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Abstract

Purpose of Review Chronic wounds are a tremendous burden on the healthcare system and lead to significant patient morbidity

and mortality. Normal cutaneous wound healing occurs through an intricate and delicate interplay between the immune system,

keratinocytes, and dermal cells. Each cell type contributes signals that drive the normal phases of wound healing: hemostasis,

inflammation, proliferation, and remodeling. This paper reviews how various immunological cell types and signaling molecules

influence the way wounds develop, persist, and heal.

Recent Findings Concurrent with the achievement of hemostasis, neutrophils are the first cells to migrate to the wound bed,

brought in by pro-inflammatory signals including IL-8. Their apoptosis and engulfment by macrophages (efferocytosis) provides

a key signal to the local immune milieu, including macrophages, to transition to an anti-inflammatory, pro-repair state, where

angiogenesis occurs and granulation tissue is laid down. Myofibroblasts, activated through contractile forces and signaling

molecules, then drive remodeling, where granulation tissue becomes scar. Unchecked inflammation at this stage can result in

abnormal scar formation.

Summary Although the derangement of immune signals at any stage can result in impaired wound healing, recent research has

shown that the key transition point lies between the inflammatory and the proliferative phases. This review summarizes the events

that facilitate this transition and discusses how this process can be disrupted, leading to chronic, non-healing wounds.
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Introduction

In the USA, chronic wounds afflict approximately 6.5 million

individuals, leading the healthcare system to spend over 25

billion dollars, annually, on their treatment [1]. Non-healing

wounds are more than just a cost burden, as they have been

shown to cause loss of mobility and ability to perform daily

tasks, loss of participation in the workforce, and poor quality

of life [2, 3]. The effect of non-healing wounds on mortality

has even been demonstrated to be comparable to cancer [4].

As the population continues to age, and rates of obesity, dia-

betes, and cardiovascular disease rise, the number of chronic

wounds worldwide is expected to rise as well [5•].

Given the tremendous strain that chronic wounds place on

the healthcare system, considerable efforts are underway to

investigate the basic science of wound healing and to under-

stand the conditions that lead to chronic wounds. In particular,

the immune system has been found to play a substantial role

due to its impact on several repair mechanisms [6, 7]. Though

the process of wound healing is markedly complex and de-

pendent on the delicate interplay of numerous factors, normal

wound healing can generally be broken down into four over-

lapping but distinct steps (Fig. 1). These steps include hemo-

stasis (minutes to hours after injury), inflammation (days 1–3),

proliferation and repair (days 4–21), and lastly, wound remod-

eling (days 21–365) [8, 9]. Dysregulation of any of these

events can result in delayed wound healing and the potential

to form chronic ulcers and/or excessive scarring [10••]. This

review summarizes the events taking place in each stage of

wound healing, with a focus on immune pathways and how

they are disturbed in chronic wounds. New research has illus-

trated that chronic wounds fail to shift from the inflammatory

to the proliferative phase of wound healing, so much of this

review will focus on the events that drive this transition.
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Four Stages of Wound Healing

Hemostasis

The initial events following injury are designed to achieve

hemostasis within the first minutes to hours of injury based

on a series of serine protease events designed to prevent

blood loss [11]. In this cascade, a series of biologically

inert zymogens (enzyme precursors) are activated into

fully functional, catalytically active, serine proteases that

result in the platelet activation and formation of a fibrin

clot. Platelet activation not only results in hemostasis,

but also in the release of growth factors such as platelet-

derived growth factor (PDGF) as well as immune me-

diators that are responsible for activation of the immune

system and transition to the inflammatory phase of

wound healing.

The hemostasis phase begins when tissue damage allows

blood to leak into the exposed wound site, triggering the ex-

trinsic clotting cascade and releasing mediators that cause lo-

calized vasoconstriction, such as serotonin [9]. Platelets sub-

sequently aggregate and activate on subendothelial collagen,

leading to formation of a hemostatic plug through their release

of cytokines and growth factors [12]. Not only does this mit-

igate hemorrhage, but also serves as a preliminary matrix for

cell migration by releasing scaffold proteins such as fibronec-

tin, vitronectin, and thrombospondins, allowing for the migra-

tion of keratinocytes, immune cells, and fibroblasts [9, 13].

