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Abstract Herpes simplex virus type 1 (HSV-1) is capable of
causing a latent infection in sensory neurons that lasts for the
lifetime of the host. The primary infection is resolved follow-
ing the induction of the innate immune response that controls
replication of the virus until the adaptive immune response
can clear the active infection. HSV-1-specific CD8" T cells
survey the ganglionic regions containing latently infected
neurons and participate in preventing reactivation of HSV
from latency. The long-term residence and migration dynam-
ics of the T cells in the trigeminal ganglia appear to distinguish
them from the traditional memory T cell subsets. Recently
described tissue resident memory (Try) T cells establish
residence and survive for long periods in peripheral tissue
compartments following antigen exposure. This review focus-
es on the immune system response to HSV-1 infection. Par-
ticular emphasis is placed on the evidence pointing to the
HSV-1-specific CD8" T cells in the trigeminal belonging to
the Tryv class of memory T cells and the role of Try cells in
virus infection, pathogenesis, latency, and disease.

Keywords Herpes simplex virus - Tissue resident memory T
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Introduction to virus and infection cycle
Herpes simplex virus (HSV) type 1 (HSV-1) is a ubiquitous

human pathogen capable of causing an infection that lasts for
the lifetime of the host as a primary, latent, recurrent, or
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persistent infection. The HSV-1 genome is a 152-kbp
double-stranded linear DNA genome that encodes for up-
wards of 84 genes (Roizman et al. 2007). The genome is
contained within the nucleocapsid, which is surrounded by a
heterogeneous group of proteins collectively designated as the
tegument. The tegument and nucleocapsid are surrounded by
a lipid envelope studded with glycoproteins that are used to
bind to and enter new susceptible cells. HSV-1 is a widespread
pathogen that can be found in up to 53 % of the adult
population in the United States, with carriage found to be
even higher in selected groups of individuals (Xu et al.
2006). A unique feature of HSV-1 and other human o-
herpesviruses (HSV type 2 [HSV-2] and varicella zoster virus
(VZV)) is the ability to cause a latent infection of sensory
neurons innervating peripheral tissues. The latent infection is
maintained for the lifetime of the host and can be periodically
interrupted by asymptomatic or clinically apparent reactivation
events of variable duration and severity. The number of recur-
rent infections in an individual with HSV is highly variable,
whereas reactivation of VZV is seldom observed more than
once or twice over the course of a lifetime. The natural history
of VZV has been dramatically altered by the availability of
vaccines directed at preventing varicella or chickenpox, the
primary disease (Shah et al. 2010), and zoster or shingles, the
reactivated form of the disease (Oxman et al. 2005). An
effective vaccine directed against with HSV-1 or HSV-2
has yet to be delivered to the human population to prevent either
primary or reactivated disease or as a therapeutic modality
(Chentoulfi et al. 2012).

The HSV-1 infection cycle begins when the virus replicates
in epithelial cells following transmission to a new uninfected
host. HSV-1 glycoproteins B (gB) and C (gC) are responsible
for virion attachment to host cells by interacting with heparan
sulfate proteoglycans (HSPGs) (Shukla and Spear 2001).
Filopodia extending out of cells contain high concentrations
of HPSGs, and viruses have been shown to travel along
filopodia to cell bodies in a process termed virus surfing (Oh
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et al. 2010). Cells lacking HSPGs can still be infected by
virions due to the ability of gB to bind to paired immunoglob-
ulin like type 2 receptor alpha (PILR) (Satoh et al. 2008).
Glycoprotein B is highly conserved and is essential for virion
attachment and fusion. Glycoprotein C is considered non-
essential as viruses lacking gC are still infectious, though they
have reduced infection efficiency (Shukla and Spear 2001).

Following binding to the cell surface, the virus enters
through fusion at the plasma membrane or endocytic vesicles.
Fusion is mediated through glycoprotein D (gD) interacting
with cellular receptors which induces a conformational shift in
gD (Carfi et al. 2001). This conformational change causes the
formation of the multiprotein fusion complex which consists
of gD, gB, gH, and gL (Campadelli-Fiume et al. 2007).
Glycoprotein D is capable of using multiple cellular receptors
found on a number of cell types for initiation of fusion.
Herpesvirus entry mediator is used by gD for entry of HSV-
1 into human trabecular meshwork cells (Tiwari et al. 2005).
Specific isoforms of 3-O sulfated heparan sulfate is used for
entry into primary corneal fibroblasts (Shukla et al. 1999).
Nectin-1 is responsible for entry into epithelial cells and,
importantly, neuronal cell populations (Shukla et al. 2012;
Simpson et al. 2005). Additionally, PILR« has been shown
to enable infection of normally resistant cell populations when
they are transfected to express PILRx (Satoh et al. 2008).
HSV-1 has also been shown to be capable of entering cells
through fusion following endocytosis. The mechanism of
entry for this pathway has not been fully defined, but it
appears that it could be cell type- and/or receptor-specific
(Nicola and Straus 2004).

Fusion of the HSV-1 viral envelope with the plasma mem-
brane of susceptible cells delivers the tegument proteins and
nucleocapsid into the cytosol of the target cell. Tegument
proteins serve to regulate cell processes (Strom and Frenkel
1987), evade the immune system (Sen et al. 2013), and
promote transcription of viral genes. Tegument protein VP16
(Vmw65, or an «-transinducing factor [«-TIF]) associates
with host cell factor 1 (HCF1) and octamer-binding transcrip-
tion factor 1 (OCT 1) to form a transcription factor complex
that strongly promotes the transcription of immediate-early
(IE) or « viral genes (Gerster 1988). The transcription of
HSV-1 genes proceeds in an organized temporal pattern, with
« genes being expressed first. The IE gene products serve as
activators for the transcription of early or (3 genes, which
encode for proteins necessary for replication of viral DNA.
Following amplification of the viral genome, the late or y
genes, which comprise the virion structural components, are
expressed, as previously reviewed (Roizman et al. 2011).
Packaged virions are released and spread to nearby uninfected
cells, thereby expanding the amount of infectious virus and
facilitating the spread of the infection to neighboring epithelial
cells. Perhaps more importantly with respect to the natural
history of HSV disease, the virus also infects neighboring

peripheral sensory neurons during primary infection setting
the stage for the establishment of latent infection.

