
Through a long coevolutionary history with humans, 
Mycobacterium tuberculosis has developed into a highly 
successful pathogen that infects 23–32% of the world 
population1,2 and tuberculosis (TB) is the leading infec­
tious cause of death3. Following aerosol exposure to  
M. tuberculosis, three potential clinical outcomes are possi­
ble, namely, resistance or early clearance of the bacillus,  
asymptomatic or latent M. tuberculosis infection (LTBI) 
that can persist for decades, or symptomatic ‘active 
tuberculosis’, which includes pulmonary disease that 
can result in further transmission. Recent whole­ blood 
transcriptomic profiling4,5 and advanced lung imaging 
modalities6 have provided new insight into the transi­
tion from subclinical to active TB7,8. However, why some 
heavily exposed individuals never acquire, or perhaps 
immediately eliminate, infection is poorly understood.

No reliable test exists that directly detects the presence 
or absence of M. tuberculosis in asymptomatic individu­
als. The purified protein derivative (PPD) skin reactivity test 
measures delayed­ type hypersensitivity to mycobac­
terial antigens and has been the gold standard for the 
diagnosis of LTBI for >100 years9,10. As PPD is enriched 
for protein antigens11 that are not necessarily specific to  
M. tuberculosis, prior immunization with Mycobacterium 
bovis Bacillus Calmette–Guérin (BCG) or exposure to 
non­ tuberculous mycobacteria can yield false positive 
results. IFNγ release assays (IGRAs) were developed as a 
whole­ blood diagnostic test that measures IFNγ release 
from M. tuberculosis­ antigen­specific CD4+ T cells after 

stimulation with two to three specific M. tuberculosis 
antigens and thus avoids false positive results from prior 
BCG vaccination8. In the absence of a direct measure 
of infection, the best surrogates for initial infection are 
the PPD skin reactivity test and/or IGRA responses 
that convert from negative to positive (that is, incident  
positive) after M. tuberculosis exposure.

In endemic TB settings, some adults who are heavily 
and repeatedly exposed to M. tuberculosis remain neg­
ative for reactivity in the PPD test and the IGRA. These 
individuals, whom we term resisters, can be defined clin­
ically as resistant to infection (FIG. 1). However, as this 
designation includes several assumptions about expo­
sure and the stability of the results of these diagnostic 
tests, we propose the following enrolment criteria for 
studies of resisters (Box 1). First, a high level of exposure 
is crucial and should include indices of exposure inten­
sity (for example, high bacillary load of a known index 
case and close proximity of contact, such as sharing a 
room or bed) as well as indices of exposure duration 
that capture cumulative exposure (for example, repeated 
household exposures or employment in settings of docu­
mented high M. tuberculosis transmission), all of which 
can be assessed using validated exposure risk scores12,13. 
Second, diagnosis of a resister requires a negative result 
for both the PPD skin reactivity test and the IGRA to 
avoid misclassification. Third, these diagnostic tests 
should be carried out serially following documented 
exposures to capture any conversions to LTBI (or TB). 
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The resister phenotype is probably heterogeneous and 
might involve innate immunological mechanisms of 
early clearance of M. tuberculosis (innate resisters). 
Alternatively, protective immunity might also occur 
through adaptive immune responses (adaptive resisters), 
including IFNγ­ independent responses that have been 
measured in preclinical models14–16, and thus a poten­
tial role for B cell or unconventional T cell responses 
in early clearance of M. tuberculosis should be consid­
ered. Longitudinal, rigorous epidemiological studies of  
resisters, together with data from genetic and immunolo­
gical platforms, are providing new insights into human  
resistance to M. tuberculosis infection.

In this Review, we describe the epidemiology of the 
resister phenotype and discuss several caveats about the 
definition of a resister. Next, we review the genetic deter­
minants of the resister phenotype and discuss potential 
effector mechanisms in macrophages, unconventional 
T cells and B cells. We examine immune factors that pre­
vent or limit M. tuberculosis infection in innate resisters 
or adaptive resisters, which could be harnessed for the 

development of host­ directed therapies or more effective 
vaccines and adjuvants.

Epidemiology

Despite the absence of a direct microbiological meas­
ure of M. tuberculosis in latent infection, historical and 
rigorous modern epidemiological studies suggest that 
resisters exist, although their estimated frequency varies 
in different studies.

Historical case–contact studies. Strong epidemiologi­
cal evidence suggests that some individuals are natu­
rally resistant to infection, even after heavy exposure 
to M. tuberculosis in closed environments. In 1966, all 
enlisted personnel and officers aboard the destroyer 
U.S.S. Richard E. Byrd were enrolled in a study after a 
5 cm pulmonary cavity was detected (by radiography) 
in a crew member who suffered progressive respiratory 
symptoms for the prior 6 months aboard the ship17.  
Of the 308 at­ risk enlisted crew members, 7 developed 
active TB, 6 of whom shared the same berthing com­
partment as the index case. Most crew members in this 
‘high­ burden’ compartment showed evidence of new 
infection (either active TB or an incident positive PPD), 
whereas seven crew members (~10%) were negative for 
the PPD skin test during the initial study and remained 
so at follow­ up. Other studies, including an evaluation of 
nursing students in the pre­ antibiotic era, also showed evi­
dence of PPD­ negative responses despite intense expos­
ure to patients with TB (TABle 1). A systematic review 
of household contact studies detected heterogeneity in 
resistance to infection, with an average of 50% of close 
contacts remaining uninfected18. However, these studies 
reveal substantial variability in PPD­ conversion rates, 
which is consistent with unmeasured exposure variables.  

Fig. 1 | The spectrum of human resistance to infection by Mycobacterium tuberculosis. The extent of resistance to 

Mycobacterium tuberculosis infection is proportional to the duration and the intensity of exposure to M. tuberculosis. 

Individuals who resist infection despite heavy exposure to M. tuberculosis are more likely to have immunogenetic 

mechanisms of resistance than those who resist infection after a lower extent of exposure. Individuals with resistance to  

M. tuberculosis infection after intense exposure are termed ‘resisters’ (white), whereas individuals who test positive in the 

purified protein derivative (PPD) skin reactivity test and/or the IFNγ release assay (IGRA) can either be asymptomatic 

(latent M. tuberculosis infection (LTBI); pink) or be symptomatic with tuberculosis (TB; red). DC, dendritic cell.
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Not surprisingly, proximity and duration of contact with  
the index case as well as the infectivity of the index case  
(that is, bacillary burden) were predictors of PPD conversion.