Platelet degranulation also leads to the release of inflammato-

ry mediators such as interleukin (IL)-8, or CXCL8 (a potent

neutrophil chemoattractant), in addition to IL-1α, IL-1β,

IL-6, and tumor necrosis factor (TNF)-α, and activates

the complement cascade [9, 14]. After hemostasis is

achieved, histamine released by the activated comple-

ment cascade causes capillary dilation and leakage, ac-

celerating migration of inflammatory cells into the wound bed

and full transition to the inflammatory phase of wound

healing [15].

Inflammation

The inflammatory phase overlaps considerably with initial

hemostasis, occurring during the first 72 h after tissue injury

[16]. This phase is principally represented by a complex series

of molecular signals that ultimately facilitates neutrophil and

monocyte infiltration of the wound bed in order to prevent

unnecessary tissue damage and eliminate pathogenic organ-

isms and foreign debris [6, 16].

Inflammatory cell recruitment into the wound site occurs

secondary to local stimuli. In an acute wound, injured host

cells die and release cellular contents that serve as danger

signals (e.g., uric acid, DNA, RNA, extracellular matrix com-

ponents). These products are collectively referred to as

damage-associated molecular patterns (DAMPs) [17, 18].

When a wound is contaminated by a pathogen, pathogen-

associated molecular patterns (PAMPs) are also released into

the wound milieu [19]. Pattern recognition receptors (e.g.,

toll-like receptors) on local, tissue-resident cells recognize

these danger signals, which leads to local cell activation.

Subsequently, these cells express numerous genes that code

for important chemical mediators that will propagate the in-

flammatory response [20, 21].

Neutrophil Activation and Amplification

Neutrophils represent the most abundant inflammatory cells to

infiltrate a new wound and function mainly to remove debris

and prevent infection [22, 23]. Their influx is mediated by a

number of chemical signals, including IL-8, or CXCL8, as

mentioned above, and neutrophils have over 30 different re-

ceptors that mitigate their migration and activation response

[24]. It is clear that neutrophils do function in debris removal

early in wound healing, but their persistence, as will be

discussed in detail below, has been associated with delayed

wound healing and chronic wounds.Moreover, mouse models

of wound healing have shown that in non-aged, non-impaired

models, neutrophil depletion does not negatively affect wound

Fig. 1 Legend: traditional model of wound healing. Wound healing

normally progresses through the hemostasis/inflammatory phase, the

proliferative phase, and the remodeling phase. Hemostasis is achieved

with production of a fibrin clot. Danger signals are released from platelets

and damaged cells, which leads to infiltration and activation of pro-

inflammatory cells such as neutrophils and inflammatory-type

macrophages. There is an important transition from the inflammatory to

the proliferative phase (days 2–5). In chronic wounds, this transition often

fails to occur. In the proliferative phase, extracellular matrix (ECM) is laid

down to form granulation tissue, and angiogenesis and re-epithelialization

occur. Over the next year, the granulation tissue is remodeled into a scar

Curr Derm Rep (2018) 7:350–358 351



healing as profoundly as macrophage deletion [25–27]. In

impaired models of wound healing, such as diabetes, where

infection risk is higher, neutrophils are clearly required [28].

DAMPs, released from necrotic cells, are thought to be the

first signals to recruit neutrophils to the wound bed [29].

These danger signal molecules can activate neutrophils direct-

ly by binding various neutrophil surface receptors, in addition

to signaling tissue-resident cells to produce neutrophil

chemoattractants [23, 30].

One of the most well-described chemoattractants produced

by tissue-resident macrophages and fibroblasts is CXCL8 (IL-

8) [31]. CXCL8 binds and stimulates neutrophil surface re-

ceptors CXCR1 and CXCR2, leading to avid recruitment of

neutrophils to the site of tissue injury [32, 33]. Interestingly,

once neutrophils migrate into the wound they are also able to

secrete CXCL8, creating a pro-inflammatory feedback loop

[34]. Endothelial permeability is also increased by CXCL8,

further encouraging inflammatory cell influx into the wound

site [35]. Other CXCL8 family chemokines, such as CXCL1,

CXCL2, CXCL3, CXCL5, CXCL6, and CXCL7, have also

been shown to play a role in neutrophil chemotaxis [18,

34, 36]. By binding glycosaminoglycans on tissue cell

walls and in the extracellular matrix, these chemokines,

including CXCL8, create a signaling gradient to allow

for clear directional migration of neutrophils towards the

injury [18, 34, 37, 38]. Additional DAMP-induced cel-

lular byproducts, such as hydrogen peroxide (H2O2) and leu-

kotriene B4 (LTB4), also form gradients to drive focused mi-

gration of neutrophils [23].

