the issue, recent reports on detection of SARS-CoV-
2 in the central nervous system (CNS) of COVID-19 patients
support the notion that severe illness may be due to CNS
involvement and neurological manifestations.64 In the case
of CNS involvement, it is clear that the blood–brain barrier

and its endothelium represent a unique setting compared
with other endothelial cells in the body due to its specific
expression of enzymes and transport molecules.65 Evidence
from earlier SARS and MERS outbreaks suggest that SARS-
CoV-2 likely invades the CNS through ACE2 as it does with
other tissues; however, additional molecules including
CD147 may also play a role in viral entry.66

Endothelial dysfunction is a common theme for numerous
conditions known to be especially disadvantageous for
COVID-19 patients including CVDs and their comorbidities.67

SARS-CoV-2-driven systemic endothelial cell injury raises
the threat of multiple organ failure, and patients who are
already suffering from impaired endothelial function due to
underlying conditions, like CVDs, are at much higher risk for
severe complications of COVID-19. Accordingly, treatment
strategies aimed at restoring endothelial function in COVID-
19 patients, such as tackling nitric oxide deficiency, should
be implemented strictly. For example, phosphodiesterase
type 5 (PDE-5) inhibitors are used in the treatment of erectile
dysfunction with the aim of restoring NO-mediated erectile
smooth muscle relaxation, and the PDE-5 inhibitors, silden-
afil and tadalafil, were shown to improve endothelial func-
tion by increasing flow-mediated vasodilation in patients
with chronic heart failure and type 2 diabetes.68,69 In addi-
tion to its endothelial-protective effects, nitric oxide is
proven to protect against the original SARS-CoV. Akerström
et al showed that nitric oxide interferes with S protein and
ACE2-mediated viral fusionmechanismwhile also inhibiting
viral replication in the early stages.70,71 Consumption of
nitric oxide boosting foods, such as beetroot, may be benefi-
cial to improve the endothelial function and to limit throm-
bus formation as well as viral infection.72 In addition,
experimental modalities for directly and specifically protect-
ing endothelial cells against damage-induced apoptosis, e.g.,
microRNA mimics, could be considered.73

Inflammation

While lung epithelial and vascular endothelial cell infection
is the direct consequence of SARS-CoV-2, viral infection can
also elicit severe systemic inflammation that may underlie
the cardiovascular complications seen in COVID-19 patients.
The severity of SARS-CoV-2 infection has been associated
with immune cell dysregulation together with inflammatory
cytokine storms (►Fig. 1).17,18

Pathological analysis of lungs from patients with COVID-19
compared with patients with influenza revealed similar total
lymphocytic infiltration; however, CD4þ T cell subsets were
increased in COVID-19patientswhile CD8þ T cell subsetswere
decreased.74 More specifically, CD4þ T cells resembled proin-
flammatory CC-chemokine receptor 6 (CCR6þ ) T helper 17
(Th17) cells while CD8þ T cells harbored higher percentages of
cytotoxic granules.75 A genome-wide association study from
the Italian and Spanish epicenters observed an association
between SARS-CoV-2 infection with polymorphisms at chro-
mosome3p21,whichencodes a clustergenes for theABOblood
group as well as for chemokine receptors including chemokine
receptor 9 (CCR9) and C-X-C motif receptor 6 (CXCR6).76
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Interestingly, both chemokines control T cell migration, which
may link them to both Th17-mediated lung and atherosclerotic
inflammations.77–79

Outside of the lungs, significant lymphopenia in theblood is
associated with severe infection.80,81 Flow cytometric analysis
revealed that T cells from COVID-19 patients were hyperacti-
vated with increased expression of human leukocyte antigen-
DR isotope (HLA-DR) andCD38.75 Furthermore, hyperactivated
T cells fromCOVID-19patientswere shown toupregulate CD25
and IL-2 expressionwhile Tregulatory-associated foreheadbox
P3 (Foxp3) expression was downregulated, which may lead to
unregulated T cell proliferation in response to SARS-CoV-2
infection.82 Clinical characteristics of COVID-19 patients
reported cytokine storms with increased concentrations of
several inflammatory cytokines including IL-2, IL-6, and TNF-
α17. Overactivation of proinflammatory Th17 and high cyto-
toxicity of CD8þ cells may help explain the severe lung injury
presented in some COVID-19 patients. Although this cytokine
stormmay be in part attributed to T cells, several reports have
noted a low level of interferon responses in COVID-19 patients

suggesting SARS-CoV-2 has more distinct transcriptional re-
sponse compared with other respiratory viruses.83,84