The results of most early studies in hyperendemic  

conditions suggest that a minority of the population 
(5–50%) has the resister phenotype, and this variability 
probably reflects exposure intensity and the duration of 
follow­ up17,19,20. However, the results of some studies sug­
gest that rates of resistance are higher (for example, up 
to 70% of exposed individuals are resisters), even after 
periods of high exposure (that is, sleeping in the same 
bed or room) to the index case21–24. Importantly, most of 
these studies either had a short duration of follow­ up or 
contained data that were difficult to accurately review 
by modern epidemiological standards. Finally, the strain 
of M. tuberculosis probably differed among the various 
studies and thus might affect transmission rates. For 
example, increased virulence and transmission might be 
one of several factors that are involved in the increased 
range and incidence of the lineage 2/Beijing strains of 
M. tuberculosis25–27.

The results of these early studies suggest that a resister 
phenotype exists, but the epidemiological methods that 
were used could not ensure high exposure and adequate 
follow­ up to confirm the presence of clinical resistance 
to M. tuberculosis infection.

Contemporary cohort studies. Population studies of 
individuals in hyperendemic TB settings in the past  
5 years have provided opportunities to examine resist­
ance to M. tuberculosis infection. For example, among 
South African gold miners, exposure to silica dust and 
the congregate working, living and social conditions that 
are associated with mining contribute to the high level of 
ongoing M. tuberculosis transmission28,29. Mathematical 
modelling suggests that the annual risk of infection (that 
is, conversion in the PPD skin test) among gold min­
ers is as high as 20%30. The prevalence of LTBI in these 
gold miners was estimated at 89%, and 13% (15/115) 
of HIV­negative participants showed no evidence of  

M. tuberculosis infection (that is, induration = 0 mm 
in the PPD skin test)31. In this extremely high­burden 
environment, any gold miners who remain persistently 
uninfected are likely resisters. According to mathe­
matical models, the likelihood that a 40­year­ old gold 
miner without evidence of M. tuberculosis infection  
(induration = 0 mm in the PPD skin test) is a resister is 93%, 
compared with only 22% among the general community32. 
Two prospective studies in South Africa are currently being 
carried out to identify HIV­uninfected or HIV­infected 
resisters who have been mining for ≥15 years, are  
33–60 years of age, do not have evidence of past or active TB 
or silicosis and have neither a history of treatment for LTBI  
nor any non­ HIV immunosuppressive conditions.

Few longitudinal studies of conversion in the PPD 
skin reactivity test or the IGRA in hyperendemic set­
tings have incorporated extended follow­ up periods. 
Uganda is a high­ burden TB setting with a 3% annual 
risk of M. tuberculosis infection, as determined by PPD 
skin test and/or IGRA conversion33. LTBI is consider­
ably more prevalent among household contacts than 
among community members, and consequently, there 
is a risk difference of 30% among adults34. In Kampala, 
Uganda, household contacts of index cases with culture­ 
confirmed TB were evaluated for active TB and under­
went PPD skin testing35. The annual incidence of new 
cases of culture­ positive TB in this study was 740 per 
100,000 individuals, compared with country­ wide esti­
mates of 159 per 100,000 individuals33. If an individual 
was negative in the PPD skin reactivity test at baseline 
( <10 mm induration for HIV­ negative individuals  
>5 years old, <5 mm induration for HIV­negative indivi­
duals ≤5 years old or <5 mm induration for all HIV­positive  
individuals), repeated PPD skin tests were carried out 
at 3, 6, 12 and 24 months after enrolment. Among the 
entire study cohort, 11.7% of adult close household con­
tacts remained persistently negative in the PPD skin test 
throughout the two year follow­ up12,36. Both the South 
African and Ugandan cohorts described here provide an 
opportunity to rigorously define the resister phenotype 
and explore its underlying cellular mechanisms.

Complexities of the resister phenotype. Given that the 
definition of a resister relies on epidemiological data 
and utilizes an indirect, immunological measurement of  
M. tuberculosis infection, it is likely that some resisters 
are misclassified. Several alternative hypotheses may 
explain the resister phenotype.

Despite meeting enrolment criteria as a household 
contact, an individual with a negative result in the PPD 
skin reactivity test may simply have had insufficient 
exposure, either from a low intensity of exposure (that 
is, a low bacillary burden in the index case, minimal 
contact with the index case or good ventilation within 
the household) or a short duration of contact with an 
index case. In the Ugandan study, a published modified 
epidemiological exposure risk score13, consisting of char­
acteristics of the TB index case and the intensity of the 
contact with the index case, did not differ between resist­
ers and individuals with LTBI12. This result suggested 
that all household contacts were highly exposed to  
M. tuberculosis. Participants in the Ugandan household 
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Box 1 | Proposed criteria to define the resister phenotype

Resisters (individuals who show resistance to Mycobacterium tuberculosis infection 

despite long- term, intense exposure to the bacillus) are exemplified by the following 

characteristics:

Extent of exposure to Mycobacterium tuberculosis

•	Intensity: high bacillary burden of index case (for example, sputum- positive), closed 

environment (household, mine shafts and so on) and use of validated epidemiological 

risk scoring12,13

•	Duration: cumulative exposures (that is, health- care workers, miners, household 

contacts or adults with community exposure in hyperendemic areas)

Result of diagnostic tests

•	Negative result in both the purified protein derivative (PPD) skin reactivity test and 

the IFNγ release assay (IGRA)

Durability of responses

•	Multiple negative results for the PPD skin reactivity test and the IGRA in the first year 

following exposure

•	Additional longitudinal testing, when available and if exposures persist, to minimize 

false negative test results and enrich for conversions after cumulative exposure
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contact study were re­ contacted 8–10 years after the 
original study and were tested multiple times with IGRAs 
(3 assays over 3 years) and once with a repeat PPD skin 
reactivity test. Although they were not necessarily re­ 
exposed within the same household in the interval since 
their initial enrolment as a household contact, all these 
individuals continued to live in areas of Kampala with 
high TB prevalence in which community exposure to 
M. tuberculosis might be substantial37–39. These data will 
further clarify the durability of the resister phenotype.

An alternative explanation for the resister pheno­
type is that persistently negative results in PPD skin 
reactivity tests or IGRAs are false negative results 

owing to the inherent limitations of an immunolog­
ical definition of a clinical phenotype. Both PPD skin 
test and IGRA responses are incomplete measures of 
anti­ mycobacterial immunity for a number of reasons. 
As discussed later, these LTBI diagnostic tests fail to 
detect the response of T cells that are specific for non­ 
protein mycobacterial antigens via MHC­ independent 
pathways, and IGRAs do not detect the response of 
antigen­ specific T cells with alternative (that is, IFNγ­ 
independent) cytokine­ producing profiles40–42. T cell 
anergy could also cause false negative results in the 
PPD skin test. In the Uganda study, HIV­negative indi­
viduals were not more likely to be PPD­negative than  
HIV­positive individuals, for whom a positive PPD test 
was defined as induration >5 mm (ReF.12). Furthermore, in 
recent follow­ up studies, all resisters demonstrated reac­
tivity to the mitogen positive control that was included 
in the IGRA methodology (W.H.B. and C.M.S., unpub­
lished observation), suggesting that generalized CD4+ 
T cell anergy or depletion alone does not explain the 
resister phenotype. This does not rule out a contribution  
of pathogen­ specific anergy, which has been observed in 
human lepromatous leprosy43.