HSV-1 virions bind to and enter axons and travel in a
retrograde direction toward the neuronal cell body, as previ-
ously reviewed (Smith 2012). After reaching the nucleus of
the neuron, the viral genome is translocated from the capsid
and docked at the nuclear membrane into the nucleus, where it
is thought to circularize in preparation for DNA synthesis. The
circular form of the HSV genome has also been shown to be
the predominant form of the genome that is maintained during
the course of viral latency (Mellerick and Fraser 1987; Su
etal. 2002). At the earliest stages of nuclear invasion, there are
a number of different viral replication modes that can be
followed which have different consequences for the infected
neuron. In some cases, genomic activation of IE genes by the
tegument transactivator protein VP16, HCF/OCT, and possi-
bly other factors leads to productive infection with synthesis
of infectious virions that can cause the death of at least some
neurons with the potential for replication and disease in the
periphery after release of the progeny virus from neuronal
axons in the periphery. However, in some neurons, productive
infection may be prevented or aborted by the presence of
neuronal nuclear factors that prevent the activation of the
promoters and therefore prevent or abort productive replica-
tion and send the virus into a latent state (Bloom et al. 2010;
Cliffe et al. 2009; Knipe and Cliffe 2008). It has been pro-
posed that some neurons are more susceptible to productive
infection whereas some neuronal types might be either revers-
ibly or irreversibly susceptible to viral latency based on the
differential presence of regulatory RNAs or regulatory pro-
teins (Bertke et al. 2012, 2011; Yang et al. 2000). The latent
infection is characterized as maintenance of the viral genome
within the neuron in the absence of production of new infec-
tious virus. Viral gene expression is limited to the latency-
associated transcript (LAT) and possibly the low-level expres-
sion of other genes (Feldman et al. 2002; Kramer and Coen
1995; Ramachandran et al. 2010). The protein and/or RNA
regulatory factors that guide the virus into latency or that
maintain the control of the latent state or initiate reactivation
are largely unknown but are beginning to come to light
(Camarena et al. 2010; Kim et al. 2012a, b; Thompson and
Sawtell 2011). It also is possible that the greater distance the
virus must travel to reach the neuronal nucleus, the lower the
level of available tegument proteins that would be available
for promoting the expression of IE genes once the genome
reaches the (Sears et al. 1991) nucleus of the infected neuron.
An additional mechanistic theory centers on neuronal seques-
tration of HCF1 in the cytoplasm instead of the nucleus, in
which case this factor would not be available to interact with
VP16 in the nucleus to enhance transactivation of early pro-
moters and facilitate productive replication (Kristie et al.
1999). A combination of viral and host cell factors is probably
responsible for the establishment and maintenance of latent
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infection of neurons. The latent phase is likely of evolutionary
benefit to the virus as it maintains a stable reservoir of viral
genomic information from which periodic reactivations ema-
nate and allows for transmission of infectious virus to new
hosts over the lifetime of the infected host.

Following selected stimuli, viral gene expression has been
shown to be enhanced, with infectious virus production first in
the ganglia and later at peripheral sites. At least a fraction of
the newly made capsids in the neuronal nucleus are thought to
travel anterograde to the axonal terminal with release into the
periphery (Smith et al. 2001). Reactivation of the virus can
often be asymptomatic, but replication in peripheral epithelial
cells can also lead to symptomatic disease. Herpes labialis is
caused by the formation of vesicular lesions resulting from
replication in epithelial cells. Rupture of these lesions causes
spread of the virus to different anatomical regions or trans-
mission to new hosts. Usually, the disease is self-limiting in
immunocompetent individuals; however, serious disease can
occur in immunocompromised individuals (Rowley et al.
1990). Replication in corneal epithelial cells results in corneal
scarring and can lead to herpes stromal keratitis, a leading
cause of blindness in the United States (Kaye and Choudhary
2006). HSV-1 infection of the brain is rare but can lead to fatal
herpes encephalitis in the absence of early therapeutic inter-
vention (Brady and Bernstein 2004).

Role of the immune system in HSV-1 infection

The immune system plays an important role in limiting HSV-1
replication during primary infection and in maintaining the
viral genome in a latent state for prolonged periods in the
absence of infectious virus production and clinical symptoms.
Replication in peripheral epithelial cells causes production
and release of type 1 interferons that activate cells of the innate
immune system. Activated macrophages secrete interferons
and cytokines, which recruit and activate additional cells of
the innate immune response to the site of infection. Type 1
interferons induce an antiviral state in uninfected epithelial
cells that makes it harder for the virus to replicate in these cells
as well. Recruited neutrophils induce apoptosis in infected
cells and phagocytose dying cells. Activated natural killer
(NK) cells release interferon-y and granzymes A and B,
which induce apoptosis in infected cells. Dendritic cells
(DCs) secrete proinflammatory cytokines, take up antigen,
and present viral peptides to cells of the adaptive immune
system. The innate immune response limits viral replication in
the periphery and presents antigen to the naive lymphocytes to
activate the adaptive immune response. It appears that the
principal role of B cells in the immune response to HSV-1
infection is not to produce neutralizing antibodies but instead
to present antigen and secrete cytokines (Deshpande et al.
2000). Activated CD4" and CD8" T cells play a pivotal role

@ Springer

in clearing the primary infection. Additionally, CDS" T cells
are important for maintaining the virus in the latent state, as
will be discussed below (Fig. 1).

Detection of HSV-1 infection occurs initially within the
infected peripheral epithelial cells. Viral pathogen-associated
molecular patterns (PAMPs) are detected by pattern recogni-
tion receptors (PRRs) within infected cells and induce intra-
cellular signaling, which results in cytokine release and inter-
feron production. Recently, the detection of HSV-1 PAMPs by
cellular PRRs has been reviewed extensively (Melchjorsen
2012; Paludan et al. 2011). Extracellular HSV-1 is detected
as a result of gD binding to PRRs on the surface of the
host cell prior to membrane fusion (Ankel et al. 1998;
Kim et al. 2012a, b). Intracellular PAMPs such as viral nucleic
acids are detected either in the cytoplasm or in endosomal
compartments.

Viral nucleic acids are the primary PAMPs detected by HSV-
infected cells and readily induce expression of proinflammatory
cytokines and interferons. The HSV-1 genome is composed of
double-stranded DNA that contains unmethylated CpG motifs
(Lundberg et al. 2003). CpG motifs are detected by the Toll-like
receptor 9 (TLR-9) embedded in the membrane of endosomal
compartments. How HSV-1 DNA is detected within endosomal
compartments is not definitively known, but the virus is capable
of infecting cells through endocytosis in addition to membrane
fusion (Rahn et al. 2011). HSV-1 DNA from infected cells can
also be endocytosed, where it can be detected by TLR-9 in
plasmacytoid DCs and B cells (Bosnjak et al. 2012; Pollara
et al. 2003). Cytoplasmic DNA sensors detect HSV-1 DNA not
found in endosomal compartments. DNA-dependent activator
of interferon regulatory factors (DAI), interferon-y-inducible
protein 16 (IF116), DXH9, and DXH36 detect DNA motifs in
the cytoplasm. IFI16 has recently been shown to be able to
activate and maintain normal levels of interferon in the ab-
sence of TLR signaling in corneal epithelial cells (Conrady
etal. 2012). DXH9 and DXH36 detect DNA-containing CpG
motifs and activate NF—«B and interferon regulatory factor 7,
respectively.