Macrophages, on the other hand, represent another likely
source of the cytokine storm. The systemic cytokine profile
observed in COVID-19 patients has been compared with mac-
rophage activation syndrome (MAS), which is typically charac-
terized by uncontrolled activation and expansion of both
macrophages and T cells.85,86 In addition to resident lung
macrophages, proinflammatory monocyte-derived macro-
phages appeared to be abundant in the bronchoalveolar fluid
of COVID-19patients. Interestingly, RNA-sequencing (RNA-seq)
analysis of those macrophages revealed an upregulation of
inflammatory cytokines including IL-1B and IL-6 as well as
chemokine receptors such as CCL2 and CCL3 in severe COVID
infections, which may suggest recruitment of inflammatory
monocytic cells together with neutrophils.87 The hyperactiva-
tion of macrophages with its subsequent cytokine profile may
account for the severe lymphopenia observed in COVID-19
patients asonestudy revealed increasedexpressionof thedeath
receptor FAS on T cells that could mediate activation-induced

Fig. 1 Summary of systemic effects of SARS-CoV-2 infection on endothelial cells, immune cells, coagulation system, and cardiac inflammation.
Viral infection first mediates endothelial dysfunction with observed changes in the RAAS system as well as inflammation, oxidative stress,
upregulation of adhesion molecules for leukocyte recruitment, and intravascular coagulation leading toward microthrombi in the lungs.
Inflammatory cytokine storms involving expression of macrophage IL-6 and TNF-α leading to hyperactivation and increased apoptosis of
lymphocytes characterize systemic inflammation in severe COVID-19 patients. Ultimately, inflammation may be tied to both elevated levels of
thrombosis and cardiac injury as observed in markers such as the D-dimer and troponin. Created with Biorender. CK, creatine kinase; IL-6,
interleukin-6; NT-proBNP, NT-proB-type natriuretic peptide; RAAS, renin–angiotensin aldosterone system; TNF-α: tumor necrosis factor α.
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cell death.88 Recently, severe COVID-19 has been characterized
by a highly pronounced formation and aggregation of neutro-
phil extracellular traps (NETs) inside microvessels, leading to
rapid occlusion, disturbedmicrocirculation, and organ damage.
Neutrophil granulocytes are stronglyactivated andadopt a low-
density phenotype prone to spontaneously form NETs, and
accordingly markers of NET turnover are increased in COVID-
19 and linked to disease severity. This process could potentially
be targeted by heparin (►Table 2).89

However, several studies have also reported increased T
cell exhaustion in severe infections as noted by increased
expression of programmed cell death protein 1 (PD-1) on T
cells from COVID-19 patients, whichmight be a consequence
of T cell hyperactivation that leads to lymphopenia.81,90

Postmortem autopsies revealed that SARS-CoV-2 infection
resulted in increased apoptosis of T cells in lymph nodes and
spleen, which may be mediated by direct infection though
lymphocytic ACE2 expression, which is still question-
able.75,88 In recovering COVID-19 patients, single cell (sc)
RNA-seq and T cell receptor sequencing (TCR-seq) revealed
high levels of expression for inflammatory genes, but de-
creased T cell expansion compared with healthy controls
further suggesting that T cell exhaustion plays an important
role in SARS-CoV-2 infection.91

Importantly, inflammation from immune cells like T cells
and macrophages plays a key role in CVDs such as atheroscle-
rosis. Due to this inflammation, COVID-19 patients have a

higher risk for cardiovascular manifestations including myo-
cardial infarction and stroke.16,92 A link between acute infec-
tions and adverse cardiovascular events has been established,
but the cytokine storm observed in severe COVID-19 patients
may heighten the risk.93 Using hyperlipidemic mice models,
previous research has established proatherogenic roles for
inflammatory cytokines within the cytokine storm such as
IL-6 and TNF-α.94,95 Both cytokines are actively produced by
innate and adaptive immune cells, possibly in response to
initial complement cascades or innate immune cell inflam-
masome activation and subsequent IL-1β production96–98

leading to microvascular injury and thrombotic microangiop-
athy insomepatientswithCOVID-19(►Fig. 1). Inflammasome
activation has been previously linked to pyroptosis of macro-
phages and endothelial cells leading to massive thrombosis,
which may be fundamental to understanding the unusual
thrombosis risks associated with COVID-19.99,100