Resistance to M. tuberculosis probably has a thresh­
old, above which relative resistance can be overcome by 
a sufficiently high exposure. For example, in two land­
mark studies in the 1930s and 1940s in Norway and at the 
Philadelphia General Hospital, USA, the prevalence of 
LTBI among nursing students at matriculation was 45.3% 
(668/1,453)44 and 57% (366/643)45, respectively. At 3­year 
follow­ up, however, 100% of students that were initially 
negative for the PPD skin test in both studies converted, 
and the majority of these negative­ to­positive conversions 
occurred during the early stages of training. Considering 
these data, together with those from the contemporary 
studies discussed earlier, it is possible that repeated 
testing (for example, serial testing every 4 months with  
2 doses45) and the use of tuberculin of non­ standardized 
purity (for example, the two early studies were carried 
out before large­ scale standardized preparations of 
tuberculin, such as PPD­ S, became available in 1941) 
effectively sensitized some individuals in the absence of 
natural infection. Non­ tuberculous mycobacterial infec­
tions are also known to produce false positive results in 
the PPD skin test in some populations, a response that 
could potentially be boosted by serial PPD testing, as was 
seen with M. tuberculosis infection46. Furthermore, the 
induration thresholds that were used for each method 
(Mantoux or von Pirquet) were not described in these 
studies. Nonetheless, the results of these pre­ antibiotic 
era studies suggest that absolute M. tuberculosis resistance 
occurred at a low frequency in these populations.

Relative resistance to M. tuberculosis disease might 
also be a function of the infectious dose. The classical 
work of Lange and Chaussé showed that small droplets 
carrying one bacillus or a few bacilli are the effectors 
of aerosol transmission and that the vast majority of  
individuals with TB show only a single Ghon complex47,48. 
In natural infections, the frequency of exposure to  
M. tuberculosis is the most parsimonious surrogate for 
infectious dose, but how consistency of exposure is linked 
to innate resistance mechanisms is not known.

Table 1 | Prevalence of the resister phenotype

Exposed population Length of follow- up Cumulative 
resister prevalence 
(percentage)a

Refs

Historical purified protein derivative studies

Sailors sharing berthing 
compartment with an 
individual with active TB

>6 months 9/65 (13.8) 17

Sailors with frequent 
contact with two individuals 
with incident TB aboard ship

6–12 months 76/226 (33.7) 173

Young nursing students 
working in heavy- burden TB 
hospital in Norway

3 years 0/1,453 44

Nursing students at 
Philadelphia General 
Hospital (USA) in 1935–1939

3 years 0/637 45

Nurses training at Boston 
City Hospital (USA) in 
1932–1936

3 years 6/126 (4.8) 174

University of Minnesota 
nursing classes graduating 
in 1932–1935 (before 
removal of TB ward and 
installation of infection 
control)

3 years 16/184 (8.7) 175

Professional students of 
Wisconsin General Hospital 
and Wisconsin State 
Sanatorium in 1934–1944 
(RNs) and 1934–1943 (MDs)

RNs: 3 years

MDs: 4 years

RNs: 30/112 (26.8)

MDs: 50/283 (17.7)

176

Close family contacts of 
index pulmonary TB cases 
in India

5 years following 
diagnosis of index case

110/851 (12.9) 22

Close family contacts of 
individuals with pulmonary 
TB in Pakistan

6 months following 
diagnosis of index case

103/292 (35.3) 21

Household contacts of index 
cases with sputum positive 
for the AFB-smear test

12 months following 
diagnosis of index case

83/253 (32.8) 23

Contemporary studies

Gold miners in South Africa Variable 15/115 (13.0) 31,32

Close household contacts of 
individuals with pulmonary 
TB in Uganda

2 years 142/1,210 (11.7) 12,177

AFB, acid fast bacilli; MDs, medical students; RNs, nursing students; TB, tuberculosis.  
aThe number of contacts persistently negative for reactivity in the purified protein derivative 
(PPD) skin test (and the IFNγ release assay , if available) as a proportion of all contacts enrolled 
in the study (that is, PPD- positive contacts, PPD- negative contacts and PPD converters).
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which mechanisms of host 

resistance to Mycobacterium 
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overcome owing to frequent or 
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with a high bacillary burden.
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The epidemiological studies discussed above suggest 
that some individuals are resistant to M. tuberculosis 
infection, as defined by a persistently negative result in 
the PPD skin test and/or the IGRA, despite sustained 
high­ level exposures over extended periods of time. 
Furthermore, these individuals fail to develop active TB 
over an extended follow­ up period. Future research to 
uncover the mechanisms that are involved in resistance 
to M. tuberculosis infection will require detailed assess­
ments of exposure to the bacillus to define the resister 
phenotype (Box 1). The true prevalence of resisters 
among individuals who have been exposed to M. tuber-
culosis is not known, but evidence from studies that 
assessed exposure variables and included longitudinal 
sampling suggest that the prevalence is <10%.

Genetics

The cellular mechanisms that mediate M. tuberculosis 
resistance are unknown, although multiple susceptibility 
loci have been linked to or associated with the resister 
phenotype in genome­ wide analyses.

Genetic basis of resistance to other pathogens. Genetic 
studies indicate that polymorphisms and mutations exist 
that are associated with resistance to some infections. For 
example, a 32 bp deletion in CC–chemokine receptor 5  
(CCR5) in CD4+ T cells results in relative resistance 
to infection with R5­tropic HIV­1 and delays disease 
progression49. Similarly, mutations in the gene encod­
ing fucosyltransferase 2 (FUT2), which is required for 
the cell surface expression of histo­ blood group anti­
gens (HBGAs; the receptors for norovirus), results in 
decreased HBGA levels on mucosal surfaces and thus 
prevents virus uptake and entry into epithelial cells. 
Consequently, individuals with these FUT2 mutations 
are completely (100% penetrant) resistant to Norwalk 
and other norovirus genogroups50,51. Atypical chemokine 
receptor 1 (ACKR1; also known as DARC and CD234) 
is the receptor on erythrocytes for Plasmodium vivax. 
Most west African individuals are homozygous for a 
promoter mutation that ablates ACKR1 expression in 
erythrocytes and, consequently, are resistant to P. vivax 
infection52. Although these examples show Mendelian 
inheritance (for example, single­ gene­inactivating 
mutations that result in highly penetrant resistance), it 
is likely that complex polygenic inheritance patterns are 
important for resistance to other pathogens, including 
M. tuberculosis.