Neutrophils in Wound Healing

Although neutrophils are not considered an essential cell type

in non-impaired wound healing, they do carry out a variety of

functions that support the process [27, 39]. First and foremost,

neutrophils defend against wound infection by phagocytosing

pathogens then killing them through release of reactive oxy-

gen species, proteases, or antimicrobial proteins [28]. With

degranulation, antimicrobial proteins can also be released into

the surrounding milieu to destroy extracellular organisms

[40]. More recent evidence indicates that neutrophils can also

eliminate organisms residing in the extracellular environment

through the deployment of neutrophil extracellular traps

(NETs). NETs are web-like structures comprised of strands

of decondensed chromatin bound to neutrophil-produced bac-

tericidal proteins. They work by either directly killing micro-

organisms or via immobilizing pathogens to facilitate phago-

cytosis [41, 42].

In addition to clearing pathogens, neutrophils also regulate

inflammation and generate growth factors and cytokines to

induce wound healing. In the wound environment, neutrophils

have exhibited the ability to upregulate gene expression of

chemokines that are key recruiters of macrophages, T cells,

and additional neutrophils, such as TNF-α, IL-1β, IL-6,

CXCL8, CXCL2, and monocyte chemoattractant protein-1

(MCP-1) [16, 34, 43]. Neutrophils also show increased ex-

pression of cytokines that promote angiogenesis [e.g., vascu-

lar endothelial growth factor (VEGF), CXCL3, and MCP-1],

proliferation of fibroblasts and keratinocytes (IL-8, IL-1 β,

and MCP-1), adhesion of keratinocytes to the dermal layer

(laminin 5 β-3), and tissue remodeling [urokinase-type plas-

minogen activator (uPA)] [34, 43–45].

Neutrophils in Chronic Wounds

While neutrophils do play an important role in propagating the

inflammatory response in the early stages of wound healing,

they also serve as a signal to inactivate the inflammatory phase

[46]. In physiologic wound repair, neutrophils undergo apo-

ptosis after carrying out their various functions at the site of

injury. Local macrophage uptake of apoptotic neutrophils then

triggers a transition out of inflammatory phase [47–49]. More

recent studies also indicate that some neutrophils may actually

undergo reverse migration, away from the site of injury and

back into circulation. This is called reverse transendothelial

migration (rTEM), and serves two potential functions: a

mechanism to resolve local inflammation and/or a mechanism

to redistribute activated neutrophils to other locations in the

body, leading to inflammation at other sites [23].

Although the recruitment of neutrophils is crucial in host

protection, the associated robust inflammatory response may

also be detrimental to proper wound healing [28, 50, 51].

Many studies suggest that the prolonged presence of neutro-

phils and their associated inflammatory mediators in the

wound milieu contributes to the formation and persistence of

chronic wounds. For example, neutrophil-derived proteases,

such as elastase and matrix metalloproteinases (MMPs), can

degrade healthy extracellular matrix (ECM), and increased

levels of these proteases have been repeatedly detected in

chronic wounds [52–56]. Neutrophils can also generate dele-

terious levels of reactive oxygen species in chronic wounds,

damaging cell membranes and causing additional destruction

of the ECM. This destruction encourages additional pro-

duction of inflammatory mediators (e.g., IL-1, TNF-α)

and proteolytic enzymes (e.g., MMPs), propagating a

cycle of inflammation amplification [28, 57]. Thus, it comes

as no surprise that chronic wounds demonstrate significantly

increased levels of the potent neutrophil chemoattractant,

CXCL8 [58].