IL-1β activates endothelial cells during vascular inflamma-
tion to upregulate adhesion molecules allowing leukocytes to
infiltrate and expand atherosclerotic lesions. Within the pla-
que, IL-1β induces collagenase, metalloproteinase, and cyto-
kine expression leading to plaques that aremore vulnerable to
rupture.101 Plaque rupture leads to the activation of platelets
and thrombosis formation, which may occlude the vessel
lumen leading to potential cardiovascular complications. In
humans, the Canakinumab Anti-Inflammatory Thrombosis
Outcomes Study (CANTOS) demonstrated the ability of IL-1β

Table 2 Potential therapeutics for treating the hyperinflammation observed in severe COVID-19 patients

Potential treatments Targets and action References

Anticoagulants • Low-molecular-weight and unfractionated heparin as first line of treatment to prevent
thrombotic events through activation of antithrombin III

112,113

• Heparin may have additional antiviral and anti-inflammatory properties that prevent
viral entry into cells by displacing surface proteoglycans including the S protein of
SARS-CoV-2 as well as prevention of vascular-occluding neutrophil extracellular traps

89

• Danaparoid, typically prescribed to patients with thrombocytopenia and venous
thromboembolism, may be a secondary option which inhibits factor Xa and thrombin

112,113

• Concentrated danaparoid dosage nebulized into the lungs may direct its effect toward
the lung, but no published reports exist for COVID-19 usage

112

RAAS inhibitors • RAAS has been shown to drive inflammation through the angiotensin II–AT1 axis.
Inhibitors of RAAS such as ACEis and ARBs interfere with the ACE2-driven angiotensin II
production and angiotensin II binding to its receptor, respectively. Therefore, RAAS
inhibitors may decrease RAAS-driven inflammation

31,127

Cytokine-blocking
therapies

• Monoclonal antibody treatments targeting cytokines produced during the hyper-
inflammatory state in COVID-19 patients have been previously shown to reduce risk in
several diseases including atherosclerosis

102,103

• The COVACTA trial which utilized tocilizumab to target the IL-6 receptor reported that
patient status and mortality were not improved after 4 weeks of treatment

104,140

• Ongoing clinical trials are testing the effectiveness of IL-1 inhibition through the use of
high-dose anakinra and canakinumab

103,141,142

Corticosteroids • Systemic glucocorticoid treatment has been shown to reduce viral shedding in
previous SARS and MERS outbreaks on top of their known anti-inflammatory and
immunosuppressive effects

• The RECOVERY trial demonstrated a 6 mg daily dosage of dexamethasone reduced the
28-day mortality rate of patients receiving oxygen

143,144

Abbreviations: ACE2, angiotensin-converting enzyme-2; ACEi, ACE inhibitor; ARB, angiotensin II receptor blockers; AT1, angiotensin II receptor type I;
IL, interleukin; MERS, Middle East respiratory syndrome; RAAS, renin–angiotensin aldosterone system; SARS, severe acute respiratory syndrome.
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inhibition to reduce adverse cardiac events.102,103 Although
most studies have not reported an increase in IL-1β levels, IL-1
receptorblockadewasassociatedwithclinical improvement in
COVID-19 patients without invasive ventilation.104 Similarly,
IL-6 antagonism using tocilizumab has proven to be an effec-
tive treatment for severe infection.105 Considering several
studies have reported hypercoagulable states in COVID-19
patients, further studies investigating a link between SARS-
CoV-2 infection, vascular inflammation, and atherothrombo-
sis are needed.

Thrombosis

In severe COVID-19 cases, patients develop a type of ARDS,
which is characterized by alveolar damage and fibrosis that
may bedue to the infiltrationof immune cells andcytokines as
mentioned previously. Fibrin deposition may be a conse-
quence of the hyperactivation of macrophages and T cells
duringMAS, which leads to increased endothelial cell damage
and diffuse lung injury.106 Supporting the inflammatory hy-
pothesis for increased thrombosis, serum proteomic analysis
revealed that elevated IL-6 was a critical marker for upregu-
lation of coagulation markers including Factor 5, 7, and 10 in
the most severe COVID-19 patients.107 Thromboelastometry
measures may be beneficial to distinguish the difference in
hypercoagulability of mild and severe cases as prolonged clot
formation time and ThromboDynamic Index were reported in
critically ill patients needing invasive ventilation.108Ultimate-
ly, severe SARS-CoV-2 infection presents with pulmonary
intravascular coagulation that appears to be similar to dissem-
inated intravascular coagulation.106 Several studies observe
consistent hematological parameters such as increased D-
Dimer with moderate thrombocytopenia that support an
increase in thrombus formation as well as the breakdown of
fibrinproducts (►Fig. 1).4,9,109 Further complicating the issue,
a small studycomparing theclot lysisbetweencontrol samples
and COVID-19 samples described impaired lysis pointing to
fibrinolytic resistance on top of the hypercoagulability during
severe SARS-CoV-2 infection.110