Genetic studies of purified protein derivative skin 

reactivity. Numerous lines of evidence, including results 
from twin53,54, Mendelian primary immunodeficiency55, 
genome­ wide linkage56–58 and candidate­ gene studies59,60, 
suggest that host genetics influences susceptibility to 
TB. Mendelian Susceptibility to Mycobacterial Disease 
(MSMD) is an immunodeficiency disorder in young 
children who are susceptible to disseminated BCG and 
non­ tuberculous mycobacteria and who have mutations 
in the IFNγ and IL­12 signalling pathways55. Several 
studies also suggest that host genetic factors modulate 
resistance to M. tuberculosis infection. For example, 
the intensity of tuberculin reactivity after exposure to 

household contacts is correlated among siblings but not 
among unrelated children of the same household61.

In a genome­ wide linkage analysis of the Ugandan 
cohort, suggestive evidence for a linkage of regions on 
chromosome 2q21–2q24 and chromosome 5p13–5q22 
to the resister phenotype was detected57. These regions 
are distinct from the regions that are linked to protection 
from TB, suggesting that the genetic underpinnings of 
these two ends of the TB spectrum (that is, asympto­
matic infection and clinical disease) are unique. In a low 
endemicity setting, a candidate­ gene association study of 
individuals with or without LTBI who had close contact 
with an index pulmonary TB case reported that poly­
morphisms in Toll­ interacting protein (TOLLIP) and 
Unc51­like kinase 1 (ULK1) were associated with LTBI 
susceptibility62,63. The specific roles of these proteins in 
the resister phenotype are discussed later.

Another genome­ wide analysis assessed PPD skin 
test reactivity in M. tuberculosis­ exposed South African 
individuals. This cross­ sectional study measured rates of 
PPD­ positivity both as a binary trait (that is, PPD = 0 mm 
versus >0 mm) and as a quantitative trait by measure­
ment of skin induration (in millimetres)64. As a binary 
trait, a significant linkage signal that met the stringent 
genome­ wide linkage cut­ off was found at the TST1 
locus on chromosome 11p14. Strikingly, in a later study 
of the same families, the TST1 locus was found to be 
genetically indistinguishable (at a resolution of 2–14 Mb) 
from a major quantitative trait locus (QTL) that controls 
tumour necrosis factor (TNF) production following 
stimulation of whole blood with either BCG alone or 
BCG plus IFNγ65. These findings indicate that a genetic 
determinant linked to TNF secretion in response to BCG 
and IFNγ might also determine PPD negativity, perhaps 
through TNF­ induced microbicidal pathways. However, 
the genomic resolution around the TST1 locus in these 
studies was low (2–14 Mb), and this locus includes other 
genes besides TNF. When reactivity in the PPD skin test 
was measured in the same study as a quantitative trait 
(that is, the size of skin induration in millimetres), sig­
nificant linkage was found with a second locus, TST2, on 
chromosome 5p15 (ReF.64). This region of chromosome 
5 overlaps with the region that was associated with the 
resister phenotype in the Ugandan cohort57. Although 
the TST1 locus was strictly linked to resistance to  
M. tuberculosis infection and invokes mechanisms that 
precede T cell priming, the TST2 locus might modulate 
T cell responses that govern the intensity of the response 
in the PPD skin test.

HIV­ infected resisters, who have an increased likeli­
hood of having inadequate adaptive immune responses 
owing to CD4+ T cell depletion, might be particularly 
dependent on innate immune mechanisms for resistance 
to M. tuberculosis. As HIV and TB are co­ prevalent in 
Uganda and Tanzania, this hypothesis was tested in a 
genome­ wide association study of PPD reactivity in 
HIV­ infected individuals, which found that a locus on 
chromosome 5q31.1 was significantly associated with 
both binary (positive or negative in the PPD skin test; 
P = 1.22 × 10–8) and quantitative (induration in milli­
metres; P = 1.45 × 10–8) responses in the PPD skin test66. 
This region contains four genes, including the gene 

Ghon complex

The focus of primary 

Mycobacterium tuberculosis 

infection in the lung 
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containing polymorphisms that 

are associated with a 
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at these loci affect the 

expression levels of specific 

genes, they are referred to as 

expression QTls.
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encoding IL­9, which is expressed and secreted by mast 
cells and T helper 2 (TH2) cells and was previously associ­
ated with bronchial hyper­ responsiveness. Interestingly, 
an inverse relationship between the incidence of asthma 
and TB was reported67,68, suggesting that IL­9 and its 
pleiotropic effects on lung inflammatory responses pro­
tect against M. tuberculosis infection. Although IL9 is 
an intriguing possible resistance gene, the other genes 
in the 5q31.1 region may also have a role in resistance to 
M. tuberculosis. The study also replicated associations in 
the regions previously identified in HIV­ negative resist­
ers (on chromosomes 2, 5 and 11; discussed previously), 
including susceptibility loci near TST1.

Together, these results suggest that the resister phe­
notype has polygenic variance; that is, many individual 
genetic variants each with small individual effects con­
tribute additively to the phenotype. Although evidence 
to support broad epistatic effects on infectious disease 
susceptibility is lacking, gene pair interactions have been 
described in genome­ wide analyses of susceptibility to 
TB69,70 and leprosy71. Nonetheless, the substantial overlap 
in the loci that are associated with the resister pheno­
type or in the results of PPD skin reactivity tests that was 
detected in independent analyses argues that evolution­
ary pressure has selected variants that protect against the 
initial M. tuberculosis infection, at least in geographical 
regions that are hyperendemic for TB.