NETs have also been detected in excess in diabetic foot

wounds and have been shown to delay healing, and inhibition

of NETosis and NET function in mouse models of de-

layed wound healing improves outcomes [59•]. In sum,

the sustained and inappropriate presence of neutrophils

at the site of injury is a major contributing factor in non-

healing wounds.
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Macrophage Activation and Inflammation Amplification

Macrophages play a critical role in wound healing, and their

roles in angiogenesis, fibroplasia, cell proliferation, and tran-

sition out of the inflammatory phase is clear (Fig. 2) [25–27,

60]. At baseline, macrophages are phagocytic monocyte-

derived cells that constitutively scavenge and remove dead

cells, necrotic tissue, and toxic metabolites from the

tissues [61]. However, after injury, these homeostatic

functions are amplified by a variety of stimuli in order to

facilitate tissue repair.

With cutaneous injury, local, skin-resident macrophages

become activated via danger signals and other injury-by-

product molecules (e.g., H2O2), while monocytes in circula-

tion exit blood vessels and enter the wound site. It was previ-

ously thought that neutrophils were the only inflammatory

cells infiltrating a wound immediately after injury; however,

a recent study demonstrated that a surge of monocytes enter

the wound bed simultaneously, traveling through sites of vas-

cular leakage [62, 63].

DAMPs and PAMPs (released from necrotic tissue and

pathogens, respectively), as well as interferon-γ [(IFN-γ), re-

leased from natural killer cells] polarize macrophages into a

pro-inflammatory phenotype [64]. These inflammatory mac-

rophages are often referred to as classically activated macro-

phages, or the M1 phenotype [65]. This phenotype secretes

pro-inflammatory cytokines, such as IL-1β, IL-6, IL-12, IL-

23, and TNF-α, as well as chemokines that induce increased

natural killer cell, macrophage, and helper T cell responses

[65–67]. These inflammatory amplification molecules

are essential, because prior to injury, the skin has rela-

tively few resident macrophages, and the majority of

wound-related macrophages are derived from intravascu-

lar monocytes [68, 69]. In addition to signaling recruit-

ment of leukocytes to the wound bed, these M1 macro-

phages demonstrate an increased capacity to destroy and

phagocytose microbes and cellular debris to keep the site of

injury clean [70–72].

Anti-inflammatory Macrophages

Macrophages in the wound site are responsible for phagocy-

tosis of apoptotic neutrophils, a process known as

efferocytosis [73••]. This action itself induces macrophages

to transition from a pro-inflammatory phenotype, to an anti-

inflammatory phenotype, often referred to as M2 or “alterna-

tively activated”macrophages [47]. Rather than be considered

distinct M1 and M2 cell types, it is better to characterize these

macrophages as existing on a spectrum of activation between

pro-inflammatory and anti-inflammatory [74]. Other media-

tors that induce this transition include glucocorticoids, IL-10,

prostaglandins, the IL-4/IL-13 pathway, and engagement of

specific toll-like receptors (TLRs) [26, 60, 75]. Interestingly,

while IL-4/13 are the primary signals to induce this phenotype

in vitro, recent studies have shown that they are not required

in vivo [26, 76]. More recent work has demonstrated roles for

regulatory T cells (Tregs), adenosine signaling, and

microRNAs (miRNAs) [10••, 77, 78]. Anti-inflammatory

macrophages represent a more heterogeneous cell population,

and are comprised of all macrophages that do not have the

pro-inflammatory phenotype [79]. These cells tamper down

inflammation and stimulate tissue repair by generating anti-

inflammatory molecules such as IL-1 receptor antagonist and

IL-10, as well as growth factors that promote ECM synthesis,

angiogenesis, and fibroblast proliferation, such as

transforming growth factor-β (TGF-β) and VEGF [80].

Transitioning from a pro-inflammatorymacrophage-dominant

wound to an anti-inflammatory macrophage-dominant milieu

is essential in resolving inflammation and preparing the

wound for effective repair [72].

Macrophages in Chronic Wounds

When the transition from a pro- to an anti-inflammatory mac-

rophage phenotype is impaired, wound healing stalls in the

inflammatory phase and a chronic wound results [10••].

Certain signals are known to prolong the presence of pro-

inflammatory macrophages, including iron overload, which

is commonly seen in the skin in the setting of venous stasis

[81, 82].