Although the HSV-1 virion contains a DNA genome,
replication intermediates can be detected by PRRs specific for
double-stranded RNA (dsRNA) (Weber et al. 2006). Endosomal
dsRNA is detected by TLR-3, which is expressed in many cell
types, and expression can be induced by type 1 interferons
(Tissari et al. 2005). The importance of TLR-3 activation in
HSV-1 infection has been illustrated by children with genetically
deficient TLR-3, who have greater susceptibility to herpes en-
cephalitis (Guo et al. 2011; Herman et al. 2012; Zhang et al.
2007). Recently, Lafaille et al. (2012) demonstrated that TLR-3-
deficient CNS cells have reduced intrinsic innate immune acti-
vation. Taking dermal fibroblasts from TLR-3-deficient patients
and generating induced pluripotent stem cells of neuronal line-
age, they demonstrated that TLR-3-negative neurons and oligo-
dendrocytes induce fewer type 1 interferons in response to HSV-
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Fig. 1 HSV-1 immune responses. Productive HSV-1 infection occurs in
epithelial cells in the oral mucosa. Released virions infect neighboring
cells and innervating sensory neurons. The virus travels retrograde to
establish latent infection in the trigeminal ganglia. HSV-1 infection is
detected in epithelial cells and induces production of interferon-f3 (IFN-
f3). IFN-f3 activates innate immune cells, which in turn secrete IFN-«.
Type 1 IFNs induce the antiviral state in an autocrine fashion in the

1 infection. Cytosolic viral RNA intermediates are detected
through retinoic acid inducible gene (RIG)-like receptors
(RLRs) that contain DExD/H box helicase domains (Kato et al.
2008). RIG-I and MDA-5 (melanoma differentiation-associated
gene 5) recognize short dSRNA (Schlee et al. 2009) and longer
dsRNA higher-order structures (Pichlmair et al. 2009), respec-
tively. RLR signaling induces IRF-3 and NF—«B activation,
leading to type 1 interferon production and proinflammatory
cytokine production.

The interferon-induced antiviral state is important for lim-
iting the immediate viral replication in susceptible cells of the
periphery. The difference between the severe response ob-
served in BALB/c mice and the controlled response in
C57BL/6 mice has recently been attributed to the enhanced
innate response present in the C57BL/6 mice (Sheridan et al.
2009). Interferon signaling leads to expression of interferon-
stimulated genes ribonuclease L (RNAse L), protein kinase
RNA-activated (PKR), and 2'-5" oligoadenylate synthetase.
These antiviral enzymes accumulate in cells in response to
interferon binding and have been shown to be ready to act
upon signs of virus infection. PKR phosphorylates EIF-2«, a
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producing cell and in surrounding epithelial cells. Interleukin-18 (IL-
18) released from dendritic cells (DCs) activates natural killer (NK) cells
that secrete IFN-y and granzymes A and B (GrzAB). DCs engulf HSV-1
virions and travel to the draining lymph node where they activate naive B
and T cells. Activated T cells travel back to the site of primary infection
and the trigeminal ganglia, where they surround infected neurons and
prevent replication via secretion of IFN-y and granzymes A and B

necessary protein for protein translation to proceed. Inhibition
of protein translation prevents viral replication and causes
viral mRNA transcripts to accumulate. Viral mRNA tran-
scripts are actively degraded by RNAse L, which has been
shown to be activated in response to dsRNA and 2'-5'
oligoadenylate synthetase. These mediators of translational
inhibition are activated in response to PAMPs present within
infected cells and thus do not necessarily prevent translation in
uninfected cells.

Primary recruited immune cell mediators include mono-
cytes, neutrophils, DCs, and NK cells. Attracted neutrophils
secrete the antiviral molecule tumor necrosis factor-oc
(TNF-«), which can induce apoptosis in infected epithelial
cells through a caspase-8-dependent pathway. Neutrophils
also phagocytose necrotic and apoptotic epithelial cells.
Monocytes attracted to the area differentiate into tissue mac-
rophages and phagocytose released virions and apoptotic
cells. Macrophages are professional antigen-presenting cells
(APCs) that release proinflammatory cytokines and present
viral peptides to cells of the adaptive immune response. Mac-
rophages in peripheral tissue sites where initial infection
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occurs (Cheng et al. 2000; Mott et al. 2007) and in the
trigeminal ganglia (Kodukula et al. 1999) serve to limit viral
replication until the adaptive immune system can be activated.
Macrophages secrete proinflammatory cytokines such as
TNF-«, interleukin-6 (IL-6), RANTES (“regulated on activa-
tion, normal T cell expressed and secreted”), type 1 inter-
ferons, and nitric oxide (NO). NO production is initiated by
the enzyme inducible nitric oxide synthase (iNOS), which is
activated from interferon-y released from y8-T, NK, CD4" T,
and CD8" T cells. NO released from macrophages has been
shown to significantly reduce HSV-1 levels when treating
in vitro macrophage cultures. When iNOS is inhibited in
mouse models, virus replication increases in the trigeminal
ganglia (Kodukula et al. 1999).

Dendritic cells play an important role in the immune re-
sponse by activating NK cells at the site of infection and
acting as APCs to activate cells of the adaptive immune
system. HSV-1 PAMPS activate immature DCs which differ-
entiate and mature. Mature DCs can activate other immature
DCs through the release of type 1 interferons (Pollara et al.
2004). Mature DCs travel to the draining lymph node, where
viral peptides are presented to naive B and T cells for activa-
tion. Viral peptides can also be presented in the context of
HSV-1 infection of DCs through a cross-presentation path-
way. HSV-1 infected DCs are unable to mature but are still
capable of secreting cytokines that activate uninfected DCs;
infected DCs are also induced to undergo apoptosis via
downregulation of C-FLIP (cellular FLICE-like inhibitory
protein) (Kather et al. 2010). Infected apoptotic DCs are taken
up by activated DCs which process the antigen and present
peptides to cells of the adaptive immune system (Bosnjak
et al. 2012). An additional role of DCs is to secrete 1L-18,
which is necessary for the activation of NK cells (Kassim et al.
2009; Reading et al. 2007). Mice lacking DCs exhibit in-
creased HSV-1 neurovirulence during the course of infection
based primarily on the limited activation of NK, CD4" T, and
CD8" T cells (Kassim et al. 2006).

Natural killer cells are crucial to controlling HSV-1 virus
levels in the periphery by directly inducing cell death in
infected epithelial cells (Grubor-Bauk et al. 2008). Like
CD8" T cells, NK cells contain preformed granules of
perforin, granzyme A, and granzyme B. HSV-1 infection
reduces major histocompatibility complex (MHC) class 1
expression in epithelial cells by the action of ICP47, a viral
immediate—early gene, which blocks loading of TAP (trans-
porter associated with antigen presentation) and presentation
of viral peptides through MHC class 1 (York et al. 1994). The
reduction in MHC class 1 is a signal that NK cells use to target
virus-infected cells (Ravetch 2000). Recently, it has been
shown that NK cells can also be activated by HSV-1 gD
binding to TLR-2 on the surface of NK cells (Kim et al.
2012a, b). Mice suffer greater mortality in response to HSV-
1 infection when NK cells are depleted (Grubor-Bauk et al.

@ Springer

2008; Williams et al. 1998), or NK survival factor IL-15 is
inhibited in the context of HSV-2 infection (Ashkar and
Rosenthal 2003).