Macrophage- mediated resistance

After inhalation, aerosolized M. tuberculosis must 
navigate multiple intrinsic barriers in the upper air­
ways, including airway mucins and ciliated epithelial 
cells. The bacterium then encounters resident alveo­
lar macrophages, which exhibit pro­ inflammatory and 
anti­ inflammatory responses and are uniquely posi­
tioned to have a key role in mediating early clearance of  
M. tuberculosis72–74. The effector functions of alveolar mac­
rophages might be modulated by neutrophils through, for 
example, their formation of neutrophil extracellular traps; 
however, the role of neutrophils in both microbicidal and 
immunopathological activities is complex and is reviewed 
elsewhere75,76. M. tuberculosis is recognized by multiple 
pattern recognition receptors (PRRs) at the cell surface or 
within the phagosome or by cytosolic PRRs after phago­
somal rupture77,78. Subsequently, the outcome of infection 
depends on effective phagosome acidification, phago­
some–lysosome fusion, 6 kDa early secretory antigenic 
target (ESAT6) secretion system 1 (ESX1)­dependent 
escape of M. tuberculosis from the phagosome79, activa­
tion of the inflammasome (resulting in maturation of 
pro­ IL­1β and pro­ IL­18)78, upregulation of host genes 
that are either required for intracellular killing mecha­
nisms (for example, reactive oxygen species, nitric oxide 
(produced by inducible nitric oxide synthase), cathelici­
din antimicrobial peptide (CAMP)80 and autophagy) or 
detrimental to the host (that is, IFNβ production follow­
ing intracellular sensing of M. tuberculosis DNA by cyclic 
GMP–AMP synthase (cGAS)81,82) and, ultimately, the acti­
vation of host cell death pathways (for example, pyropto­
sis, apoptosis and necroptosis)83,84. Resistance alleles could 
modu late a number of these airway clearance functions or  
macrophage antimicrobial mechanisms (FIG. 2).

Inflammatory signalling pathways. Genetic regulation 
of inflammatory pathways is well described85–88, and 
some studies have associated susceptibility to myco­
bacterial infections with polymorphisms in Toll­ like 
receptor (TLR) pathway components89–96, regulators of 
TLR function97,98, C­ type lectin receptors99, autophagy 
proteins100,101 and other pathways for pro­ inflammatory 
cytokine production102. However, only some of these 
studies define functional polymorphisms (that affect 
TLR expression or signalling, for example), and the 
identified associations with clinical phenotypes require 
replication in other populations. Interestingly, patients 
with Mendelian primary immunodeficiency of myeloid 
differentiation primary response 88 (MYD88) or IL­1 
receptor­ associated kinase 4 (IRAK4), which are cen­
tral to most TLR signalling pathways, do not develop 
mycobacterial diseases103. Furthermore, few human 
genetic studies have found an association of resistance 
to M. tuberculosis infection (as opposed to susceptibility 
to disease) with polymorphisms in genes involved in any 
of these cellular pathways. A recently discovered single 
nucleotide polymorphism (rs5743854) in the promoter 
of the gene encoding TOLLIP is an expression QTL for 
which the G/G allele is associated with lower TOLLIP 
expression in monocytes and with increased risk of 
LTBI, pulmonary TB and meningeal TB63. Although 
the specific mechanisms through which high TOLLIP 
expression contributes to M. tuberculosis resistance as 
well as to protection from disease are not known, the 
known role of TOLLIP in directing autophagy and its 
negative regulation of TLR2, TLR4 and IL­1 receptor 
(IL­1R) suggest that these pathways are mechanisms of 
resistance. Although replication of the genetic associa­
tion findings in independent cohorts is needed, the stud­
ies discussed above suggest that resistance alleles exist 
and may be relevant to the resister phenotype.

Autophagy. Autophagy limits intracellular survival of 
M. tuberculosis and maturation of the mycobacterial 
phagosome104,105. An in vitro genome­ wide screen iden­
tified autophagy factors as the host factors that were 
most influential in restricting the intracellular growth 
of M. tuberculosis106. The M. tuberculosis ESX1 secre­
tion system is required for autophagy initiation through 
cGAS–stimulator of interferon genes (STING)­triggered 
recruitment of microtubule­ associated proteins 1A/1B 
light chain 3 (MAP1LC3) to autophagosomes82,107,108, 
but ESX1 may also be involved in the impairment of 
autophagosome maturation109. Whether autophagy 
is involved in host protection versus virulence in  
the mouse model is controversial. Genetic deletion of the  
key autophagy factor Atg5 in mice results in more severe 
disease that correlates with both uncontrolled M. tuber-
culosis growth and exacerbated lung immunopathol­
ogy110. However, this severe disease was later suggested 
to result from increased neutrophil recruitment in the 
autophagy protein 5 (ATG5)­deficient animals and not 
from defective autophagy111. Genetic variants within 
the autophagy pathway have been associated with TB 
in candidate­ gene association studies100,101, but whether 
similar variants control LTBI risk is poorly studied.  
A recent candidate­ gene association study found that 

www.nature.com/nri

REV IEWS

580 | SEPTEMBER 2018 | VOLUME 18 



β

β

β

α

κ

Fig. 2 | Macrophage- mediated resistance to Mycobacterium tuberculosis. Macrophages can provide resistance to 

Mycobacterium tuberculosis infection at multiple points in the infection process, including the initial uptake of bacilli 

into phagosomes and through any of the possible fates of these phagosomes. These fates include effective (versus 

delayed) phagosome maturation (resulting in the generation of microbicidal products, such as nitric oxide, reactive 

oxygen species and cathelicidin), fusion with the lysosome (resulting in degradation of the phagosomal contents), 

recruitment of autophagy factors (resulting ultimately in autophagosome–lysosome fusion) or phagosomal escape of 

bacteria into the cytosol. Pro- inflammatory cytokine production may result from Toll- like receptor (TLR) ligation or the 

recognition of signals following phagosomal rupture, including inflammasome- triggered maturation of pro- IL-1β or 

pro- IL-18 and recognition of cytosolic M. tuberculosis DNA by cyclic GMP–AMP synthase (cGAS) and the resultant 

stimulator of interferon genes (STING)-dependent interferon regulatory factor 3 (IRF3)-driven transcriptional 

response. Vitamin D3 receptor (VDR)-dependent transcription, which requires prior activation of vitamin D to 

1α,25(OH)2D3 through TLR or IFNγ signalling events, results in cathelicidin expression. Genetic and cellular evidence 

exists for a role for the negative TLR regulator Toll- interacting protein (TOLLIP), the autophagy factor Unc51-like 
kinase 1 (ULK1) and histone deacetylases (HDACs; which are master transcriptional regulators) in resistance. AIM2, 
absent in melanoma 2; cGAMP, cyclic GMP–AMP; ESAT6, 6 kDa early secretory antigenic target; mTOR , mechanistic 
target of rapamycin; MYD88, myeloid differentiation primary response protein MYD88; NF- κB, nuclear factor- κB; 
NLRP3, NOD-, LRR- and pyrin domain- containing 3; TBK1, TANK- binding kinase 1; TFs, transcription factors;  
TNF, tumour necrosis factor.
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two polymorphisms in ULK1, which encodes a compo­
nent of an upstream protein complex that transduces sig­
nals to central autophagy effectors, were associated with 
LTBI in Asian contacts of index cases62. After adjustment 
for clinical risk factors for LTBI, each of these ULK1 
minor alleles was estimated to confer an 80% reduction 
in LTBI risk. This result might be due to an improvement 
in selective autophagy, decreased M. tuberculosis repli­
cation or increased TNF secretion in response to TLR 
ligands, as suggested from mechanistic studies using 
ULK1­deficient cells62.

