
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Soumya R. Mohapatra,
KIIT University, India

REVIEWED BY

Vadim V. Sumbayev,
University of Kent, United Kingdom
Zhe Yang,
Xi’an Jiaotong University, China

*CORRESPONDENCE

John H. Stewart IV

jste17@lsuhsc.edu

Vijay Kumar

vkuma2@lsuhsc.edu

vij_tox@yahoo.com

RECEIVED 16 December 2022
ACCEPTED 02 May 2023

PUBLISHED 19 May 2023

CITATION

Kumar V and Stewart JH IV (2023)
Immunometabolic reprogramming,
another cancer hallmark.
Front. Immunol. 14:1125874.
doi: 10.3389/fimmu.2023.1125874

COPYRIGHT

© 2023 Kumar and Stewart. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Review

PUBLISHED 19 May 2023

DOI 10.3389/fimmu.2023.1125874
Immunometabolic
reprogramming, another
cancer hallmark

Vijay Kumar 1* and John H. Stewart IV1,2*

1Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine,
Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, United States,
2Louisiana State University- Louisiana Children’s Medical Center, Stanley S. Scott, School of Medicine,
Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, United States
Molecular carcinogenesis is a multistep process that involves acquired

abnormalities in key biological processes. The complexity of cancer pathogenesis

is best illustrated in the six hallmarks of the cancer: (1) the development of self-

sufficient growthsignals, (2) theemergenceofclones that are resistant toapoptosis,

(3) resistance to the antigrowth signals, (4) neo-angiogenesis, (5) the invasion of

normal tissueor spread to the distant organs, and (6) limitless replicative potential. It

also appears that non-resolving inflammation leads to thedysregulationof immune

cellmetabolism and subsequent cancer progression. The present article delineates

immunometabolic reprogrammingasacriticalhallmarkofcancerby linkingchronic

inflammation and immunosuppression to cancer growth and metastasis. We

propose that targeting tumor immunometabolic reprogramming will lead to the

design of novel immunotherapeutic approaches to cancer.

KEYWORDS

cancer, immunity, inflammation, immunometabolism, immunometabolic reprogramming,

TME, TIME
1 Introduction

Cancer is the second leading cause of death worldwide as 10 million deaths resulted

from cancer in 2020 and 70% of cancer deaths occurred in developing or low-middle-

income countries (LMICs). Furthermore, it is projected that the incidence of cancer will

increase to 28.4 million cases in 2040 (1). Sub-Saharan countries will witness a 92% cancer

increase between 2020 and 2040. Several factors contribute to the rising incidence of cancer

in these countries, including environmental pollution, the adoption of western diets,

increased alcohol uptake, lack of exercise, and increased tobacco use.

Advances inmedicine havenowestablished that cancer cells differ fromnormal cells inmany

ways. For example, cancer cells exhibit uncontrolled cell division andproliferation, nevermature,

ignore signals required for the orderly progression of the cell cycle, cell death (apoptosis),

specialization, and shedding. In addition, cancer cells express neoantigens and evade the host’s

immune recognition (2, 3). Hence, cancer cells develop intratumoral heterogeneity, including
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altered cellular architecture/morphology, physiology (including their

metabolism), subtypes, and evade cell death and their immune

recognition (4–7). Additionally, nuclear compartmentalization

(chromatin re-organization) in the tumor microenvironment (TME)

regulates the gene expression that controls many processes, including

immunecell development andprograming,discussed indetail elsewhere

(8–10). Furthermore, extrachromosomalDNAs(ecDNAs)are emerging

as crucial mediators of cancer pathogenesis, gene regulation and

epxression, and emerging treatment resistance (11–14). For example,

ecDNAs promote increased oncogene expression and subsequent poor

prognosis in many cancers (15–18).

Further development in the field led to the recognition of the six

hallmarks of cancers almost 20 years ago (19, 20). Metabolic

reprogramming among cancer cells and immune escape were also

included later as additional hallmarks (21). Many reviews have further

emphasized cancer and immune cell metabolism as a foundation

mechanism for tumor immunology (22–27). For example, DePeaux

and Delgoffe have discussed in detail the importance of decreasing

TME metabolic barriers to increase the efficacy of tumor

immunotherapy, including oncolytic viral therapy (OVT) (22).

Whereas, Leone and Powell have discussed the metabolism of

immune cells, specifically T cells, in the TME and exploiting

differential metabolic plasticity for increasing the efficacy of immune

checkpoint inhibitors (ICIs) (23). Hence, immunometabolism in the

TME is critical in tumor immunopathogenesis, metastasis, and efficacy

of existing immunotherapies. Hanahan recently upgraded the list of

cancer hallmarks to include canonical and prospective characteristics

(28). Different metabolic determinants of tumor initiation have been

identified and discussed in detail (29). Therefore, we propose to add

tumor-supportive immunometabolic reprogramming to the list of

cancer hallmarks. The work herein discusses immunometabolic

reprogramming of tumor-infiltrating immune cells as a critical

hallmark of cancer progression.
2 Immune surveillance failure
in cancer

Immune surveillance protects the host from endogenous and

exogenous threats, including cancer development, infections, and

premature aging (Figure 1) (30–34). However, aging and certain

medications (antibiotics and antivirals) dysregulate immune

surveillance to induce a tumor supportive environment (35–38). The

immune system-mediated patrolling and monitoring to prevent cancer

is called cancer or tumor immunosurveillance (39, 40). Tumor immune

surveillance (immunosurveillance) requires tumor cell-derived

molecules, including heat-shock proteins (HSPs) and double-stranded

DNA (ds-DNA), which are recognized by pattern recognition receptors

(PRRs) (41, 42). For example, CD91 (a receptor for HSP gp96)is crucial

incancer immunesurveillanceandcancerarising in theabsenceofCD91

are highly immunogenic (42, 43). However, the tumor

microenvironment (TME) supports immunosurveillance escape and

therefore supports cancer growth, differentiation, and metastasis

(Figure 1) (44, 45). For example, TME T cells induce galectin-9

secretion from tumor cells derived from various malignant tumors.
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The released galectin-9 suppresses the antitumor cytotoxic activity of

CD8+ T and natural killer (NK) cells (46). Galectin-9 in cancer

cells combines with V-domain Ig-containing suppressor of T cell

activation (VISTA, an immune checkpoint protein) to support the

protumorigenic immunosuppressive TME (46, 47). The transforming

growth factor-b (TGF-b) via TGF-b receptors (TGF-bRs) and

suppressor of mothers against decapentaplegic-3 (smad-3) protein

induce the VISTA expression on cancer and T cells in the TME to

promote immunosuppression. TGF-b and VISTA mediate

immunosuppression by polarizing naïve T cells to regulatory T cells

(Tregs) and pro-inflammatoryM1macrophages to M2macrophages by

increasing the SNAILor snail family transcriptional repressor 1 (SNAI1)

expression and increasing the myeloid-derived suppressor cells

(MDSCs) activity (48–52). Thus, cancer cells and immune cells in the

TME coordinate to create a tumor suppressive tumor immune

microenvironment (TIME) for the growth, division, and metastasis of

cancer cells. Cancer cell metabolism also plays a significant role in

escaping from tumor immune surveillance via different mechanisms,

including altering immunometabolic reprogramming.
3 Metabolic reprogramming among
cancer cells in TME

Cancer cells differ from normal cells in maintaining homeostasis

regarding their energy demand. Cancer cells undergo metabolic

reprogramming to maintain their fastidious growth and proliferation

status. For example, they reprogram themselves for rapid adenosine

triphosphate (ATP) synthesis to meet increased energy demand,

macromolecule synthesis, and tight maintenance of their redox status

(53). The cancer cell metabolic reprogramming is crucial for their

survival in the stressful TME with its spatially and temporally

heterogenous concentrations of glucose, glutamine, and oxygen

favoring hypoxia (54). For example, TGF-b in the TME increases

aerobic glycolysis via glucose transporters and glycolysis enzymes to

meet their high energy demand (55). Additionally, TGF-b also

increases TME lactate level, which directly correlates with cancer cell

metastasis. Furthermore, the acidic TME supports tumor cell survival,

proliferation, and resistance to apoptosis (56–58).