CDS" T cell response

Antiviral CDS8" T cells exert their effector function through
secretion of interferon-y, TNF-«, perforin, and granzymes
after engaging antigens in the context of MHC class I mole-
cules of the target cells. CD8" T cells induce apoptosis in
infected cells by releasing preformed granules or through
death receptor signaling. The granules contain perforin,
granzymes, and granulysin, which work together to enter the
target cell and induce apoptosis. Perforin has been shown to
polymerize on the target cell membrane forming a pore,
allowing entry of granzymes and granulysin (Liu et al. 1995;
Voskoboinik et al. 2005). However, in the absence of perforin,
granzyme B can be internalized by endocytosis into the target
cell, possibly by interacting with the mannose-6-phosphate
receptor (Motyka et al. 2000). Although perforin and
granzymes are both internalized and released into the cyto-
plasm of the target cell, perforin was found to be essential for
inducing apoptosis (Froelich et al. 1996). Granulysin, a small
cationic protein, is present in the lytic granules of NK cells,
NKT cells, helper T cells, and cytotoxic T lymphocytes
(CTLs) (Latinovic-Golic et al. 2007). This process has been
shown to cause target cell lysis when it interacts with nega-
tively charged cell membrane proteins. Granulysin can also
induce apoptosis through the release of cytochrome C
(Latinovic-Golic et al. 2007).

Granzymes A and B belong to the serine-protease family
and can induce apoptosis in caspase-independent and caspase-
dependent ways (Waterhouse et al. 2006b). Granzyme A acts
in a caspase-independent way to induce apoptosis by cleaving
single-stranded DNA and by hydrolyzing histone proteins
(Fan et al. 2003; Mueller et al. 2003). It can also cleave the
IL-13 propeptide into the active IL-13 (Irmler et al. 1995;
Nicola et al. 2005). Granzyme B can induce apoptosis in a
caspase-dependent manner by activating procaspase 3 directly
or by increasing the permeability of mitochondria and cleav-
ing the Bcl-2 interacting domain (Bid) protein (Metkar et al.
2003; Pinkoski et al. 2001).

CDS" T cells also respond to viral infections through the
production and release of interferon-y. Interferon-y promotes
presentation of viral peptides, inhibits viral replication, arrests
the cell cycle, and promotes the thl immune response.
Interferon-y induces expression of immunoproteosomal sub-
units (Belich et al. 1994; Groettrup et al. 1996; Kelly et al.
1991) which can enhance processing of viral peptides for
loading into the MHC class 1 (Sijts and Kloetzel 2011).
Interferon-y also enhances the class 2 antigen presentation
pathway, increasing expression of MHC 2 molecules in both



J. Neurovirol. (2013) 19:328-345

333

professional and non-professional cells (Handunnetthi et al.
2010). Cells exposed to [IFN-y inhibit viral replication through
expression of antiviral genes like PKR which inhibits transla-
tion within the cell (Meurs et al. 1990). Additional effects of
IFN-y include increased expression of cyclin-dependent ki-
nase inhibitors p21 (Xaus et al. 1999) and p27 (Harvat et al.
1997) to arrest cell cycle progression. Interferon-y also skews
the immune response by promoting differentiation of naive T
cells into Th1 cells (Yoshida et al. 1994).

Death receptor signaling is a caspase-8-dependent process
of inducing apoptosis. CD95 ligand on the surface of CD8" T
cells binds with the CD95 receptor to initiate signaling. The
CD95 receptor contains a death effector domain that is a
binding site for procaspase 8. Procaspase 8 is cleaved upon
binding to the death effector domain, forming the active
caspase 8. Activated caspase 8 can then directly cleave
procaspase 3, the primary downstream mediator of apoptosis.
Both granzyme B and activated caspase 8 can cleave Bid to
the truncated form (tBid). The activated tBID can induce
release of cytochrome C from the mitochondria and induce
apoptosis through the intrinsic pathway (Korsmeyer et al.
2000; Waterhouse et al. 20064, b).

The mechanisms described above allow virus-specific
CTLs to efficiently eliminate virus-infected cells from the
body by inducing apoptosis and thereby limit the virus capac-
ity to produce new virions. This mechanism of clearance has
been shown to be an effective response to viruses in peripheral
tissues where apoptotic cells can be replaced by mitogenic
precursors. However, the neurons that reside in the nervous
system are nonmitogenic. This presents a problem for the
body wherein clearance of virus-infected neurons cannot be
replaced (Okouchi et al. 2007). Indeed it appears that granule-
mediated apoptosis is attempted by CD8" T cells to control the
latent HSV-1 infection; however, latently infected neurons are
rarely induced into apoptosis.

Virus-specific CD8" T cells infiltrating into the trigeminal
ganglia are capable of preventing reactivation and maintaining
HSV-1 in the latent state (Liu et al. 2000). CTLs infiltrate into
the trigeminal ganglia, surround infected neurons, form im-
munological synapses, and release preformed granules that
can be detected within target cells. Yet these molecules do not
induce apoptosis of latently infected neurons (Knickelbein
et al. 2009). Granzyme A was shown to act in a noncytolytic
capacity to limit the spread of HSV-1 to other neurons, though
the mechanism is unknown (Pereira et al. 2000). Granzyme B,
instead of directly cleaving the normal target procaspase 3,
instead cleaves the IE protein ICP4 (Knickelbein et al. 2009).
ICP4 is necessary for efficient reactivation of the virus, and
cleavage by granzyme B is a noncytolytic mechanism by
which CTLs can react to viruses and virus-infected neurons
and thereby control reactivation.

Additionally, interferon-y produced by the CTLs plays a
pivotal role in preventing reactivation. Decman et al. (2005)

demonstrated that interferon-y is capable of reducing expres-
sion of ICPO promoters, possibly by global regulation of
transcription factors. Carr et al. (2009) showed that transgenic
expression of interferon-y in the trigeminal ganglia reduced
HSV-1 reactivation in mouse models when exposed to ultra-
violet light. Another important role of interferon-y centers on
increasing the expression of the heavy and light chain of MHC
class I molecules in addition to chaperones and other proteins
that help assemble the peptide-MHC class I complex (Wallach
et al. 1982). Interferon-y induces expression of MHC class 1 in
neurons that normally lack MHC class 1 expression (Wallach
et al. 1982). Interestingly, Chentoufi et al. (2011) showed that
expression of LAT in neuroblastoma cell lines also increased
expression of MHC class I molecules. To counter increased
presentation from upregulated MHC class I expression, the
HSV-1 IE protein ICP47 interacts with the TAP proteins and
prevents import of antigenic peptides into the endoplasmic
reticulum (Oosten et al. 2007). This inhibits display of HSV-1
antigen on the surface of the neurons. One study has suggested
that ICP47 activity is required for HSV-1 to infect neuronal
cells (Burgos et al. 2006). An interesting effect of the mouse
model of HSV-1 latency is that ICP47 from human viruses does
not efficiently interact with the mouse TAP, the effect being
that HSV peptides are efficiently displayed. This may be the
reason that mice with latent HSV infection, unlike humans, do
not exhibit spontaneous reactivations of virus (Feldman et al.
2002). To investigate the effect of TAP and MHC Class 1
inhibition by viral proteins on reactivation, Orr et al. (2008)
generated recombinant HSV-1 virus which expressed the murine
cytomegalovirus gene m152 (MCMV ml152). The MCMV
m152 gene has been shown to be capable of inhibiting MHC
class 1 export and has also been shown to decrease expression on
the cell surface (Tomas et al. 2010). When mice were infected
with the recombinant HSV-1, they exhibited increased virus
reactivation from latency. However, this model does not reflect
spontaneous reactivation as still relies on UV light to stimulate
reactivation.