When compared with influenza patients, COVID-19
patients had nine times as many alveolar capillary micro-
thrombi leading to significant capillary occlusion.74 A series
of autopsies found an interesting link between the increase
in thrombosis and ACE2 expression. Thrombotic microangi-
opathywas not observed in tissues not expressing ACE2 such
as vasculature of the kidneys; however, multiple thrombotic
events were discovered in ACE2-expressing lung and brain
parenchymal capillaries.111 Therapeutic anticoagulant treat-
ment has been associated with decreased mortality in
COVID-19 patients highlighting thrombosis as a critical
turning point in SARS-CoV-2 infection.112 Specifically, low-
molecular-weight and unfractionated heparin has been pro-
posed as the first line of treatment, which may possess both
anti-inflammatory and antiviral properties via disrupting
viral interaction with ACE2 (►Table 2).113,114 More targeted
anticoagulant therapies, including inhaled danaparoid, may
allow a directed approach to tailor treatment toward the
thrombus-induced inflammation in the lungs.113

While microthrombi contribute to the development of
respiratory dysfunction, they may also lead to multiorgan
damage including cardiovascular complications such as heart
failure. Lung injury due to increased thrombosis may induce
pulmonary hypertension, which leads to observable increases
in cardiac troponin, creatinekinase (CK), andN-terminal pro-B
type natriuretic peptide levels in critically ill COVID-19
patients.6,11,18,115 Outcomes from an in-hospital study
reported 32%of COVID-19patientshadheart failure. However,
the numbers were skewed toward nonsurvivors when com-
paringnonsurvivors (52%heart failure) to survivors (12%heart
failure), suggesting heart failure may correlate with disease
severity rather than infection itself.8 Similarly, in a cohort of
799 COVID-19 patients, heart failure was the second most
common cause of death after ARDS.116 The combination of
right ventricularheart failuretogetherwith lungfibrosismight
contribute to decreased lung perfusion leading to a hypoxic
state observed in severe cases.117 Interestingly, one postmor-
tem study observed increased pulmonary angiogenesis in
COVID-19 patients, suggesting new vessel growth was neces-
sary for accurate lung perfusion.74 Furthermore, arterial or
venous thrombosis accounted for 16.4% of COVID-19 hospital
readmissions in a cohort of 1,368 patients likely influencing
ischemic conditions in severe cases.118 Preexisting cardiovas-
cular comorbidities including hypertension and diabeteswere
associated with COVID-19 case severity, which likely exacer-
bate heart failure and other cardiac injuries.4,17,19

Cardiac Injury

Although heart failure represents one side of the cardiac
injury involved in SARS-CoV-2 infection, several studies have
also reported cardiac arrhythmia and myocarditis in COVID-
19 patients. A retrospective study identified the heart was
the earliest damaged tissue after the lungs following SARS-
CoV-2 infection.119Whilemost studies have not investigated
specific arrhythmias, one report observed arrhythmic com-
plication in 16.7% of COVID-19 patients, making it the most
common complication after ARDS (►Fig. 1).18 Furthermore,
arrhythmiasmaymanifest inmore severe cases as one report
found arrhythmias more often in patients admitted to an
intensive care unit.18 Thrombus-induced hypoxia or inflam-
mation may in part explain the high prevalence of arrhyth-
mias in COVID-19 patients especially those with preexisting
cardiovascular risk factors.120 However, elevated cardiac
troponin and CK levels may indicate an underlying myocar-
dial inflammation considering irregular ventricular arrhyth-
mias can be associated with myocarditis.121,122

To date, there is limited clinical evidence of myocarditis
with only a few case reports in COVID-19 patients all with
varying degrees of myocardial inflammation (►Fig. 1).6,7,123–125