TheWarburg effect is an excellent example of cancer cell metabolic

reprogramming, shifting from oxidative phosphorylation (OXPHOS)

to aerobic glycolysis (Figure 2) (59–61). However, the observed

Warburg effect in the TME does not depend on oxygen availability

and the carcinogenic origin of cancer (54, 62). Hypoxia induces the

hypoxia-inducible factor-1a (HIF-1a) that regulates the transcription
of at least 60 genes regulating tumor cell survival, growth, proliferation,

tumor angiogenesis, invasion/metastasis, glucose metabolism, immune

cell function (63–66). High pyruvate dehydrogenase kinase (PDK)

activity in tumor cells increases glycolysis. It also suppresses reactive

oxygen species (ROS) production and accumulation, enhancing their

stem cell and tumorigenic potential (Figure 2) (67). The aerobic

glycolysis in TME can even occur in the non-dividing cells,

indicating that the Warburg effect controls the tumor biomass and

enhances their stem cell-like phenotype and oncogenic potential (67).

Thus, the increased glucose uptake in tumor cells decreases its
frontiersin.org
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concentration in the tumor interstitial fluid (TIF) and increases

extracellular lactate levels with increased lactate dehydrogenase

(LDH) activity Figure 2 (68). Tumors expressing nucleus

accumbens-associated protein-1 (NAC1) also upregulate LDH-A

activity that further supports lactate accumulation in TME (69). The

increased lactate level in the TME inhibits antitumor immune

responses by T cells, macrophages, and DCs, through different

mechanisms, including immunometabolic reprogramming (70–75).

A recent study has provided some of the first experimental

evidence of the Warburg effect in patients with cancer (76). For

example, clear cell renal carcinoma (ccRC) exhibits increased aerobic

glycolysis compared to the adjacent normal kidney, and ccRC has

suppressed glucose oxidation compared to tumors of other anatomical

sites, including the brain and lungs (76, 77). Hence, ccRC is the first

human tumor to demonstrate a convincing shift toward glycolysis, as

indicated by the intraoperative 13C infusions. It is important to note

that the alteredmetabolic environment in the TME induces ametabolic

competition between tumor and immune cells that helps in cancer
Frontiers in Immunology 03
progression (78, 79). Like glucose metabolism, the increased

glutaminolysis in cancer cells also creates a glutamine-deficient

tumor immune microenvironment (TIME) for immune cells

(Figure 2). Tumor cells exhibit the highest glutamine uptake in TME

compared to infiltrated immune cells (80). Notably, the increased

glutamine uptake suppresses the glucose uptake across tumor-resident

cell types, emphasizing that glutamine metabolism suppresses glucose

uptake without glucose being a limiting factor in the TME (80). Cancer

cells over express themethionine transporter SLC43A2. Therefore, they

outcompete CD8+ T cells for methionine uptake and utilization (81).

The decreased methionine availability to CD8+ T cells decreases the

methyl donor S-adenosylmethionine (SAM), inhibiting dimethylation

at lysine 79 of histone H3 (H3K79me2). The loss of H3K79me2 in

CD8+ T cells decreases signal transducer and activator of transcription

5 (STAT5) expression and alters their cytotoxic action against tumor

cells. Furthermore, the methionine utilization by tumor cells in the

TME of hepatic cell carcinoma increases T cell exhaustion (82). Thus,

strategies to deprive methionine uptake by cancers cells or providing
FIGURE 1

Immunosurveillance and cancer. The continuous immune surveillance of target organs by immune cells (innate and adaptive immunity) through
lymphatics and systemic circulation keeps a check on altered or cancer cells in healthy individuals. This helps to maintain homeostasis by removing
altered or cancer cells. However, several factors, including aging, obesity, repeated or chronic infections, and different medications, dysregulate or
suppress regular immune surveillance leading to a tumor or cancer development. See text for details.
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methionine to TME T cells has a potential cell-specific

immunometabolic targeting in different solid cancers.

Additionally, increased polyamine biosynthesis and transport

occur in tumor cells as indicated by the induction of ornithine

decarboxylase (ODC), a hallmark for tumorigenesis (Figure 2) (83–

86). Polyamines suppress the immune response to promote tumor

growth and directly influence it through numerous tumor-supportive

mechanisms (Figure 2) (87–90). Along with tumor cells, myeloid cells

(tumor-associated macrophages (TAMs), dendritic cells (DCs), and

MDSCs compete with T cells to utilize polyamines to exert their

immunosuppressive action (91). Hence, cancer and immuno

suppressive myeloid cells compete with T cells in the TIME for

polyamine uptake and utilization. In addition, polyamine metabolism

is a central determinant of CD4+T cells to differentiate into different

functional Th subtypes (Th1, Th2, Th17, and Tregs). Therefore,

polyamine deficiency in CD4+T cells results in the failure to adopt a

correct subset specification by affecting the tricarboxylic acid (TCA)

cycle and histone deacetylation (92). Also, the decreased availability of

polyamines to T cells supports their differentiation to

immunosuppressive Tregs and its targeting reverses the TME

immunosuppression (93–96). Thus, cancer cell metabolism alters the

TIME via affecting immunometabolic reprogramming.
4 Immunometabolism in TIME

Immunometabolism combines classical metabolism and

immunology to understand the immune cell phenotype and function

by combining immunology and metabolism experimental approaches

and paradigms (97). Immunometabolism has two subdisciplines: (1)

cellular immunometabolism and (2) tissue immunometabolism.

Cellular immunometabolism governs the fate of immune cells. At
Frontiers in Immunology 04
the same time, tissue immunometabolism includes the governing of

tissue and systemic metabolism by immune cells to support the

adaptations of the host to the surrounding environment (97, 98). Six

major metabolic pathways, including glycolysis, the Krebs’s cycle, fatty

acid synthesis (FAS), fatty acid oxidation (FAO), amino-acid (AA)

metabolism, and the pentose-phosphate pathway (PPP) regulate

immune cell function (99). The details of immunometabolism during

inflammation or inflammatory immune cell function have been

discussed elsewhere (100–102).