Latent HSV-1 modulation of apoptosis

Apoptosis is the preferred method that the body uses to
eliminate viral infections. This pathway leads to programmed
cell death characterized by DNA fragmentation and mem-
brane blebbing, which will be taken up by local immune
phagocytes. By inducing cell death, infected cells and the
viruses contained within are removed. Most cells removed
via apoptosis are capable of being replaced by stem cell
precursors, and thus elimination of the infected host cell is a
favorable mechanism of limiting viral disease. This process in
combination with the antiviral state induced by interferon
signaling is the primary method of limiting viral replication
in the body and clearing viral infections (Benedict et al. 2002).
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Apoptosis can be triggered in multiple ways that work
through a set of proteases called caspases. These mediators
of cell death are synthesized as inactive precursors that must in
turn be cleaved in order to be activated. Proapoptotic stimuli
lead to cleavage of procaspase to caspase, which then proceed
to cleave their own substrates in turn. The extrinsic pathway
can be activated by a variety of external factors such as
cytokines, toxins, or ligand binding to death receptors on the
cell surface. The intrinsic apoptosis pathway is triggered by
cell stress factors within, such as viral proteins, DNA damage,
and oxidative stress, leading to dimerization of proapoptotic
molecules on the surface of the mitochondria. This forms a
dimer through which cytochrome C is released into the cyto-
plasm. Cytoplasmic cytochrome C associates with Apafl to
activate procaspase 9. Activated caspase 9 complexes with
Apafl and cytochrome C to form the apoptosome, which
efficiently cleaves and activates procaspases 3 and 7. Both
of these pathways activate a different set of caspases, which
proceed to clean downstream targets. These pathways converge
on the activation of procaspase 3, which can also be cleaved
directly from its precursor from CTL-released granzyme B.
Activated caspase 3 leads to chromatin condensation, DNA
fragmentation, and the membrane blebbing characteristic of
apoptosis, which has been reviewed previously (Elmore 2007;
Hengartner 2000).

Herpesviruses produce numerous antiapoptotic factors
aimed at delaying or preventing apoptosis to allow for maxi-
mal number of infectious virions to be produced. Studies
performed with specific null mutants have revealed that ICP4
(Leopardi and Roizman 1996), ICP27, Us3 (Aubert et al. 20006;
Jerome et al. 1999), gD (Sciortino et al. 2008), gJ (Jerome et al.
2001), and LAT all have antiapoptotic functions in vitro, though
the mechanism is not fully understood for all of them. Recent
data suggests cathepsins are involved ICP4- and Us3-mediated
inhibition of apoptosis (Peri et al. 2011). Antiapoptotic gene
transcription in productively infected epithelial cells has been
shown to allow the virus to evade apoptosis, and the cell dies
from damage induced by viral replication. The LAT intron is the
predominant transcript that can be recovered from latently
infected neurons and conveys resistance to apoptosis. Although
not absolutely required for establishment of latency, it does play
an important role in maintenance and reactivation of latency, in
addition to the antiapoptotic effects associated with these RNAs
(Bloom 2004).

The antiapoptotic effects derived from LAT in latently
infected neurons have not been fully elucidated. The unstable
8.3-kb primary LAT is processed to form a stable 2.0- or 1.5-
kb intron (Wagner et al. 1988). HSV-1 LAT null mutants
confer decreased protection from cold shock—induced apoptosis
(Carpenter et al. 2007). Using specific HSV-1 deletion mutants,
Branco and Fraser (2005) localized the antiapoptotic function in
the first 1.5-kb region following the LAT promoter. Granzyme
B-mediated apoptosis via direct cleavage of procaspase 3 was
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inhibited by LAT expression (Jiang et al. 2011). LAT has also
been shown to inhibit caspase-8-dependent apoptosis induced
through death receptor binding (Jin et al. 2010). LAT
upregulated expression of the prosurvival protein AKT, which
prevented the intrinsic apoptotic pathways initiated within cells
(Fig. 2) (Li et al. 2010; Manning and Cantley 2007).

The LAT sequence does contain eight putative open read-
ing frames (ORF) that could encode for antiapoptotic proteins;
however, HSV-1 LAT-associated proteins have not been iso-
lated (Drolet et al. 1998a, b). There is circumstantial evidence
for LAT-associated proteins within latent infections. Hender-
son et al. (2009) generated synthetic peptides from the LAT
ORF sequences and injected these into rabbits to generate
antisera against the peptides. Antisera from two of the peptide
sequences bound to protein with neuronal cell cultures. Addi-
tionally, immunohistochemistry staining of latently infected
trigeminal neurons was also positive utilizing these antisera.
However, the role of LAT-associated proteins is still contro-
versial. The structure, abundance, and activity of these pro-
teins have not been thoroughly investigated; it is possible they
may play arole in inhibiting apoptosis of infected neurons, but
there will need to be further studies to establish this functional
connectivity.

An additional mechanism of antiapoptosis activity could lie
in the encoding of viral microRNA within the LAT (Jurak et al.
2012). Because of the compact nature of viral genomes in
which viruses must package everything they need for produc-
tive infection, the encoding of microRNAs in nontranscribed
regions and untranslated regions of exons can provide impor-
tant regulatory elements at the transcriptional level (Boss and
Renne 2010; Gottwein and Cullen 2008; Skalsky and Cullen
2010). Using deep sequencing analysis of postmortem latently
infected trigeminal ganglia; Umbach et al. (2009) identified
seven miRNAs encoded by the HSV-1 LAT, all of them
contained within the unstable 6.3-kb exon. These miRNAs
have been recovered from postmortem human trigeminal tis-
sues, demonstrating their presence in human HSV-1 infections.
The targets for all of the miRNAs have not yet been identified,
but miR-H2 has been demonstrated to target ICPO and miR-H6
targets ICP4 (Umbach et al. 2008). Recently, it has been shown
that mutation of these miRNAs decreases replication of HSV-1
within neurons but has no effect on replication within fibro-
blasts (Flores et al. 2013). ICP0O and ICP4 are potent activators
of the 3 genes and are necessary for reactivation. Additionally,
ICPO expression can induce apoptosis through damage of cel-
lular structures (Sanfilippo and Blaho 2006). The LAT-encoded
miRNAs are contained outside of the vital first 1.5-kb region,
which is necessary for protection from apoptosis, so it is un-
likely these are the main mechanism involved in the inhibition
of apoptosis. However, by regulating viral gene transcription,
miRNAs can help maintain the virus in a latent state within
neurons and prevent expression of proapoptotic genes. Similar
to the miRNAs, LAT encodes two small RNAs (sSRNAs). LAT
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Fig. 2 Expression of latency-associated transcript (LAT) inhibits extrin-
sic and intrinsic apoptotic pathways. The extrinsic pathway involves
proapoptotic triggers provided by activated immune cells. Virus-specific
CD8" T cells induce apoptosis by death receptor binding. CD95 ligand
binding causes the formation of the death-induced silencing complex,
which binds and activates procaspase 8. Activated caspase 8 activates
procaspase 3, which leads to apoptosis. LAT expression is capable of
inhibiting the caspase-8-dependent pathway, but the mechanism is un-
known. CDS" T cells releasing preformed granules induce apoptosis by

SRNA2 appears to hybridize to the ICP4 transcript and reduce
its expression. Additionally, SRNA1 and sSRNA2 act synergis-
tically to inhibit apoptosis induced by cold shock (Shen et al.
2009). The mechanisms by which LAT prevents apoptosis are
not yet known, but LAT appears to promote the latent state
through viral gene regulation by miRNAs and sRNAs encoded
within LAT (Fig. 3).