However, themechanism behind this cardiac injury in COVID-
19 remains unclear particularly as a primary or secondary
effect of SARS-CoV-2 infection. Interestingly, the receptor for
viral entry, ACE2, is expressed in pericytes of the cardiovascu-
lar system, and its expression appears to be upregulated in
failing hearts.24 Additionally, single-cell RNA sequencing
revealed that cardiomyocytes also express ACE2, which was
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upregulated in patients receiving ACEis for pre-existing car-
diovascular conditions.25However, COVID-19patientspresent
acute cardiac injury symptoms on average 15 days after the
onset of symptoms suggesting direct infection may not be the
likely cause of myocardial inflammation.8,126 A secondary
immune-mediated effect of SARS-CoV-2 might be the more
likely explanation considering the timeline of symptoms.
Particularly, inflammatory hyperactivation, as observed by
the cytokine storm, and subsequent increase in inflammatory
biomarkers havebeen associatedwithmyocardial damage and
cardiac injury.11,127 To distinguish the cardiac injury mecha-
nisms at play in SARS-CoV-2 infection, further investigation
requires a systematic elevation of larger cohorts of severe
COVID-19 cases as well as experimental work using both in
vitro and in vivo models.

Outlook for Targeting SARS-CoV-2
Inflammation

Hyperinflammation appears to be a common theme in the
immunomodulatory, thrombotic, and cardiovascular com-
plications associatedwith SARS-CoV-2 infection. Therefore, a
variety of anti-inflammatory treatments havebeenpurposed
for severe COVID-19, including RAAS inhibitors, cytokine-
blocking therapies, and corticosteroids. However, prelimi-
nary evidence for each therapy demonstrates both advan-
tages and disadvantages depending on their target.

Inhibitors of RAAS, such as ACEis andARBs, arewidely used
to treat hypertension. In the context of atherosclerosis, these
inhibitors were also shown to be effective in suppressing
inflammation as well as oxidative stress (►Table 2).128 The
use of RAAS blockers in COVID-19 patients, however, has
caused a great dilemma among health care workers, due to
their probable impact on ACE2-SARS-CoV-2 dynamics.129–131

Keidar and colleagues showed thatmineralocorticoid receptor
blockade via spironolactone, aimed at hindering the activity of
aldosterone, increased ACE2 expression and activity in mono-
cyte-derived macrophages collected from patients with
congestive heart failure.132 Another study showed that an
ARB named telmisartan reduced ACE2 levels in the aorta of
spontaneous hypertensive rats.133 Moreover, Ferrario and
colleagues revealed that the treatment of Lewis rats with
angiotensin II receptor antagonist losartan increased cardiac
messenger RNA (mRNA) levels and activity of ACE2.134 In view
of that, RAAS inhibitor-related ACE2 upregulation has been
hypothesized by several scientists to increase the risk and
incidence of SARS-CoV-2 infection as therewould be theoreti-
callymoredoorwaysavailable for thevirusentry.135Moreover,
there is no scientific evidence to support the theoretical
concern that RAAS136 blockers may increase the threat or
severity of the SARS-CoV-2 infection. Meanwhile, Milne and
colleagues tested mRNA expression levels of ACE2 in human
lung tissues upon ACEi and ARB treatments and disclosed a
decrease in ACE2 levels via ACEi treatment whereas ARB
treatment did not cause any differences.137

Of note, several studies investigating the association be-
tween the risk of SARS-CoV-2 infection and the use of RAAS
inhibitors disclosed that RAAS inhibitors do not impose an

increased risk of viral infection. Mancia and colleagues
reported no association between the use of ACEi and ARB
andCOVID-19 inacase–control study inLombardy, Italywitha
total of 6,272 cases and 30,759 matched controls.138 Another
study in New York City, United States evaluating the connec-
tion between the likelihood of testing positive for COVID-19 as
well as the severity of the disease and the use of RAAS
inhibitors among other treatments, such as β-blockers and
calcium-channel blockers, disclosed no association between
any of these treatments and the risk of infection as well as the
disease severity.139 Finally, another study by Mehra and
colleagueswith a database from 169 hospitals in Asia, Europe,
and North America reported that underlying CVDs are indeed
associatedwith an increased risk of death among thehospital-
ized COVID-19 patients, whereas ACEi and ARB treatment was
not associated with in-hospital death.59

It seems, regardless of its amount, the presence of ACE2 is
sufficient to support virus entry and a decrease of the
receptor activity empowers the severity of the illness due
to the abolished protective roles of ACE2. In this case,
targeting increased activity of ACE2 may be of benefit rather
than a disadvantage to restrict the impact of the COVID-19,
both for the pulmonary and cardiovascular systems.140

Besides, COVID-19 has been shown to cause a strong inflam-
matory response in patients, leading to a so-called cytokine
storm,which also strongly contributes to anARDS.17 This rise
in inflammation further feeds chronic inflammatory dis-
eases, such as atherosclerosis, and therefore worsens the
patients’ prognosis. The immunomodulatory benefit of the
ACE2–angiotensin (1–7)–Mas axis contrasting the proin-
flammatory role of RAAS is especially advantageous with
regard to themanagement of the inflammation and therefore
the manifestations of chronic inflammatory diseases.