Despite having the maximum capacity to uptake intratumoral

glucose, myeloid cells in the TIME shift their immunometabolic

reprogramming to tumor-promoting anti-inflammatory,

immunosuppressive phenotype such as M2 macrophages, N2

neutrophils, MDSCs, and tolerogenic DCs (80). Hence, nutrient

partitioning in the TIME is programmed in a cell-intrinsic manner

through mammalian target of rapamycin complex 1 (mTORC1)

signaling and the expression of genes related to glucose and

glutamine metabolism. For example, glucose deprivation to

immune cells prevents their pro-inflammatory tumor suppressive

action in the TIME, indicating that tumor cells are still the biggest

glucose consumer. Therefore, we will primarily focus on

immunometabolic reprogramming among different immune cells

that support tumor growth via immunosuppression.
4.1 Immunometabolic reprogramming
among tumor-resident or infiltrated
macrophages to support tumor growth,
proliferation, and metastasis

Most immune cells are present within the invasive margins and

central zone of tumors (103). However, macrophages often
FIGURE 2

Altered cellular metabolism among cancer cells. Due to the altered physiological and metabolic demands, cancer cells undergo metabolic
reprogramming. For example, due to their high energy demand as a response to their fastidious growth and proliferation, cancer cells depend on
aerobic glycolysis, causing lactate accumulation and an increased acidic environment. Furthermore, increased aerobic glycolysis elevates oxygen
consumption inducing hypoxia. The increased hypoxia and acidity (lactate accumulation) cause immunosuppression to escape from the host
immune response. Immunosuppression promotes tumor growth. Additionally, other metabolic mechanisms (polyamine synthesis, glutamine
metabolism) also increase in tumor cells, limiting nutrient availability to residential and infiltrated immune cells, causing their immunosuppression.
Details are mentioned in the text.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1125874
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kumar and Stewart 10.3389/fimmu.2023.1125874
comprise the dominant immune cell population in TIME as they

include the first pro-inflammatory innate immune cell responders

in the chronic inflammatory environment, which later polarize to

tumor-supportive immunosuppressive M2 or TAMs (104–106). M1

to M2 macrophages polarization occurs in response to low glucose,

glutamine, and FAs availability in a nutrient competitive TME. M2

polarization is further supported by increased TGF-b, IL-4, IL-5, IL-
6, and IL-10 availability in the TME (Figure 3). TAMs support

tumor growth, survival, proliferation, and metastasis by supporting

tumor angiogenesis, chemoresistance, and immunosuppression
Frontiers in Immunology 05
(107–110). Hence, understanding their immunometabolic

reprogramming in TME or TIME is warranted.

For example, M1 macrophages depend on aerobic glycolysis to

infiltrate the hypoxic TME and exert their pro-inflammatory and

anti-tumor actions (98, 111). The IL-4-dependent M1 to M2

macrophage polarization supports OXPHOS through interferon

regulatory factor 4 (IRF4) and mTORC2 activation (112).

However, IL-4-mediated M2 macrophage polarization does not

require immunometabolic reprogramming to FAO (113). Also,

the IL-4-mediated M1 macrophage polarization to M2 phenotype
FIGURE 3

Tumor-associated macrophages (TAMs) in immunosuppressive TME or TIME and their immunometabolic reprogramming. Several factors, including
low nutrient availability, increased lactate, succinate, and lipid levels, and different Th2 cytokines (TGF-b, IL-4, IL-5, IL-6, and IL-10) polarize
antitumor and pro-inflammatory M1 TAMs to tumor-promoting and immunosuppressive M2 TAMs. These M2 TAMs release immunosuppressive
cytokines (IL-10 and TGF-b) to support an immunosuppressive TIME by supporting Tregs. M1 TAMs undergo immunometabolic reprogramming to
polarize to M2 TAMs. For example, M2 TAMs show increased OXPHOS and FAO to survive in the nutrient-deprived TIME or TME. The increased ROS
production due to the damaged mitochondria in M2 TAMs suppresses the antitumor T cell immune response. Intracellular ROS in M2 TAMs activates
NLRP3 inflammasome to produce IL-1b supporting tumor cell migration and metastasis. The increased ROS production supports TME or TIME
hypoxia, supporting tumor angiogenesis, growth, survival, and metastasis. For details, see the text.
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only occurs only when NO· generation is blocked due to the

dysregulated mitochondrial function (114, 115). TME/TIME and

IL-4 synergistically increase protein kinase RNA-like ER kinase

(PERK)-signaling cascade in macrophages to promote

immunosuppressive M2 transition, activation, and proliferation

(116). PERK activation induces phosphoserine aminotransferase 1

(PSAT1) and serine biosynthesis via activation transcription factor-

4 (ATF-4). The increased serine biosynthesis supports an enhanced

mitochondrial function and a-ketoglutarate (a-KG) synthesis

required for Jumonji domain-containing protein-3 (JMJD3)-

dependent epigenetic modification (116). On the other hand,

PERK activity loss impedes mitochondrial respiration and FAO

crucial for M2 macrophages. Hence, the immunometabolic

reprogramming among macrophages depends on stimulus, tissue

environment, and mitochondria health. TME and associated TIME

are complex due to severely altered tumor cell phenotype, function,

and different oncometabolites.

The hypoxic and glucose-deprived TME induces regulated in

development and DNA damage response 1 (REDD1) on TAMs that

suppresses mTORC1 signaling and associated glycolysis (Figure 3)

(117, 118). The increased levels of other oncometabolites, including

lactate and succinate in TME, further support the M1 to M2

macrophages or TAMs polarization (Figure 3) through different

mechanisms, including yes-1 associated protein (YAP) and NF-kB
inhibition via G protein-coupled receptor 81 (GPR-81)-mediated

signaling (119, 120). Macrophages in TIME or TME uptake lactate

via increased expression of monocarboxylate transporter 1 (MCT1)

that increases OXPHOS and FAO to generate M2 macrophages or

TAMs (Figure 3) (121, 122). There are three types of M2

macrophages (M2a, M2b, and M2c), which secrete common

immunosuppressive cytokines (TGF-b and IL-10) and

chemokines to support tumor growth (Figure 3) (123). Also,

TAMs promote angiogenesis via secreting VEGF and other

angiogenesis-promoting factors to support tumor growth,

proliferation, and metastasis (Figure 3) (117–119).

Cancer cells secrete M-CSF that promotes fatty acid synthase

(FASN) activity in myeloid cells, including TAMs (124). FASN in

TAMs via peroxisome proliferator-activated receptor (PPAR)b/d
activation promotes increased IL-10 synthesis and release. IL-10

promotes immunosuppression, angiogenesis, tumor growth, and

metastasis (Figure 3). Also, tumor-cell-produced lipids

simultaneously orchestrate M1 to M2 macrophage polarization

and survival in TME or TIME via inducing ER stress response by

reshuffling lipid composition and saturation on the ER membrane

(Figure 3) (125). Furthermore, ER stress induces inositol-requiring

enzyme 1 (IRE1, an endoplasmic reticulum stress sensor)-mediated

spliced X-box-binding protein 1 (XBP1) production and STAT3

activation. The IRE1 production and STAT3 activation support M2

macrophage polarization and immunosuppressive TIME

development (125–127). Hence, conditions favoring M2

macrophage transition exert a strong push towards OXPHOS in

TAMs, which damages their mitochondria, producing increased

ROS (Figure 3) (128). The increased ROS production further

supports hypoxia and angiogenesis in TME, adding to tumor

growth and metastasis. ROS further suppresses the antitumor

action of infiltrated T cells (Figure 3). FAO-dependent ROS
Frontiers in Immunology 06
generation activates NLRP3 inflammasome to release IL-1b from

TIME M2 macrophages, supporting tumor cell migration and

metastasis (Figure 3) (129). Also, exosomes released from tumor

cells in TME support the M1 to M2 macrophage transition via

activating NLRP6/NF-kB pathway to support immunosuppressive

TIME and cancer cell metastasis (130). Arginase 1 (Arg1)

expression in TAMs lowers the L-arginine availability to T cells

in TME or TIME. It recruits immunosuppressive Tregs to support

tumor growth and development (Figure 3) (131). The simultaneous

Arg1 and inducible nitric oxide synthesis (iNOS) expression in

TAMs (M1/M2 phenotype) at low arginine concentration may

favor ROS and RNS production that may inhibit antitumor T cell

function in TIME (132–134).