In contrast to latently infected neurons, productively
infected cells in the periphery undergo cell death. Peripheral
epithelial cells are susceptible to lytic infection leading to
necrosis during productive HSV-1 replication. Other cell types
including monocytes and DCs can be induced to initiate
apoptosis from both intrinsic proapoptotic stimuli from the
virus and from exogenous signals from immune cells (Mastino
et al. 1997; Peri et al. 2011). In order to definitively identify
which cells are susceptible to apoptosis, Esaki et al. (2010)
exposed mice to HSV-1 and HSV-2 using three different inoc-
ulation techniques and collected various tissues for HSV-1
antigen staining and apoptotic markers. They found that cells

direct cleavage of procaspase 3. Perforin forms a pore on the surface of
target cells and allows entry of granzymes A and B (GrzA and GrzB).
Granzyme B cleaves and activates procaspase 3, leading to apoptosis.
LAT inhibits this pathway by inhibiting granzyme B from activating
procaspase 3. The intrinsic apoptotic pathway is initiated by dimerization
of proapoptotic molecules on the surface of the mitochondria. Released
cytochrome C associates with APAF1 and activates procaspase 9. Acti-
vated caspase 9 activates procaspase 3. Expression of LAT activates AKT,
which prevents the accumulation of proapoptotic molecules

such as those of the corneal epithelium and neurons in the CNS
are sensitive to induction of apoptosis when infected by HSV-1.
They also found that cells within the trigeminal ganglia, al-
though susceptible to HSV-1 infection, were not apoptotic.
These results fit well with previous experiments that have
shown that comneal epithelia cells from both animal models
and humans undergo apoptosis when infected with HSV-1
(Stuart et al. 2004). However, this has been challenged by Miles
et al. (2007), who demonstrated that, although apoptosis is
induced during productive infection of corneal epithelial cells,
HSV-1 is capable of inhibiting the later stages of apoptosis.

Maintenance of latency requires careful balance of factors
During neuronal latency, a careful balance is established to
maintain the virus in the latent state. The contributors to this

balance include the neuronal environment, LAT, and the CD8"
T cells surrounding the neurons. During latency, the LAT
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Fig.3 Small noncoding RNAs in the latency-associated transcript (LAT)
gene promote latency. Low-level expression of lytic genes /CP0 and
ICP4 could lead to spontaneous reaction. The LAT gene encodes two
different small noncoding RNA species that prevent low-level /CP0 and
ICP4 expression. The LAT gene encodes seven microRNAs (miRNAs)
that have been confirmed in vivo. Of these, two miRNAs, miR-H2 and
miR-H6, have confirmed inhibitory effects on ICPO and ICP4 protein
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intron is the predominant transcript that is made from the viral
genome (Wagner et al. 1988). There is evidence, however, of
low-level lytic gene expression despite the presence of repres-
sive chromatin modifications (Ramachandran et al. 2010). It
has been suggested that, in neuronal cultures, low-level gene
expression is required for the production of VP16, a y gene.
Once VP16 has been made, the VP16 transcription complex
can form and bind to the lytic gene promoters, leading to
production of infectious virions (Kim et al. 2012a, b). It is
this low-level gene expression that is detected by surrounding
CD8" T cells that release interferon-y and granzyme B, me-
diators capable of inhibiting lytic gene expression. Disruption
of CD8" T cell inhibition of viral lytic gene expression could
lead to reactivation from initial ganglionic neuron steady-state
low-level gene expression. Some of the specific stimuli asso-
ciated with reactivation include menstruation in women and
psychological and physiological stress. Treatment with
medroxyprogesterone acetate, a synthetic analogue of the
female sex hormone progesterone, released during ovulation,
has been shown to be capable of reducing CD8" T cell levels
in the trigeminal ganglia of latently infected mice (Himmelein
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expression; miR-H2 acts on ICPO and miR-H6 acts on ICP4. By
preventing translation of lytic genes required for reactivation, small
noncoding RNAs derived from LAT promote the maintenance of latency.
Granzyme B (GrzB) and interferon-y (IFN- vy) released from CD8" T
lymphocytes also contributes to the maintenance of latency. GrzB cleaves
the ICP4 protein and IFN-y inhibits expression of ICPO

et al. 2011). Psychological and physiological stress have also
resulted in a reduction of CD8" T cells in the trigeminal
ganglia and reduced capacity to secrete interferon-y (Freeman
etal. 2008). The stress response is mediated through release of
the glucocorticoid cortisol, which has been shown to reduce
interferon-y expression in T cells (Curtin et al. 2009).

The mechanism by which CD8" T cells inhibit lytic gene
expression is through the release of interferon-y and granzymes
A and B. Release of granzyme B is a primary method through
which CD8" T cells induce apoptosis in virus-infected cells.
However, neurons harboring latent HSV-1 are protected from
granzyme B-induced apoptosis (Knickelbein et al. 2009). The
exact mechanisms of this protection have not been thoroughly
explored, but it appears that LAT is critical for inhibiting
apoptosis in infected neurons (Jiang et al. 2011). The inhibi-
tion of apoptosis in latently infected neurons reflects the other
side of the careful balance that allows the latent infection
to be maintained. Disruption of this balance is another mech-
anism through which external stimuli can potentially induce
reactivation. If neurons that harbor the latent viral genome are
induced to undergo apoptosis, the virus reactivates and
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releases infectious virions (Fig. 4). The pathway through
which apoptotic signals initiate reactivation is unknown. This
is potentially a mechanism by which physical damage to
neurons induces reactivation. Additionally, apoptotic signals
can be a mechanism by which ultraviolet (UV) light could
induce reactivation from latency. The axons of innervating
neurons extend into the periphery and are in proximity to the
surface of the skin and could be susceptible to UV light
exposure. UV light can induce apoptosis in cells through
either direct damage of DNA or by production of reactive
oxygen species (ROS) (Kulms et al. 2002). Mitochondria in
neurons are uniformly distributed throughout the neuron, in-
cluding the axon (Hollenbeck 1996). UV light exposure can
induce production of ROS in mitochondria residing near the
axonal terminal, which could lead to apoptotic signaling. ROS
is associated with reducing expression and levels of Bcl-2 and
inhibiting mammalian target of rapamycin (Alexander et al.
2010), responses that have been shown to induce reactivation
(Kobayashi et al. 2012).