In fact, in a mouse model of iron overload, local wound

macrophages persisted in a pro-inflammatory state with ex-

cess production of inducible nitric oxide synthase (iNOS), IL-

12, and TNF-α, in addition to free radicals, leading to im-

paired wound healing [81]. In addition to increased pro-

inflammatory molecule expression, iron-overloaded macro-

phages showed decreased levels of anti-inflammatory markers

such as IL-4, IL-10, and CD206 [81]. Macrophages

from patients with chronic, non-healing, wounds have

been shown to have higher levels of iron, based on Prussian

blue staining [82, 83].

Additional signals, such as hyperglycemia in the setting of

diabetes, hypoxia in the setting of arterial or venous insuffi-

ciency, or secondary infection likely also contribute to the

persistence of pro-inflammatory macrophages.

Proliferation

As inflammation resolves, the proliferation phase begins. This

involves re-establishing vascular channels, generating granu-

lation tissue, and re-epithelializing the wound surface. In

physiologic wound repair, keratinocytes from the wound edge

begin migrating centrally within hours of tissue injury, and

epithelial stem cells from the basal layer of the epidermis

and hair follicle root sheath begin proliferating 2–3 days after

tissue injury [84]. New blood vessel formation and re-
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epithelialization occurs secondary to multiple chemical and

physical signals, some of which come from immune cells,

including anti-inflammatory, pro-repair macrophages.

Restoring the vascular network is an important part of the

proliferative phase. New blood vessel formation, referred to as

angiogenesis, occurs in a two-step process: vessel sprouting,

followed by vessel anastomosis [85]. Not only do anti-inflam-

matory, pro-repair macrophages produce VEGF, which pro-

motes vessel sprouting, they also express two transmembrane

proteins that have been shown to promote vascular anastomo-

sis [80, 85, 86]. This function of macrophages is vital to ef-

fective wound healing, and, in macrophage-deficient models,

angiogenesis is impaired [85].

The formation of granulation tissue, which is comprised

primarily of type III collagen, fibroblasts, and new blood ves-

sels, occurs contemporaneously with angiogenesis.

Fibroblasts are the main cell involved in granulation tissue

formation, and several macrophage-derived molecules, such

as platelet-derived growth factor β-bb (PDGF-bb), TNF-α,

IL-1, and IL-6, can induce pro-re-epithelialization molecules

in fibroblasts (Fig. 2) [87, 88]. Wounds without IL-6 lack an

appropriate inflammatory response and demonstrate stunted

angiogenesis, collagen accumulation, and re-epithelialization

[89]. Fibroblasts are also exceptionally influenced by TGF-β,

a molecule predominantly produced by wound-associated,

pro-repair macrophages [90, 91].

Keratinocyte re-epithelialization is influenced by both fi-

broblasts in the granulation tissue and pro-repair macro-

phages. Re-epithelialization is initiated by epidermal growth

factor (EGF), keratinocyte growth factor (KGF), and

transforming growth factor-α (TGF-α), which are pro-

duced by platelets, keratinocytes, and activated pro-re-

pair, anti-inflammatory macrophages [92]. Keratinocytes

themselves further activate fibroblasts in a feedback loop

through the production of fibronectin, tenascin C, and laminin

332 (Fig. 2) [93].