Also, TAMs show a decreased receptor-interacting protein kinase 3

(RIPK3, a central factor in necroptosis) that inhibits caspase 1

(CASP1)-mediated cleavage of PPAR-g to support FAO (135). The

M2 macrophage polarization also involves increased glutamine

catabolism (glutaminolysis) and UDP-GlcNAc-associated modules

(136). The increased glutaminolysis replenishes the TCA cycle in

immunosuppressive TAMs (137). Thus, the glutamine deprivation or

N-glycosylation inhibition decreases M2 polarization and CCL22

production and promotes their polarization to M1-like macrophages

(136, 138). The indoleamine 2,3-dioxygenase (IDO) expression in M2

macrophages also increases, which depletes local tryptophan via

generating immunosuppressive kynurenine metabolites (139, 140).

Hence, immunometabolic reprogramming among TAMs (highest in

number among TIME immune cel l s ) g ives them an

immunosuppressive phenotype. These immunosuppressive

macrophages suppress other immune cells, including T cells through

direct interaction or secreting immunosuppressive metabolites,

switching their immunometabolism to immunosuppressive or

exhausted phenotype (141–145).
4.2 Neutrophils and Myeloid-derived
suppressor cells immunometabolism
in TIME

Tumor cells and immune cells release several factors, including

TNF-a, IL-8, IL-1a, CXCL1, CXCL2, and CXCL5 to stimulate

neutrophil chemotaxis to the TME (146, 147). Although only

mature neutrophils leave bone marrow (BM) for the circulation

and target organs, TIME also harbors immature neutrophils

(Figure 4) (146, 148). At initial stages, neutrophils exert

antitumor action but become tumor and metastasis supportive

later. They can be classified as antitumor N1 neutrophils that are

supported by IFN-b and hepatocyte growth factor (HGF) and

protumor N2 neutrophils that are supported by TGF-b and G-

CSF (147). The complex immunological functions of neutrophils

and their targeting in cancer are discussed elsewhere (147,

149–151).

In cancer-bearing mice, neutrophils leaving the BM show more

spontaneous migration than in typical tumor-free mice (152). For

example, these neutrophils lack immunosuppressive action, having

increased OXPHOS and glycolysis rate than neutrophils of typical

tumor-free individuals (Figure 4). The aggravated autocrine ATP
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signaling supports the increased neutrophil infiltration to TIME via

purinergic receptors (Figure 4) (152). The hypoxic environment in

the TME or TIME increases HIF-1a and HIF-2a levels (65). HIF-

1a increases neutrophil survival via supporting glycolysis

(OXPHOS is not crucial for neutrophils) at initial stages, creating

a chronic pro-inflammatory environment to support tumor

progression (153). At the same time, HIF-2a increases the

lifespan of pro-inflammatory neutrophils called tumor-associated

neutrophils (TANs) (154). Also, the PPP in neutrophils supports

increased ROS generation that induces apoptotic cell death among
Frontiers in Immunology 07
infiltrated T cells to support further a tumor suppressive TIME

(Figure 4) (155, 156). PPP is also involved in the neutrophil

extracellular trap (NETs) formation or NETosis by fueling

NADPH oxidase with NADPH to produce superoxide that

supports cancer metastasis (157). However, immunosuppressive

mediators, including TGF-b released at later stages of the tumor,

polarize antitumor N1 TANs to pro-tumor N2 TANs (158–160).

Also, the glutamine and proline uptake in immature low-density

neutrophils (iLDNs) supports their pro-metastasis action inducing

NETosis under hypoxic and glucose-deprived conditions (Figure 4)
FIGURE 4

Neutrophils in TME or TIME and their immunometabolic reprogramming. The systemic neutrophil number increases in tumor patients. This increase
is due to the increased neutrophil generation in the bone marrow (BM), causing increased infiltration in the TME or TIME. Although only mature
neutrophils leave the BM, TIME contains both immature and mature neutrophils. Therefore, different chemokines and cytokines released from TME
or TIME cells send the signals to BM for neutrophil chemotaxis. Additionally, ATP released from tumor-associated neutrophils (TANs) acts in an
autocrine manner via P2Y purinergic receptors to further support their chemotaxis in TME or TIME. TANs show an increased rate of OXPHOS and
glycolysis along with an elevated PPP. The ROS released from TANs induced apoptotic cell death among infiltrated antitumor T cells, causing
immunosuppression. Hypoxia in TME or TIME causes NETosis that further supports tumor metastasis. See the text for details.
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(161, 162). NETs promote cancer growth, progression, and

metastasis and provide a protective shield to them through

different mechanisms discussed somewhere else (163).

MDSCs are well-known immunosuppressive innate immune

cells found only in pathological conditions, including cancer (164–

166). They are of two types (1) monocytic-MDSCs orM-MDSCs, and

(2) polymorphonuclear-MDSCs or PMN-MDSCs (167). Hence,

MDSCs are the pathological phenotypes of neutrophils and

monocytes accumulating in pathological lesions, including TME or

TIME (164, 165). PMN-MDSCs of patients with cancer also show an

increased spontaneous migration characteristic and are present at

very early cancer stages (152, 168). Different chemokines, including

IL-8 (CXCL8) and CXCR4 chemoattract (in response to miR-494)

MDSCs to TME or TIME (Figure 5) (169–171). They secrete different

immunosuppressive cytokines, including IL-10 and TGF-b,
responsible for their immunosuppressive function to support

tumor growth, proliferation, neoangiogenesis, and metastasis (170,

172). MDSCs also secrete vascular endothelial growth factor (VEGF)-

A, fibroblast growth factor (FGF), and Bv8 (prokineticin or PK), and

different MMPs to promote tumor growth and metastases (Figure 5)

(173, 174).

MDSCs depend on AMPK and FAO for their immunosuppressive

function (175, 176). Glutamate or L-glutamine (L-Gln) taken by

MDSCs in TME or TIME is oxidized in an AMPK-dependent

manner to support their immunosuppressive function by regulating

the TCA cycle (Figure 5) (177). Even tumor-infiltrated/associated

MDSCs (T-MDSCs) synthesize their L-Gln and with increased

transglutaminase (TGM) expression that supports their

immunosuppressive function and tumor metastases (178, 179). T-

MDSCs show an increased FAO, OXPHOS, and glycolysis due to an

increased lipid/FAs content in TME or TIME (Figure 5) (176).

However, the increased FAs in TME or TIME promote FAO in

MDSCs via CD36-mediated FA uptake, and FAO inhibition

suppresses their immunosuppressive function in TME (176, 180, 181).

The fatty acid transport protein 2 (FATP2) on PMN-MDSCs

through arachidonic acid (AA) uptake and prostaglandin E2 (PGE2)

synthesis also support the immunosuppressive function of MDSCs

(Figure 5) (182, 183). Furthermore, the PGE2-mediated negative

feedback loop FATP2 and receptor-interacting protein kinase 3

(RIPK3, A negative regulator of FATP2) promotes PMN-MDSCs’

immunosuppressive function (184, 185). GM-CSF controls the FATP2

overexpression on PMN-MDSCs in TIME via STAT5 activation. TME

or TIME hypoxia increases the immunosuppressive function of T-

MDSCs by increasing the HIF-1a level (Figure 5) (186, 187).