Recently, Du et al. (2012) demonstrated an interesting
feature of reactivation when neurons are treated with chemical
agents that reduce levels of Bcl-2 and Bcl-xl. The expression
of the viral genome did not proceed according to the ordinary
temporal pattern observed in primary infection. In contrast to

Fig. 4 Pathways of stimuli
induced reactivation. Low-level
temporal expression of lytic genes

sequential expression of the «, 3, and y genes, all gene classes
were expressed at the same time upon induction of apoptosis.
This is a mechanism by which the virus can rapidly produce
new virions in response to signals that indicate that the cell in
which it is residing is no longer viable. Rapid virus assembly
and escape allows the virus to infect peripheral epithelial and
neuronal cells to remain in the host.

Tissue resident memory T cells and HSV-1

It is possible that the CD8" T cells surrounding latently infected
ganglia belong to a novel subset of memory T cells recently
described called tissue resident memory T cells (Trys). Follow-
ing antigenic exposure, two distinct populations of memory T
cells are normally found. Central memory T (T¢y) cells are
retained in secondary lymphoid organs and have the capacity to
rapidly proliferate upon reexposure to antigen. These are char-
acterized by specific cell surface markers CD44" CCR7"
CD62L". In contrast to central memory T cells, effector mem-
ory T (Tgm) cells are CD44" CCR7  CD62L~ (Harty and
Badovinac 2008). The Ty cells circulate through the blood
and various tissues, sampling the environment for their specific
antigen. These cells are already differentiated and are capable of
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immediate effector functions and can begin clearing infections
without the need to proliferate and differentiate. Memory T cell
responses provide fast responses to reinfection, as opposed to
how they respond to novel antigens, but they rely on the
specific antigen to be delivered to secondary lymphoid organs
(for T cells) or for the antigen-specific Tgy, cell to be present
at the site of reinfection at the same time. A population of
memory T cells that reside long term at the site of initial
infection would be capable of immediate response to antigenic
exposure in the site where exposure is likely to occur.

Recent evidence supports the notion of a distinct popula-
tion of memory T cells that are retained in the tissue of initial
exposure. Try cells have been found in numerous tissues in
the body, including brain parenchyma (Hawke et al. 1998),
skin (Gebhardt et al. 2009), genital mucosa (Tang and
Rosenthal 2010), gut ileum (Masopust et al. 2010), salivary
glands (Casey et al. 2012), and the dorsal root ganglia
(Gebhardt et al. 2009). Although surface marker characteriza-
tion has not been done with Try; from all these locations,
some distinctive phenotypic markers have been identified.
Trm cells are CD44" CCR7  CD62L CD69" CD103"
(Wakim et al. 2012). CD103 has not been found in all tissue
sources of Try, cells, but it does appear in the majority of Try
cells isolated. CD103 is the « chain of the x437 integrin
receptor for E-cadherin normally expressed in epithelial cells
(Cepek et al. 1994). An important characteristic of Try cells is
that they do not migrate through the periphery or enter into the
secondary lymphoid organs; expression of CD103 likely al-
lows Try cells to be retained in tissue compartments. Try
cells have been shown to be capable of persisting for extended
periods in these peripheral tissue compartments without re-
plenishment from the circulating pool of CDS" T cells owing
to low homeostatic turnover (Gebhardt et al. 2009; Masopust
et al. 2006). An interesting distinction of Try cells is their
apparent ability to survive without IL-15 signaling, even in the
absence of antigenic exposure (Wakim et al. 2010). The
combination of CD103 expression and long-term residence
in tissues where antigen was initially encountered distin-
guishes Tyy, cells from the established memory T cells.

With the recent characterization of Try cells, it is impor-
tant to analyze what other T cell populations might belong to
this novel subclass. In latent HSV-1 infection, CD8" T cells
surrounding infected neurons in the trigeminal ganglia persist
for the lifetime of the organism and are vital in maintaining the
virus in a latent state (Hoshino et al. 2007; Liu et al. 2000).
This is accomplished through expression of effector mole-
cules, and therefore HSV-1-specific CD8" T cells have an
activated phenotype akin to effector memory cells. Activated
CDS8" T cells have the markers CD69, CD44, CD25, and
CD49d expressed on their surface. They downregulate hom-
ing receptors CD62L and CCR7 (Barrat et al. 1995; Lynch
et al. 1989) and the markers of naive CD8" T cells CD27 and
CD28 (Verjans et al. 2007). Additionally, the CD8" T cells in
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the trigeminal ganglia express granzymes A and B and
interferon-y. Like Tgy, cells, IL-15 is not required to maintain
the population within the trigeminal ganglia (Sheridan et al.
2006). The x437 integrin CD103 is a marker used to consis-
tently identify Tryy cells, but no experiments have addressed
whether CD103 is present on the surface of trigeminal ganglia
resident CD8" T cells.

Additionally, the migration pattern of CDS™ T cells differs
extensively from patterns observed with Tgy cells. Principally,
CDS" T cells never leave the trigeminal ganglia once they have
infiltrated and surrounded latently infected neurons (Khanna
et al. 2003). Whereas Tgy, cells migrate through various tissues
and can participate in peripheral immune responses to antigen
reexposure, CD8" T cells reside in the trigeminal ganglia for the
lifetime of the host. Himmelein et al. (2011) provided evidence
of the peculiar homing pattern of the HSV-1-specific CD8" T
cells retained in the trigeminal. Following treatment with corti-
costeroids and challenged with restraining stress, stimuli proven
to reduce CD8" T cell levels in the trigeminal ganglia (Elftman
etal. 2010; Freeman et al. 2008), the population of CDS" T cells
in the trigeminal ganglia is quickly reestablished (within 4 days).
Importantly, the trigeminal population is not supplemented with
CD8" T cells from the circulation, nor is it due to proliferation
of residual CD8" T cells in the trigeminal ganglia immediately
after the treatment. These results imply that the CDS™ T cells
that left the trigeminal ganglia are capable of homing back to
their original location. CD8" T cells in the periphery are inca-
pable of infiltrating the trigeminal ganglia, which prevents
supplementation or replacement of the population from the
circulating pool of CD8" T cells. The same population is not
maintained based on the proliferation of resident CD8" T cells;
instead, these cells have very low homeostatic turnover.

Currently available information on trigeminal resident
CDS" T cell surface markers indicates they could fall into
either the Ty class or the recently discovered Try class
(Table 1). The migration dynamics are the primary evidence
that the trigeminal ganglia resident CD8" T cells could be Ty,
cells instead of Tgy, cells. These T cells are retained in the
same tissue compartment for the lifetime of the host and home
back to the same location if dislodged. These cells survive in
the tissue compartment without being replenished from circu-
lating pools of CD8" T cells, have low homeostatic turnover,
and do not require IL-15 for survival. Further characterization
of the cell surface phenotype of this cell population is needed
to definitively classify them as being either Try or Ty cells.