Fig. 2 Legend: the transition from pro-inflammatory macrophages to anti-

inflammatory macrophages is a key regulatory step, allowing the immune

system to promote both ECM formation and re-epithelialization. During the

inflammatory phase, pro-inflammatory macrophages dominate. They are

activated by danger signals such as pathogen-associated molecular patterns

(PAMPs) and danger-associated molecular patterns (DAMPs) as well as

pro-inflammatory cytokines. This phenotype is responsible for clearance of

debris and prevention of infection. Persistence of inflammation results in a

non-healing wound. Normally, macrophages transition to an anti-

inflammatory phenotype in response to signals such as neutrophil

apoptosis and engulfment (efferocytosis) as well as other local immune

signals. This transition is inhibited in the setting of iron overload,

hypoxia, and hyperglycemia. These pro-healing, anti-inflammatory

macrophages are responsible for resolution of tissue inflammation and

contribute to angiogenesis and tissue repair. During the proliferative

phase, new blood vessels and granulation tissue are laid down and

keratinocytes re-epithelialize. Pro-repair macrophages send signals to

both fibroblasts and keratinocytes themselves. To keratinocytes, they

release epidermal growth factor (EGF) and transforming growth factor-α

(TGF-α), which drive keratinocyte proliferation and migration. Through

platelet-derived growth factor (PDGF), TNF-α, IL-1, and IL-6, pro-repair

macrophages signal fibroblasts to lay down granulation tissue, comprised

of fibrin, fibronectin, as well as collagen. In turn, fibroblasts further

stimulate keratinocyte proliferation and migration through keratinocyte

growth factor (KGF), EGF, and fibronectin. Keratinocytes themselves

also activate fibroblasts in a feedback loop through the production of

fibronectin, tenascin C, and laminin 332
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Repair/Remodeling

Wound Remodeling and Contraction

Remodeling starts several weeks after wounding, and con-

tinues for up to 1 year. It marks the transition from granulation

tissue to scar, which involves the slowing of angiogenesis and

replacing type III collagen in granulation tissue with stronger

type I collagen. It should be noted that fully mature scars

return to only 80% of their initial tensile strength [10••].

This remodeling phase is largely driven by myofibroblasts,

which develop from fibroblasts in response to both mechani-

cal tension and TGF-β signaling and are responsible for con-

traction of the wound [94].

Myofibroblasts express smooth muscle actin (SMA),

which is responsible for generating the contractile force attrib-

uted to this cell type [94, 95]. In addition to contraction of

wound beds and generation of collagen, myofibroblasts con-

tribute to remodeling by release of MMPs that degrade colla-

gen laid down during granulation tissue formation [96, 97].

Conventional dogma states that myofibroblasts are terminally

differentiated and undergo apoptosis following wound remod-

eling. However, exciting new research indicates that these

wound bed myofibroblasts may further differentiate into fat

cells, replenishing subcutaneous adipose tissue. This process

is dependent upon neogenic hair follicles, which lead to bone

morphogenic protein (BMP) signaling and activation of adi-

pocyte transcription factors [98••].

Hypertrophic and Keloid Scar Formation

When scar formation is excessive, the scar itself can lead to

pruritus, pain, or a disfiguring appearance. While excess

inflammation may lead to either keloid or hypertrophic

scar formation, there are several key clinical differences.

Hypertrophic scars arise within 1–2 months of injury,

and tend to arise in areas of high tension. Keloid scars

can occur at any point post-injury, do not tend to occur

in areas of high tension, and may grow beyond the borders of

the initial scar [99].

Normally, myofibroblasts carefully coordinate the break-

down of granulation tissue and replacement with long-

lasting type I collagen [100]. Recent evidence indicates that

myofibroblast-induced fibrosis can be over-activated, not only

in the setting of signaling through TGF-β, but also in the

setting of Th2-derived cytokines IL-4 and IL-13; Th1 cyto-

kines, such as IFN-γ, attenuate excessive scar formation [100,

101]. In fact, clinical trials are currently underway to explore

anti-IL-4/IL-13 therapies in pulmonary fibrosis [101]. A role

for these therapies in cutaneous fibrosis remains to be ex-

plored, though in vitro studies have shown that blocking sig-

naling of the related cytokine IL-10 in fibroblasts may de-

crease keloid scar formation [102].

Conclusions

Cutaneous wound healing occurs through an intricate and del-

icate interplay between the immune system, keratinocytes,

and dermal cells such as platelets, fibroblasts, and

myofibroblasts. Each cell type contributes proteins and mo-

lecular signals that transition the cycle through the normal

phases of wound healing, including the hemostasis, inflam-

matory, proliferative, and remodeling phases. Alteration of

normal signals at any stage can result in impaired wound

healing, with non-healing wounds or excessive scar forma-

tion, at great cost to both patients and the healthcare system.

Recent research has shown that the key transition point in

wound healing lies between the inflammatory and the prolif-

erative phases. Numerous signals are responsible for the tran-

sition, most notably the apoptosis and phagocytosis of wound-

bed resident neutrophils (efferocytosis). If wounds fail to tran-

sition from the inflammatory phase, pro-inflammatory macro-

phages persist and non-healing wounds develop. Future treat-

ments may target this transition point, with an emphasis on

generating pro-healing, anti-inflammatory macrophages.
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