Furthermore, HIF-1a, along with promoting their immunometabolic

reprogramming to immunosuppressive phenotype, also increases the

PD-L1 expression that suppresses the cytotoxic and immune-

promoting functions of CD8+ and CD4+T cells in TIME (188). A

high lactate level in TME increases the survival and proliferation of

immunosuppressive MDSCs through G protein-coupled receptor 81

(GPR81)/mTOR/HIF-1a/STAT3 pathway (189–191). Also, the

increased TME lactate level increases the number and proliferation

ofMDSCs, which inhibit NK cell cytotoxicity (NKCC) (Figure 5) (190).

Hence, hypoxic TME or TIME supports MDSCs’ immunometabolic

reprogramming to FAO to favor their tumor and metastasis-

supportive function.
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4.3 DCs and their immunometabolic
reprogramming in TME/TIME

DCs are potent antigen-presenting cells (APCs), which play a

crucial role in generating and regulating immune response via

recognizing different pathogens and inflammogens and presenting

antigens to adaptive immune cells (T and B cells) (192). They also

serve a part of first responding innate immune cells against cancer

via antigen presentation despite constituting a rare immune cell

population (CD103+DCs) within TME or TIME capable of

activating CD8+T cells (Figure 6) (193, 194). Conventional DCs

(cDCs) at early malignancy recognize dying tumor cells and migrate

to draining lymph nodes (DLNs) to present tumor antigens to

CD4+ and CD8+ T cells (195, 196). For example, type 1 cDCs

(cDC1s) prime cytotoxic CD8+T cells, and type 2 cDCs (cDC2s)

activate antitumor helper CD4+T cells (197–199). The antitumor

action of cDC1s in TIME depends on NK cells as they release cDC1

chemo-attractants CCL5 and XCL1 to bring them in (Figure 6)

(200, 201). However, the prostaglandin E2 (PGE2) release by tumor

cells in TME or TIME suppresses NKCC and the production of

cDC1 chemo-attractive chemokines (Figure 6). Thus, cDC1s lose

their antitumor function due to the evasion of the NK cell-cDC1

axis and other immune cells with tumor growth. Furthermore,

cDC2s (CD11b+DCs) in tumor DLNs also express PDL-1 and

suppress T cell-mediated antitumor immunity (Figure 6) (202,

203). Additionally, monocyte-derived DCs (mo-DCs) with pro-

inflammatory properties comprise another type of DCs populating

tumors (198). Also, the plasmacytoid DCs (pDCs) in tumor DLNs

release IDO that directly activates mature Tregs to create an

immunosuppressive TIME (Figure 6) (204). The details of

immunologic and immunoregulatory functions of DCs in TME or

TIME are mentioned elsewhere (205–208). We will focus their

immunometabolic reprogramming in TME or TIME.

Under a steady state, DCs depend on OXPHOS for their energy

demand to maintain immune homeostasis (209). For example, bone

marrow-derived DCs (BMDCs) depend on FAO for OXPHOS to

meet the energy demand, but the involvement of FAO for OXPHOS

in cDCs and pDCs is not yet clear (192, 209). FAO and OXPHOS do

not provide the maximum threshold for DCs to secrete cytokines

and activate T cells to create a pro-inflammatory environment. The

pro-inflammatory PRRs, like toll-like receptor-4 (TLR-4)

stimulation, reprograms DC immunometabolic state from

OXPHOS to glycolysis within minutes, like other myeloid

immune cells (209–211). The shift from OXPHOS to glycolysis

induces their antigen presentation potential through increased

major histocompatibility complex (MHC)-I and -II expression,

co-stimulatory molecules (CD80 and CD86), and cytokine

synthesis and release. Although increased glucose uptake by DCs

during the early stages of activation is accompanied by lactate

production, this does not reflect a commitment to Warburg

metabolism as a mechanism for ATP production because, during

this time, ATP is provided by OXPHOS (211). Instead, glycolysis

fulfills the citrate needs of DCs is filled by glycolysis (211). The

export of citrate from the mitochondria into the cytoplasm through

the citrate transporter SLC25A is significant for fueling FAS

required for activated DCs to increase the size of critical
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organelles (Golgi bodies and endoplasmic reticulum or ER)

involved in protein synthesis and secretion. Intriguingly, the

enlargement of these compartments co-occurs with increased

gene expression downstream of TLRs but is regulated post-

transcriptionally by increased glycolytic flux. This is controlled by

the Akt-dependent phosphorylation and subsequent activation of

hexokinase II (essential to catalyze the first step of glycolysis) (211).

The Akt activation involves TANK-binding kinase 1 (TBK1)/I-

kappa-B kinase epsilon (IKKϵ), activation downstream of RIG-I–like

receptor (RLR), indicating that the rapid glycolysis is a typical

response to any innate immune recognition by DCs. This Akt

activation occurs regardless of PI3K or mTOR (two canonical Akt

upstream activators) inhibition (210, 211). Different PRRs, including
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TLR2, TLR6, TLR9, Dectin-1, and -2 activation, induce

immunometabolic reprogramming to glycolysis in DCs that

governs their inflammatory status and motility (212, 213). Notably,

early glycolysis induction in DCs occurs independently of their pro-

inflammatory phenotype. This allows DCs to rapidly respond

metabolically to these danger signals originating in the TME (211).

DCs fail to mature in the absence of OXPHOS to glycolysis

transition. Also, DCs showing weak inflammatory response lack

long-term glycolytic reprogramming requiring increased glycolytic

gene expression (212). Thus, a prolonged and increased glycolysis

enzymatic gene expression is crucial for maintaining pro-

inflammatory DCs and their migration. Also, DCs utilize pre-

existing glycogen stores to support shifting from OXPHOS to
FIGURE 5

MDSCs in TME or TIME and their immunometabolism. MDSCs infiltration in TME or TIME supports the immunosuppressive microenvironment. IL-8
and many other TME or TIME-released chemokines support their infiltration. To exert their immunosuppressive function, MDSCs show an increased
FAO, OXPHOS, and glycolysis. AMPK increase induces glutamine oxidation to support the TCA cycle. The increased lactate level in TME or TIME
favors the immunosuppressive function of MDSCs. For example, MDSCs release immunosuppressive cytokines (TGF-b and IL-10), suppress cytotoxic
NK cell activity and promote tumor angiogenesis, growth, proliferation, and metastasis. Additionally, arachidonic acid (AA) metabolism to PGE2 in
PMN-MDSCs further supports immunosuppressive TIME.
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glycolysis during their inflammatory stimuli to drive their TLR-

dependent activation (214). The glycogenolysis inhibition

attenuates TLR-mediated DC maturation and impairs their ability

to act as APCs. Therefore, it is likely that even weak inflammatory

signals can induce early glycolytic reprogramming through

glycogenolysis without a significant and prolonged gene

transcription crucial for glycolysis reprogramming. However, this
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is not true for other myeloid cells, including macrophages, which

depend on external glucose supply through glucose transporter 1

(Glut1) upon inflammatory stimuli. Thus, only strong pro-

inflammatory signals can induce prolonged inflammatory

phenotype and DC motility in LNs.