Monocyte gene expression and histone deacetylase 

pathways. One hypothesis to explain the resistance to  
M. tuberculosis infection in the Uganda study12 is that fol­
lowing infection, the expression profiles of blood mono­
cytes from individuals with LTBI and resisters are distinct. 
In a comparative transcriptional profiling study, mono­
cytes from each clinical group were infected ex vivo with  
M. tuberculosis112, and the microarray data were analysed 
with Gene Set Enrichment Analysis (GSEA)113 to iden­
tify host pathways that are associated with each clini­
cal phenotype (resister and LTBI) according to curated 
gene sets from transcriptional databases. The gene set 
that was most significantly associated with the resister 
group was from a previous study of sodium butyrate­ 
stimulated cells114. Sodium butyrate is a short chain 
fatty acid that inhibits histone deacetylases (HDACs), 
which modify chromatin and regulate cellular function, 
including signalling pathways115,116. Interestingly, phenyl­
butyrate, a class I HDAC inhibitor that is known to 
synergize with vitamin D to induce CAMP production 
and inhibit M. tuberculosis growth in macrophages117, 
has been tested as a potential host­ directed therapy for 
pulmonary TB118. Activated vitamin D (1α,25(OH)2D3) 
binds to the vitamin D3 receptor (VDR), which trans­
locates to the nucleus to induce expression of CAMP 
and drive other host processes, including autophagy 
and autophagosome–lysosome fusion80. CAMP has 
direct antimicrobial activity against M. tuberculosis in 
the phagosomal compartment80. Together, these data 
suggest that monocytes from resisters and individuals 
with LTBI respond differently to ex vivo M. tuberculosis  
infection. Targeting HDACs with inhibitors might 
provide a novel therapeutic option for M. tuberculosis 
infections; however, the specific mechanisms by which 
HDAC­ dependent pathways are altered in resisters, and 
whether epigenetic mechanisms or ‘trained immunity’ 
are involved, are unknown.

T cell-​mediated​resistance
Several lines of evidence from human studies and animal 
challenge models underscore the importance of T cells in 
controlling M. tuberculosis infection119–121. HIV­ infected 
individuals with low CD4+ T cell counts have increased 
risk of progressing from LTBI to TB. In addition, patients 
with MSMD have defects in the IL­12–IFNγ pathway 
and increased susceptibility to disseminated mycobac­
terial infections55. Furthermore, mouse models of acute  
M. tuberculosis infection have demonstrated the impor­
tance of IFNγ production in controlling bacterial replica­
tion and survival122. However, the source of IFNγ remains 

controversial, as its production by CD4+ T cells may be 
dispensable for control of M. tuberculosis infection in some 
mouse models14–16, whereas IFNγ production is essential 
in other mouse models123. Furthermore, IFNγ­producing 
CD4+ T cells have not emerged as an immunological cor­
relate of protection from infection in humans, which sug­
gests that this profile is important but is not sufficient for 
protection against M. tuberculosis infection124,125. In indivi­
duals with LTBI, MHC­ restricted αβ T cells recognize a 
broad repertoire of MHC class I­restricted and MHC 
class II­ restricted M. tuberculosis peptides and exemplify a 
classical TH1 cell­ like response. Implicit in their definition, 
resisters lack reactivity in the PPD skin test or secretion of 
IFNγ by T cells following antigen stimulation, although, 
hypothetically, these individuals might have IFNγ­ 
independent T cell responses that mediate resistance to 
M. tuberculosis or its clearance.

IFNγ-​independent​T cell​responses.​IFNγ­ independent 
T cell responses to mycobacterial antigens have been 
described (FIG. 3). For example, Cambodian patients with 
pulmonary TB who remained anergic to PPD following 
treatment completion displayed tuberculin antigen­ 
specific T cell responses in vitro that were characterized 
by the production of IL­10 rather than IFNγ126,127. IL­10, 
which is known for its anti­ inflammatory role in mitigat­
ing TH1 cell responses to minimize the potentially dele­
terious effects of TNF and IFNγ, is mostly implicated in 
the immune response to TB, and no evidence exists for a 
protective role of IL­10 in the early stages of M. tubercu-
losis infection128. However, a genotyping study in Ghana 
found that individuals with the IL10 promoter haplotype 
with the highest association with low circulating levels 
of IL­10 were more likely to have TB or be PPD­ positive 
than to be PPD­ negative129. Whether high IL­10 levels in 
these individuals truly confer resistance to infection, as 
opposed to PPD­ specific anergy in the presence of LTBI, 
remains to be determined.

Additional CD4+ T cell subsets, including TH17 cells, 
could contribute to the resister phenotype through 
IFNγ­ independent mechanisms. In mice, the produc­
tion of IL­17A, one of several TH17­related cytokines, 
recruits neutrophils and other inflammatory cells to 
the lung and is involved in granuloma maturation130. 
Adoptive transfer of BCG­ specific TH17 cells har­
vested from immunized IFNγ­ deficient mice into 
recipient V(D)J recombination­ activating protein 
(RAG)­deficient mice gave these recipient mice a sur­
vival advantage when challenged with M. tuberculosis, 
which was comparable to that seen with transfer of 
TH1 cells from IFNγ­ competent mice131. This IFNγ­ 
independent partial protection provided by TH17 cells 
against M. tuberculosis was also seen in another adoptive 
transfer model132. Unlike IL­10, IL­17 is not known to 
directly interfere with IFNγ production, and whether 
these IFNγ­ independent TH17 activities are relevant 
to the resister phenotype is unknown. However, taken 
together, these examples illustrate that despite having 
persistent negative responses in PPD skin reactivity 
tests and IGRAs, it is possible that resisters have other 
mycobacteria­ specific MHC class I­ restricted or MHC 
class II­ restricted T cell responses.