Trwm cells and immunity to viruses

Gebhardt et al. (2009) studied the response of Trps cells to
reinfection extensively in the context of HSV-1 skin infection.
Following flank infection with HSV-1, they found an accu-
mulation of adoptively transferred HSV-1-specific CD8" T
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Table 1 Phenotypic markers of memory CD8" T cells

Memory T cell subtypes

Tem Tem Trm Trigeminal ganglia resident CDS™

T
CD44 + o+ o+
CD69 - - +
CD103 - - +
Tissue retention + - + +
Effector - + + +
function

Tcar central memory T cells, Ty, effector memory T cells, Tx,, tissue
resident memory T cells

cells ipsilateral to the infection site but not on the control
infection site. These cells were located in the epithelial layer
of skin; had a surface marker phenotype CD69" VLA1"
CDI103" CD62L™ CD1227; did not migrate; and had a slow
homeostatic turnover. Importantly, when challenged with vi-
rus following a previous exposure and clearance of virus, the
skin flanks with residing Try cells had much better protection
than the control flank. This enhanced protection was shown to
be T cell-dependent, with contributions from both CD4" T and
CD8" Tcells. Eliminating CD4" T cells had a significant effect
on clearance, but when provided with excess CD8" T cells,
they were capable of clearance without the help of CD4" T
cells.

It is important to note that the results described above
involved reexposure to exogenous virus and cannot be directly
related to skin Try cells responding to reactivation of virus.
Mouse models of latent HSV-1 infection have very rare epi-
sodes of spontaneous reactivation (Gebhardt and Halford
2005), and thus chemical agents or stressful stimuli, which
often decrease trigeminal ganglia resident CDS™ T cells, are
required for reactivation. It is unknown what effect these
agents might have on Try, cells in the skin and whether they
have any effect on virus clearance. Humans do experience
spontaneous reactivation or reactivation as a result of certain
exogenous agents. Reactivation of latent virus can result in
asymptomatic shedding of virus or may cause formation of
recrudescent lesions in the same peripheral location where the
primary infection occurred. Recurrent disease provides cir-
cumstantial evidence that if Ty, cells exist in humans, they
either do not prevent reinfection where they reside or the agent
responsible for reactivation also has an effect on peripheral
Trwm cells.

Rates of reactivation are inversely correlated with the num-
ber of CD8" T cells infiltrating the trigeminal ganglia and have
been directly correlated with the number of latently infected
neurons (Hoshino et al. 2007). Initial hopes that HSV-1-
specific CD8" T cells could be expanded in vitro and then
adopted into the host as a method to reduce reactivation rates

have failed because adopted CD8" T cells cannot access the
trigeminal compartment where latently infected neurons re-
side (Himmelein et al. 2011). It is possible that critical com-
parisons of circulating and resident ganglionic CD8" T cells
will reveal new information that will make it possible to
adoptively transfer T cells into the trigeminal compartment
in order to reduce reactivation and recurrent disease. This
method would not be capable of eliminating the latent infec-
tion, but a robust immune presence is capable of limiting virus
reactivation from latency.

Despite decades of research on HSV-1, there is still no
effective vaccine that can prevent virus infection or control
reactivation (Dervillez et al. 2012). Following primary infec-
tion in the periphery, released virions encounter and infect
innervating sensory neurons. The virus attaches to the axonal
terminal and releases the capsid and tegument proteins, which
migrate retrograde toward the neuronal soma where the DNA
is uncoated, injected into the nucleus, and latency is
established very early during the course of the primary infec-
tion. During reactivation, capsids are assembled in the nucleus
and then are transported across the nuclear membrane as
enveloped particles, and then they travel anterograde toward
the axonal terminal region with infectious virions released into
the periphery (Smith 2012). This implies that, during the
migration of virus from the latent reservoir to target cells,
few locations exist where neutralizing antibodies can act upon
the virus before it is exposed to target cells. There is a robust
immune response leading to expanded CDS8" T cell popula-
tions surrounding infected cells in the trigeminal, but these
cells are incapable of eliminating the virus, only of limiting
viral reactivation. This means that the primary location where
a vaccine must be effective is the site of primary infection.

Mackay et al. (2012) revealed that expanded HSV-specific
Trw cells in the periphery are capable of limiting disease from
reexposure to HSV-1. These experiments suggest an exciting
new direction for creating a vaccine to prevent new infections
or limit the severity of recurrent disease. Shin and Iwasaki
(2012) adapted this idea and hypothesized that a “prime and
pull” technique can generate large numbers of virus-specific
CD8" T cells in the periphery, where they can stop or limit
damage from infection. The “prime” is composed of a subcu-
taneous injection of thymidine kinase (TK") HSV-2 virus,
capable of activating and proliferating adoptively transferred
CDS8" T cells. The “pull” is accomplished by topical treatment
of CXCL9 and CXCL10 chemokines applied to the vaginal
cavity. The chemokine treatment attracted many more CD8" T
cells to the vagina compared with immunization without
chemokine treatment. Treatment provided after the central
pool of CD8" T cells had been activated successfully recruited
and maintained T cells in the genital tract for up to 12 weeks
after treatment. When challenged with a lethal dose of wild-
type HSV-2, mice receiving the immunization and chemokine
treatment suffered less weight loss, did not develop clinical
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symptoms, and had a 100 % survival rate. Importantly, viral
titers found in the DRG following WT infection were signif-
icantly decreased compared with immunization alone. Be-
cause reactivation rates are directly correlated with latent viral
load, a therapeutic intervention that lowers the initial viral
infection of the DRG would be beneficial. This novel vaccine
treatment appears to have successfully lowered the viral bur-
den on the DRG, decreased the number of latent viral ge-
nomes, and would like significantly decrease reactivation and
recurrent disease in humans.

Conclusions

HSV-1 represents a persistent human pathogen that resides in
infected hosts for their lifetime. Clearance of the primary
infection follows establishment of the latent infection within
the ganglionic clusters of innervating sensory neurons.
Reactivation of the virus is controlled at least in part by
CD8" T cells that surround latently infected neurons. An
important feature of these cells is their long-term residence
in the neuronal tissue compartment. HSV-1-specific CD8" T
cells can remain in the trigeminal ganglia for the lifetime of the
host, do not rely on replenishment from circulating CD8" T
cells, and have the capability to home back to the trigeminal
ganglia if displaced. These behaviors distinguish the resident
ganglionic CD8" T cells from the traditional CD8" T cell
memory subsets.

Recently, a new class of CD8" memory T cells that reside in
peripheral tissue compartments has been characterized. The
phenotypic characteristics of the Tgys cell are similar to those
of the trigeminal ganglia resident CD8" T cells that arise in
response to HSV-1 infections. Both cell types exist in periph-
eral tissue compartments for long periods, have low homeo-
static turnover, are not replenished from the circulating CD8"
T cell pool, and express the effector molecules interferon-y
and granzyme B. The CD103 integrin receptor is a surface
marker used to identify Ty, cells in peripheral tissues, but its
expression has not been evaluated in trigeminal ganglia resident
CDS8" T cells. Identification of HSV-1-specific CD8" T cells as
Trym cells can lead to exploration of new approaches toward
reducing disease in humans. Discovery of the factors associated
with homing of the trigeminal resident CD8" T cells back to the
peripheral nervous system compartment may lead to new ways
of bolstering the CD8" T cell levels in the trigeminal ganglia to
lower reactivation rates. New vaccine approaches designed to
attract and retain Tgry; cells in peripheral tissue locations in
response to immunization could lower viral burden on periph-
eral nervous system following exposure to virus.
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