IL-10 and AMP-activated protein kinase (AMPK, the central

regulator of catabolic pathways and OXPHOS) inhibit glycolysis
FIGURE 6

DCs in TIME and their immunometabolic reprogramming. TME or TIME-released chemokines induce DC chemotaxis. cDCs migrate to tumor DLNs
for antigen presentation for adaptive immune cells (T and B cells) to induce antitumor immunity. However, IDO release from pDCs induces
immunosuppression. Furthermore, adenosine in TME or TIME via A2bR blocks immunometabolic shift to glycolysis from OXPHOS and increases
AMPK levels. Thus, tumor-associated DCs (TADCs) show an increased OXPHOS and FAO giving them an immunosuppressive phenotype to survive in
the nutrient-deficient TME or TIME. These immunosuppressive TADCs release different factors and molecules to support immunosuppressive TIME,
angiogenesis, and tumor growth and metastasis. Details are mentioned in the text.
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(215). The FAS inhibition enhances DCs’ capacity to activate

allogeneic and Ag-restricted CD4+ and CD8+ T cells and induce

CTL responses (216). Further, FAS blockade increases DC

expression of Notch ligands and enhances their ability to activate

NK cell immune phenotype and IFN-g production. ER stress

enhances DC’s immunogenic function upon FAS inhibition,

accounting for its higher immunogenicity (216). Conversely, the

ER stress lowering by 4-phenylbutyrate (4-PBA) suppresses their

increased immunogenic action due to FAS inhibition. TLR7/8

stimulation with promoter-associated RNA (pRNA) increases

FAO and OXPHOS in human mo-DCs due to branched-chain

alpha-keto acid dehydrogenase complex E1-alpha subunit

(BCKDE1a) phosphorylation in a phosphatase and tensin

homolog (PTEN)-induced putative kinase 1(PINK1)-dependent

manner. Interestingly, inducing PINK1 activity in tolerogenic

DCs stimulates FAO and renders them immunostimulatory (217).

Tumor-associated DCs (TADCs), like tumor-associated T cells,

also face the harsh nutrient-deficient environment that activates

AMPK, inhibiting the immunometabolic reprogramming from

OXPHOS to glycolysis. For example, AMPK supports OXPHOS

by upregulating proliferator-activated receptor g co-activator (PGC-
1a) that binds to PPAR-g to promote mitochondrial biogenesis,

oxidative metabolism and antagonize anabolic metabolism (218,

219). Thus, TADCs lose their APC properties and migration

capacity to DLNs to prime and induce a robust adaptive immune

response against tumor antigens. The recognition of exogenous

adenosine monophosphate (AMP) by adenosine A2b receptor

expressed on DCs, including TADCs, upregulates their pro-

tumorigenic functions, including angiogenesis via releasing VEGF,

TGF-b, and creating an immunosuppressive environment through

releasing IL-10 and expressing cyclooxygenase-2 (COX-2) and IDO

(220–223). IDO (IDO1 and IDO2) activity metabolizes tryptophan

(an essential amino acid) into kynurenine (224). Thus, the

tryptophan depletion activates a stress response kinase called

general control non-derepressing 2 (GCN2) in T cells that

inhibits their proliferation and biases naïve CD4+T cells to

develop into FoxP3+Tregs (225–227). Also, the kynurenine and

other metabolites bind to the aryl hydrocarbon receptor (AhR) on

T cells, promoting their differentiation to Tregs along with

supporting the immunosuppressive macrophage and DC

phenotype (226, 228–230).

Catabolism of pre-existing glycogen in DCs is crucial to initiate

glycolysis independent of external glucose supply in response to the

TLR activation (214). However, in TME or TIME, the continuous

TLR signaling, including the TLR9 activation in response to the host

cell-derived DNA creates an immunosuppressive TIME due to the

increased IDO expression (231–233). Furthermore, TLR9 ligand

CpG ODN 2006 is a poor adjuvant to induce CD8+T cells

responsible for clearing tumor cells (234). This may be due to the

poor DCs activation or their suppression through IDO generation.

Further studies are required in this direction. The increased AMPK

expression in TADCs also transforms them into tolerogenic DCs

due to increased FAO and OXPHOS (210, 235). Furthermore, the

aberrant lipid accumulation in TADCs due to the transport of

extracellular lipids via macrophages scavenger receptor 1 (MSR1)

diminishes their antigen-presenting capacity that suppresses their
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adaptive immune activation property to fight against tumors (236,

237). Also, the tumor-released Wnt5 molecule triggers PPAR-g
activation through b-catenin, which activates FAO by upregulating

carnitine palmitoyltransferase-1A (CPT1A, a fatty acid transporter)

in TADCs and induces a tolerogenic phenotype and secrete IDO to

create an immunosuppressive TIME by upregulating Tregs (238,

239). Furthermore, the Wnt5 also blocks the immunometabolic

shift to glycolysis in TADCs and induces an increased FAO. In

addition, b-catenin induces vitamin-A metabolism in TADCs and

FAO to produce retinoic acid (RA), further promoting Tregs

generation to create an immunosuppressive TIME (240) Thus,

TME or TIME DCs also become potent immunosuppressive

immune cells and lose their antigen presentation characteristics to

further support adaptive immunity against tumors due to their

immunometabolic reprogramming supporting their survival but

not potent immune function.
4.4 Immunometabolic reprogramming
among innate lymphoid cells, including NK
cells in TIME

ILCs are a relatively new class of immune cells, which

phenotypically appear as adaptive lymphoid cells. However, they

are lineage negative and do not express antigen-specific receptors

encoded by rearranged genes, including T cell or B cell receptors

(TCRs or BCRs). ILCs also do not show V(D)J recombination

required for somatic hypermutation (SHM)/recombination, like T

and B cells (241). However, they respond to various immunogenic

stimuli, including pathogens, to mounting a pro-inflammatory

immune response. Additionally, they are highly localized to

mucosal surfaces (gastrointestinal, reproductive, and respiratory

tracts). The details about different types of ILCs, including ILC1s

or group 1 ILCs (NK cells and helper ILC1s), ILC2s (group 2 ILCs,

produce Th2 cytokines), and ILC3s (group 3 ILCs, include RORgt+

ILCs and lymphoid tissue inducer or LTi cells) inflammation and

their interaction with adaptive immune cells have been discussed

elsewhere (242–246).

ILCs increase in the circulation of patients with cancer

compared to healthy controls, indicating that they also infiltrate

TME or TIME of different cancers (Figure 7) (247–251). Patients

with a high number of circulating ILCs, including NK cells with

great cytotoxic action, are less prone to develop cancer and

metastasis (252–254). The ILC (NK cells, ILC1s, ILC2s, and

ILC3s) infiltration into the TME at the early (premalignant) stage

induces anti-tumor TIME to kill tumor cells through different

mechanisms, including direct cytotoxic action and recruitment of

different immune cells, including cytotoxic T cells, and eosinophils

(255–259). The details of ILCs, including NK cells in early TME,

have been discussed elsewhere (260, 261).

At later stages, NK cells infiltrating TME become less cytotoxic

ILC1s (inefficient in controlling the growth and metastasis of tumor

cells) in the presence of TGF-b secreted by tumor cells and other

immunosuppressive immune cells (262–264). TGF-b also

downregulates eomesodermin (EOMES) or T-box brain protein 2

(Tbr2) expression (Figure 7) (262). EOMES and T-box protein in T
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cells (T-bet) are crucial for NK cell development, maturation, and

cytotoxic function (265–267). Also, EOMES is crucial for invariant

NK (iNK)T cell development and differentiation in the thymus and

their differentiation to memory-like KLRG1+iNKT cells in the

periphery (268). iNKT cells facilitate the potent anticancer

cytotoxic action of CD8+T cells by presenting different lipid and

glycolipid antigens to expressed MHC class I-like molecule CD1d,

in addition to direct killing (269, 270). iNKT cells also release IFN-g
that further supports tumor cell killing by NK cells (270). Hence, it

will be novel to study the impact of TGF-b on iNKT cell

development and function in TME or TIME, which depends on
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EOMES expression. Furthermore, TGF-b in TME also reprograms

otherwise antitumor ILC3s to tumor-promoting regulatory ILC3s

(ILCregs) and secrete IL-10 (271).