www.nature.com/nri

REV IEWS

582 | SEPTEMBER 2018 | VOLUME 18 



Unconventional​T cell​responses.​In addition to myco­
bacterial protein antigens, T cells also recognize non­ 
protein mycobacterial antigens (FIG. 3). For example, 
T cells are activated by mycobacterial cell wall lipids 
that are bound to CD1 proteins, which are homologous 
to MHC class I molecules but are functionally non­ 
polymorphic40,133,134. The human CD1 locus encodes 
four proteins (CD1A–CD1D) that are localized at the 
cell surface and present lipid antigens to T cells. In a 

cross­ sectional study of South African adolescents with 
or without LTBI, there were low intra­ donor correlations 
between T cell responses to protein and lipid antigens135, 
indicating that T cell responses to lipid antigens are not 
redundant with those to protein antigens and that the 
responses to the different antigens could be comple­
mentary. Immunity to lipid antigens could be primed 
by exposure in early life to non­ tuberculous mycobac­
teria, which could facilitate clearance of M. tuberculosis 

γδ 

γ

γ

γδ 

Fig. 3 | T cell- mediated resistance to Mycobacterium tuberculosis. After phagocytosis of Mycobacterium tuberculosis by 

macrophages and dendritic cells (not shown), various T cell responses are stimulated, including conventional MHC- 
restricted responses (peptide- specific T cells) and MHC- independent responses (γδ T cells, which detect phosphorylated 
prenyl metabolites (also known as phosphoantigens)), CD1-restricted (lipid- specific) T cells and MHC class I- related gene 
protein (MR1)-restricted T cells (also known as mucosal- associated invariant T (MAIT) cells); MR1 presents small molecules, 
such as vitamin B2 derivatives. Production of IFNγ by CD4+ T cells is a hallmark of the T cell response in individuals with 
latent M. tuberculosis infection (LTBI), whereas by definition, ‘resisters’ lack this IFNγ response. Qualitative differences in 

T cell responses between resisters and individuals with LTBI lead to the production of different macrophage- activating 
cytokines and chemokines, resulting in either the elimination of M. tuberculosis by resisters or persistence of M. tuberculosis 

in individuals with LTBI. BTN3A1, butyrophilin subfamily 3 member A1; NTM, non- tuberculous mycobacteria; TCR , T cell 
receptor; TLR , Toll- like receptor.
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following infection, thus limiting the initiation of 
peptide­ specific T cell responses that are mostly respon­
sible for producing a positive result in the PPD skin test. 
In addition, lipid­ specific T cells could also be primed 
by vaccination with BCG. Functionally, T cells specific 
for mycobacterial lipids have been shown to have a TH1 
cell cytokine­ producing profile ex vivo, supporting their 
role in the clearance of M. tuberculosis­ infected cells136.

The MHC class I­ related gene protein (MR1) antigen­ 
presenting molecule presents small molecules instead of 
peptides or lipids to T cells137 and is important for the 
development of mucosal­ associated invariant T (MAIT) 
cells138–140. MAIT cells can kill M. tuberculosis­ infected 
cells in an MR1­dependent manner41, and Mr1­knockout 
mice have a higher lung burden of M. bovis BCG than 
wild­type mice141. Furthermore, in candidate­gene  
association studies, MR1 and CD1 polymorphisms were 
associated with susceptibility to TB142,143. Finally, γδ 
T cells are a T cell lineage that express a heterodimeric 
T cell receptor and are activated by phosphorylated prenyl  
metabolites144,145. Vγ9Vδ2 T cells are activated by BCG­ 
infected cells and can lyse BCG­ infected target cells146.

Thus, in PPD­ negative individuals, the CD1­specific, 
MR1­specific and γδ T cell populations might provide 
cellular immunity against M. tuberculosis that is inde­
pendent of the IFNγ production by PPD­ specific CD4+ 
T cells that defines LTBI. Further study is required to 
determine whether these other populations of T cells 
protect against M. tuberculosis infection in resisters or, 
alternatively, whether these T cells prevent progression 

of LTBI in individuals who are unable to produce IFNγ 
in response to M. tuberculosis antigens.

B cell- mediated resistance

Antibodies are powerful mediators of protective immu­
nity against many infectious diseases, and stimulating 
their production is the goal of vaccination strategies147,148. 
In M. tuberculosis infection and disease, however, the role 
of humoral immunity is probably complex and remains 
unclear149,150. Passive transfer of antibodies has not 
consistently conferred protection151–154, and immuno­
globulin G (IgG)­deficient individuals do not exhibit 
reduced control of bacterial infections155. By contrast,  
a post hoc analysis of the MVA85A vaccine trial found 
that elevated Ag85A­ specific IgG titres correlated with 
protection against TB156. In addition, depletion of  
B cells in a non­ human primate model of M. tuberculosis  
infection resulted in increased lesional bacterial bur­
den157. Furthermore, in patients with active TB, B cell 
function is initially abnormal but returns to normal after 
successful treatment158,159. These observations highlight 
the immunoregulatory role of B cells in controlling  
M. tuberculosis infections, which extends beyond their 
direct antibody­ mediated effector functions (FIG. 4).

Antibodies and latent Mycobacterium tuber-

culosis infection. Antibodies, plasma cells and 
antibody­ responsive innate immune cells that express 
crystallizable fragment (Fc) receptors are abundant in  
M. tuberculosis granulomas160,161, indicating that these 

Fig. 4 | Antibody- mediated resistance to Mycobacterium tuberculosis. Beyond their role in clearing pathogens, 
antibodies also direct the rapid destruction of infected cells via the recruitment of innate immune cells (such as 

phagocytes) that express crystallizable fragment (Fc) receptors. Two modifications to the Fc domain of an antibody control 

its affinity for Fc receptors, namely , changes in the antibody subclass or isotype and its glycosylation. Fab, antigen- binding 

fragment; NK cell, natural killer cell; ROS, reactive oxygen species.
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innate immune cells are actively recruited and might 
potentially contribute to antimicrobial activity162,163. 
Distinct Fc effector profiles were observed in indi­
viduals with LTBI versus those with active disease. 
Individuals with LTBI had improved antibody func­
tionality that was linked to elevated binding to the low­ 
affinity immunoglobulin­ γ Fc region receptor III­ A 
(FcγR3A)164, which is highly expressed by natural killer 
cells, neutrophils, mature macrophages and dendritic 
cells163. Furthermore, these antibodies not only improved 
innate immune cell activity but also contributed to the 
restriction of intracellular survival of M. tuberculosis in 
previously infected primary macrophages. Interestingly, 
this differential functional activity was not related to 
altered subclass selection but was instead related to sub­
stantial changes in antibody glycosylation among the  
M. tuberculosis­ infected individuals164.