The massive immune response observed during SARS-
CoV-2 infection has prompted a search for therapeutics
primarily targeting the inflammatory cytokine storm. Unlike
broad immunosuppression, cytokine-blocking therapies
such as those targeting IL-6 and IL-1β likely should not
dampen the host’s response to the virus.While initial reports
of IL-6R antagonists were promising, the results from phase
III of the COVACTA trial recently announced that tocilizumab
did notmeet its primary endpoint of improved clinical status
of COVID-19 patients (►Table 2).104,141Nevertheless, clinical
trials are still pursuing the clinical relevance of other cyto-
kine-blocking therapies including IL-1β inhibition using
anakinra and canakinumab (►Table 2).142,143

A recent breakthrough heralded in a press release only at
the time of submission may provide further evidence of a
more global role of excessive inflammation and the impor-
tance of its control in COVID-19. The randomized controlled
RECOVERY trial enrolled 2,100 patients who received a low
dose of the corticosteroid dexamethasone for 10 days, and
compared them against 4,300 patients who received stan-
dard care. The results revealed a striking effect of dexameth-
asone among critically ill patients on ventilators and those
receiving oxygen therapy, reducing their mortality by up to
30% (►Table 2).144 Dexamethasone is a type of glucocorti-
coid, which are known to exert potent anti-inflammatory
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effects and are therefore used in the treatment of several
autoimmune and inflammatory diseases such as asthma and
ulcerative colitis.145 Therefore, glucocorticoids may be very
useful in the treatment of heightened immune response to
COVID-19, including the cytokine storms. Moreover, dexa-
methasone treatment might potentially offer further bene-
fits to patients besides immunosuppression. Despite the
association of glucocorticoids with venous thromboembo-
lism,146 a study by van Giezen et al investigating hemostatic
effects of dexamethasone on rats showed a twofold decrease
in arterial thrombosis and reduced platelet aggregationwith
low-dose treatments (up to 1mg/kg).147 It is important to
note, however, that higher doses of dexamethasone (from
1mg/kg onwards) yielded a decrease in fibrinolytic activity
and counteracted the arterial thrombosis. Further research is
needed to explore such potential benefits of dexamethasone
as well as its dose-dependent effects.

Without adoubt, COVID-19presents an immense challenge
for the health care system due to its wide-ranging impact on
the health of diverse groups of patients. Although severe
COVID-19 cases typically present with similar thrombotic
and inflammatory characteristics, data describing the most
representative biomarkers are still evolving. Therefore, future
treatments for thromboinflammationmay need to be tailored
to better fit the patients’ individual needs.148 The safety of the
drugs intended to treat COVID-19 patients should be carefully
considered, especially for those with underlying health prob-
lems, such as CVDs. Larger studies investigating these drugs in
the context of CVDs are needed to identify groups of patients
who are at higher risk for suffering from serious and even
lethal consequences of these treatments.

Conclusion

In this review, we aimed to highlight the immunoinflamma-
tory mechanisms and subsequent thrombohemostatic and
cardiovascular effects of COVID-19 especially in patients
with underlying cardiovascular risk factors. Considering the
novel nature of the virus, our knowledge is still growing with
regard to the systemic and local effects of SARS-CoV-2 infec-
tion. With this in mind, many questions remain unanswered
about the primary and secondary causes of the cardiovascular
manifestationsofCOVID-19patients. In theupcomingmonths,
systematic analyses of larger patient cohorts, in particular at a
genome-wide genetic level, are needed to dissect and explain
differential predisposition in different blood groups and eth-
nicities. Togetherwith experimentalwork, researchersmay be
able to shed more light on the identification of the underlying
mechanisms of inflammation, thrombosis, and cardiac injury
in COVID-19 patients.79 In themeantime, careful evaluation of
new therapeutics for SARS-CoV-2 should highlight their
effects on the cardiovascular system as many studies have
observed cardiovascular complications ranging from ischemic
stroke to myocarditis in severe cases especially with hyper-
tensive and diabetic patients. Considering we have seen sev-
eral similar coronaviruses in the past, careful and thorough
research in SARS-CoV-2will likely improve our understanding
of future coronaviruses.
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