IL-25, an IL-17 cytokine subfamily member in TME or TIME,

transforms inflammatory ILC2s (iILC2s) to natural ILC2s (nILC2s) or

ILC3-like cells to create an innate tumor-permissive microenvironment

through activating ILC2s via inducing IL-17 expression (272, 273).

iILC2s have a low RORgt expression, but nILC2s do not (274). Also,

these tumor infiltrating ILC2s are highly IL-25R+ (273). These nILC2s

secrete large amounts of IL-5 and IL-13 (Th2 cytokines), creating an

anti-inflammatory or immunosuppressive TIME (272). However, IL-
FIGURE 7

ILCs and NK cells in TIME and their immunometabolism. Different ILCs, including cytotoxic NK cells, are present in TME or TIME. The increased TGF-
b levels in TIME transform high cytotoxic NK cells to less cytotoxic ILC1s and ILC3s to ILC3regs, which release IL-10 to support immunosuppressive
TIME. Also, the high lactate levels in TIME or TME decrease NK cell OXPHOS, induce mitochondrial damage, and their apoptosis. Hence, the NK cell
cytotoxicity (NKCC) is blocked in the immunosuppressive TIME that supports tumor growth. Furthermore, i-ILC2s polarize to n-ILC2s in the
presence of TIME IL-25, further supporting angiogenesis, tumor growth, and metastasis by releasing immunosuppressive cytokines (IL-5 and IL-13).
IL-5 and IL-13 are released from n-ILC2s in response to IL-33, increasing their OXPHOS and FAO. GM-CSF release from immature NK cells increases
MDSCs proliferation, supporting immunosuppression. See text for details.
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25 exerts a tumor regulatory role through different mechanisms,

including eosinophil and B cell infiltration, apoptosis, and Th2

cytokines secretion in TME to create an immunosuppressive TIME

(275). The therapeutic blockade of IL-25R in colorectal cancer (CRC)

lowers the tumor burden and activates an anti-tumor immune

response in mice (273). These ILC2s join IL-25R+ MDSCs to create

an immunosuppressive TIME in different cancers (276–278). Another

study has shown that blocking IL-25 (released from gastrointestinal tuft

cells) suppresses gastric cancer in mice, and the ILC2 axis, which is

responsible for immunosuppressive IL-13 release (279). IL-33 (a

member of IL-1 cytokine family) also promotes tumor survival and

progression through different mechanisms, including Tregs functional

stabilization (280, 281). Also, IL-33 exerts tumor supportive action via

regulating PPAR-g-mediated IL-4, IL-13, and IL-15 (Th2 cytokines)

release from ILC2s (Figure 7) (282). Thus, antitumor functions of ILCs,

including NK cells, ILC2s, and ILC3s, reprogram to tumor-promoting

immune activity governed by their immunometabolic reprogramming.

ILCs, including NK cells recruited to the nutrient-competitive

TME with tumor cells, adjust their immunometabolic requirement

affecting their antitumor immune function. For example, NK cells

depend on glycolysis and OXPHOS for their energy requirement under

immune homeostasis due to their limited energy or biosynthetic

demand (283, 284). Under inflammatory conditions due to increased

energy demand to perform a cytotoxic function and cytokine release,

immunometabolic reprogramming shifts more towards aerobic

glycolysis than OXPHOS, although an increase in OXPHOS also

occurs like effector CD8+T cells that depends on mTORC1 activation

(285–287). However, TME does not support their increased glucose

demand to exert their antitumor action. For example, increased TGF-b
in TME induces NK cell suppression through decreasing

mitochondrial metabolism, including OXPHOS, which is crucial to

maintain its high metabolic demand to maintain its antitumor activity

(288). This process occurs independently of mTORC1 inhibition.

However, TGF-b blocks IL-15-dependent NK cell proliferation and

maturation via inhibiting mTOR signaling (289). Thus, it will be

interesting to delineate factors responsible for a differential effect of

TGF-b on mTOR signaling and dependent metabolic reprogramming,

as mTORC1 signaling is crucial for NK cell maturation and

proliferation in patients with metastatic cancers (290).

It is important to note that blocking TGF-b restores the anti-

tumor function (including metastasis prevention) of NK cells via

restoring their immunometabolic reprogramming crucial for

cytotoxicity and IFN-g release (288, 289). Additionally, lactate

accumulation in TME also blocks NK cells’ OXPHOS via

inducing mitochondrial dysfunction due to increased ROS release,

making them energy deficient and causing their apoptosis (Figure 7)

(291). Thus, it will be interesting to delineate that to escape from

apoptosis of TIME NK cells in the presence of TGF-b to polarize to

less cytotoxic ILC1s having less energy demand to survive. Also,

GM-CSF in TME converts immature NK cells to MDSCs, helping in

cancer progression and metastasis (292).

The immunometabolic reprogramming of ILC2s is complex

compared to other immune cells. For example, they use OXPHOS

and branched-chain amino acids (valine, leucine, and isoleucine) to

fuel their polarized mitochondria at their steady state during

homeostasis (293). However, their developmental maturation
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depends on the HIF-1a-glycolysis axis (294). Hence, OXPHOS,

branched amino acids, and glycolysis are crucial to maintaining

ILC2s’ immune homeostatic function by regulating development

and maturation. The release of IL-4, IL-6, and IL-13 (Th2

cytokines) from ILC2s is maintained by increased glutaminolysis,

glycolysis, mTOR activation, and FAO (295, 296). However, they

continue to OXPHOS through amino acid uptake to maintain their

cellular fitness and proliferation (296). The increased FAO takes

place in ILC2s of nutrient (glucose and glutamine)-deficient TME

or TIME, which reprograms their antitumor function to tumor-

promoting via releasing Th2 cytokines causing immunosuppression

and angiogenesis (Figure 7) (297).

Furthermore, the increased IL-33 level in TME or TIME promotes

ILC2’s pro-tumor function via binding to its cognate receptor ST2,

promoting temporary storage of externally acquired FA in lipid

droplets to make cell membranes (298). These accumulating lipid

droplets transform into phospholipids to promote ILC2s proliferation.

An enzyme called diacylglycerol o-acyltransferase 1 (DGAT1) regulates

this process. PPAR-g, a key transcription factor, governs this

immunometabolic reprogramming crucial for lipid uptake,

metabolism, and ILC2 function (297, 298). For example, genetic

deletion or pharmacological inhibition of PPAR-g and DGAT1 in

ILC2s blocks the IL-33-mediated cancer growth and metastasis (282).

The IL-33-mediated optimal immunometabolic reprogramming in

ILC2s also requires ROS, and its inhibition can prevent its tumor-

promoting role by suppressing IL-5 and IL-13 release (299). Thus,

TME supports immunometabolic reprogramming among ILC2s to

create an immunosuppressive TIME that supports tumor growth

and metastasis.
4.5 Immunometabolic reprogramming
among T cells in the TIME

T cells are crucial adaptive immune cells, which have the

potential to regulate the immune system through helper T (Th)

cell phenotype and direct killing of tumor cells through their

cytotoxic action (CD8+T cells) (102). The pro-inflammatory T

cells (Th1, Th2, and Th17 phenotypes collectively called T

effector (Teff) phenotype) depend more on increased glycolysis

than OXPHOSS (300, 301). The aerobic glycolysis controls Teff

function, including the IFN-g release through binding the glycolysis

enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) to

AU-rich elements within the 3’ untranslated region (3’ UTR) of

IFN-g mRNA (302). Also, the lactate dehydrogenase A (LDHA)

induction in T cells supports aerobic glycolysis but supports IFN-g
release or Th1 differentiation independent of 3’UTR through

epigenetic mechanisms (303). In addition, in acidic TME (due to

lactate accumulation), LDH converts lactate to pyruvate and lowers

nicotinamide adenine dinucleotide (NAD+) levels. The decreased

NAD+:NADH further blocks glycolysis in T cells (Figure 8) (304).