Antibodies and the resister phenotype. It is unclear 
whether antibodies contribute to the resister phenotype, 
but it is plausible that at the time of repeated M. tubercu-
losis exposure that pre­ existing antibodies might direct 
the antimicrobial activity of macrophages, neutrophils 
or dendritic cells to eliminate the bacteria more effec­
tively. Although in vitro studies indicate a limited role 
for antibody­ mediated opsonophagocytic prevention  
of macrophage infection by M. tuberculosis, the addition of  
pooled IgG derived from individuals with LTBI to previ­
ously infected healthy donor primary macrophages can 
drive bacterial elimination by a process that probably  
involves activation of the inflammasome164. These results 
suggest that, in addition to their minor role in limiting  
initial infection through opsonization, antibodies ‘cure’ 
infected macrophages if they are present at the right 
time and place. Although the majority of healthy donor 
macro phages restricted M. tuberculosis survival in the 
presence of pooled IgG from individuals with LTBI164, 
the level of restriction varied by macrophage donor, 
which suggests that antibody­mediated killing of  
M. tuberculosis is also dependent on factors that are 
intrinsic to innate immune cells.

Thus, whether natural or affinity­ matured humoral 
immunity exists among resisters is unknown, but 
humoral immunity might provide an exciting novel 
immunological axis that links the adaptive and innate 
immune responses to target and eradicate M. tuberculosis  
after exposure and warrants further exploration.

Conclusions and outlook

Historically, significant breakthroughs in treating infec­
tious diseases have been made by studying mechanisms 
of resistance rather than susceptibility to infections. The 
most notable historical example is the observation that 
milkmaids exposed to cowpox were resistant to small­
pox165. A more contemporary example is the HIV resist­
ance of individuals with a variant of CCR5, CCR5Δ32 
(ReFS166,167). Both these observations led to transformative 
therapeutic interventions — the smallpox vaccine and 
CCR5 inhibitors, respectively168.

For much of the past century, many investigators 
have postulated that some individuals are naturally 
resistant to M. tuberculosis infection in the face of 

intense exposure. However, a number of challenges 
have impeded the elucidation of potential resistance 
mechanisms, including the limitations of using an indi­
rect immunological test to define the resister phenotype 
and the need to incorporate measurements of exposure 
intensity in study designs. Despite this, contemporary 
epidemiological evidence supports the existence of 
resisters. Genome­ wide association analysis of data from 
independent studies has identified loci that are associ­
ated with resistance to M. tuberculosis infection. The elu­
cidation of immunological and genetic mechanisms of 
the resister phenotype is at an early stage, but these stud­
ies might reveal heterogeneous protective responses that 
are relevant to different types of resisters. For example, 
macrophage­ dependent pathways that prevent bacterial 
uptake or rapidly clear M. tuberculosis before the devel­
opment of an adaptive immune response define innate 
resisters. Alternatively, adaptive resisters are individuals 
in which T cell and B cell effector functions eliminate or 
restrict M. tuberculosis infections, either independently 
of IFNγ production or through priming by non­ protein 
antigens. Further study is required to clarify whether 
adaptive resisters have greater resistance to progression 
to active TB than individuals with traditionally defined 
LTBI; however, these studies could identify novel cor­
relates of immune protection or aid current prognostic 
efforts to stratify those individuals who are most at risk 
of disease progression4,5.

Looking ahead, integrated research approaches using 
advanced epidemiological, genetic and immunological 
tools will be required to dissect mechanisms of resist­
ance. In future studies, features of an optimally defined 
resister should incorporate several variables outlined in 
Box 1, including, first, indices of exposure (both intensity 
and duration) using, at a minimum, validated epidemio­
logical risk scoring12,13; second, the use of both the PPD 
skin reactivity test and the IGRA to avoid misclassifica­
tion bias resulting from discordant immunological tests; 
and third, longitudinal sampling for serial LTBI testing.

Epidemiological risk scores must include an assess­
ment of the nature of contact between the index case or 
cases and the exposed individual (that is, whether the 
index case is the primary caregiver and the frequency 
and proximity of contact) and some assessment of 
infectivity of the exposure environment (for example, 
whether the index case is coughing, whether their spu­
tum is smear­ positive for M. tuberculosis and whether 
there are multiple index cases within a household or 
employment setting). Although not yet ready for prac­
tical implementation, more advanced assessments of 
infectious risk, such as aerobiological environmental 
sampling where transmission risk has been correlated 
with the degree of ventilation and with the number of 
viable bacteria sampled from cough aerosols, could be 
incorporated in future studies37,169,170.

Even in areas of high TB endemicity, some level of 
discordance exists between the results of PPD skin reac­
tivity tests and IGRAs171. Consequently, individuals with 
discordant results in the PPD skin reactivity test and the 
IGRA are not categorized as resisters, although retaining 
clinical samples from these individuals is important to 
facilitate studies to better understand the mechanistic 
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basis of this discordance. As the resister category might 
encompass multiple biological phenotypes, at this early 
stage in their characterization, we favour more stringent 
criteria to avoid misclassification, which justifies the 
increased expense and logistical complexity of imple­
menting multiple testing modalities (PPD skin reac­
tivity tests and IGRAs) and serial testing. Longitudinal 
sampling should include, at a minimum, multiple LTBI 
diagnostic tests in the year following initial exposure, as 
most but not all conversions occur in the first 3 months 
following exposure36. In circumstances in which resist­
ers remain in regions of high M. tuberculosis transmis­
sion, follow­ up testing may be warranted to ensure that 
any new conversions owing to community exposures 
are detected.

Advances in the past decade have transformed 
genetic methods and platforms, which now include 
affordable and standardized genome­ wide detection 
of polymorphisms. These tools provide assessment of 
polymorphisms that are annotated in public databases. 
Whole­ genome sequencing is also more affordable and 
can be used to examine resisters for unidentified poly­
morphisms that are not annotated in public databases.  
To address limitations in the availability of patient samples, 

new advances in stem cell work (for example, induced 
pluripotent stem cells derived from peripheral blood 
mononuclear cells) have made possible the creation of 
permanent cell lines from individuals, which can be diff­
erentiated into different cell types that are more relevant 
for studying M. tuberculosis pathogenesis (for example,  
alveolar macrophages). Finally, if M. tuberculosis  
cultures from index cases are available, comparisons of 
strain type, host phenotype (resister versus LTBI versus TB)  
and host genotype, as well as determination of whether 
transmission events are sympatric or allopatric172,  
are exciting avenues of investigation.

The integration of rigorous epidemiological pheno­
typing with mechanistic studies that investigate global 
immune pathways in macrophages, T cells and B cells, 
and how these pathways might differ between resisters and 
individuals with LTBI, should provide further biological 
insight into the mechanisms of early clearance or preven­
tion of infection by M. tuberculosis. These potential bio­
logical mechanisms should provide targets for drugs and 
vaccines that could improve specific immune functions 
and improve therapeutic options for treating TB.
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