The increased lactate level in TME inhibits NAD+-dependent

GAPDH and 3-phosphoglycerate dehydrogenase (PGDH) activity

crucial for NADH reduction and serine production, important for T

cell proliferation (Figure 8) (304). Serine supplementation rescues T

cell proliferation in high lactate TME.
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LDHA maintains a high acetyl-coenzyme A (acetyl-CoA) level

that promotes histone acetylation and IFN-g transcription. LDHA

deletion in T cells suppresses their IFN-g-mediated pro-inflammatory

action and induces their differentiation to FoxP3+ Tregs. FoxP3

expression in Tregs reprograms their immunometabolism to

OXPHOS via suppressing Myc activity and glycolysis and

increasing NAD+ oxidation (Figure 8) (305). Due to this, Tregs

resist highly acidic (lactate) TME and grow and proliferate (306).

Tregs also take more lactate than Teffs to utilize it as a fuel for the TCA

cycle or gluconeogenesis, which decreases their glucose need in the

highly nutrient-competitive TME (305, 307). Tregs highly express

lactate transporter, monocarboxylate transporter 1 (MCT-1), for

lactate uptake in TME (307). Furthermore, TME lactate induces
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programmed cell death protein 1 (PD-1 or CD279) expression in

Tregs, and PD-1 inhibition strengthens Tregs in TIME, causing

treatment failure with PD-1-based checkpoint inhibitors (308, 309).

However, a co-treatment with anti-PD-1 and a LDH inhibitor serves

as a better anticancer treatment as this approach inhibits lactylation

of Lys72 in MOESIN (a member of the ERM (ezrin, radixin, and

moesin) proteins). The MOESIN lactylation inhibition improves

MOESIN interaction with TGF-b receptor I and downstream

SMAD (suppressor of mothers against decapentaplegic) family

member 3 (SMAD3) signaling activating FoxP3 in Tregs (310).

Treg differentiation in TME or TIME depends on the Basic

leucine zipper transcription factor, ATF-like or BATF transcription

factor (311). Tregs are highly dependent on FAO or b lipid oxidation
FIGURE 8

T cell subtypes and their immunometabolic reprogramming in the immunosuppressive TME or TIME. Different Th1 and cytotoxic T cells infiltrate
initially to care for growing or premalignant tumors. However, the nutrient-deprived TME or TIME and the presence of immunosuppressive myeloid
cells alter their function, including immunometabolic reprogramming. For example, CD8+ cytotoxic T cells undergo cell death, including ferroptosis.
Additionally, Th1 and Th17 cells in the high lactate and nutrient-deprived (glucose and glutamine) TIME polarize to immunosuppressive Tregs. All
these events support T cell immunometabolic reprogramming to their tumor-supportive phenotype and function, including CD8+T cell death.
Details are mentioned in the text.
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and OXPHOS for their immunoregulatory function due to the

lower Glut1 and higher AMPK expression (300, 301). The fatty acid

binding protein 5 (FABP5, a cellular chaperone long-chain FAs) in

Tregs regulates OXPHOS and immunosuppressive function by

inducing the IL-10 release in response to the type 1 IFN (released

in response to cGAS-STING signaling) in low lipid availability TME

for immune cells (Figure 8) (312). Hence, FABP5 is a gatekeeper for

mitochondrial integrity modulating Tregs. Furthermore, FABP5

expression in pDCs in TME or TIME supports their tolerogenic

role via supporting the generation of Tregs (Figure 8) (313).

Tregs generation do not need mTOR kinase (314). Also, the

CD36 expression increases in Tregs, supporting their survival and

proliferation in TME or TIME via increased FA uptake (Figure 8)

(315). Furthermore, CD36 fine-tunes mitochondrial fitness via

PPAR-b signaling to increase Tregs survival in a lactate-rich acidic

TME by increasing OXPHOS (Figure 8) (315, 316). On the other

hand, CD36 expressed on CD8+ cytotoxic T cells increases oxidized

lipids/low-density lipoproteins (oxLDLs) uptake that increases lipid

peroxidation (LPO) (Figure 8) (317). LPO activates p38 mitogen-

activated protein kinase (p38MAPK) that induces CD8+T cell

dysfunction through defective mitochondrial biogenesis in

mTOR-independent signaling pathway governing their autophagy

and glycolysis (Figure 8) (317, 318). CD36-mediated lipid uptake by

CD8+T cells in TME also causes their ferroptosis and LPO to cause

their death and immunosuppression (Figure 8) (319). Thus, CD36-

med i a t ed FA up t ak e de t e rm ine s T ce l l - d ependen t

immunosuppressive TIME. Also, death/damage-associated

molecular proteins (DAMPs) in TME promoting chronic

inflammation can activate Tregs TLRs that, with FoxP3, balance

mTORC1 signaling and glucose metabolism to control their

proliferation and immunosuppressive function (320, 321). Hence,

TME and TIME support Tregs for tumor growth and metastasis and

induce resistance to chemotherapies and checkpoint inhibitors

through immunometabolic reprogramming.

Th17 cells selectively express HIF-1a governed by mTOR

signaling, a central regulator of cellular metabolism (301). HIF-1a
is crucial for glycolysis induction and maintenance. The lack of

HIF-1a in T cells at their differentiation stage reprograms them to

develop into Tregs (Figure 8) (301). The tumor-associated Th17 cells

with low glycolysis capacity reprogram to FoxP3+Tregs (Figure 8)

(322). Thus, the local tissue environment, including metabolic

status, is crucial determines T cell differentiation to their different

phenotypes and function.

Low extracellular lactate promotes immune cell infiltration and

proliferation at the premalignant stage, including T cells at the site

to create a pro-inflammatory TIME to clear tumor cells. For

example, CD8+T cells under physiologic normoxia utilize

glycolysis to exert antitumor action, including IFN-g release and

cytotoxicity (323). The prolyl-hydroxylase (PHD) proteins are

intrinsic oxygen-sensing molecules that promote Tregs growth and

proliferation during hypoxia that develops at later stages of cancer

(323). The T cell-specific internal deletion or pharmacological

inhibition of PHD increases the antitumor action of tumor-

infiltrating T cells. The increased energy demand among tumor

cells reprograms their metabolism to increased glycolysis and

creates a hypoxic TME. The increased glycolysis among tumor
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cells in TME increases extracellular lactate accumulation, which

impairs the nuclear factor of activated T-cells (NFAT) activation

and IFN-g production by T and NK cells (324–326). This impairs

the anticancer/tumor action of tumor infiltrating CD4+ and CD8+ T

cells in the pro-inflammatory environment. For example, tumor

infiltrating T cells in the glucose-deprived TME could not

reprogram their immunometabolism to glycolysis, forcing them

to rely on OXPHOS without exhibiting the Teff phenotype that

causes their mitochondrial depolarization and exhaustion (327–

329). IL-12 treatment rescues T cell exhaustion by increasing their

mitochondrial potential and reducing their dependence of

glycolysis (330). Hence, IL-12 treatment prevents forced

OXPHOS while maintaining the balanced glycolysis and

OXPHOS to maintain their full effector function.

The increased PD-1-PD-L1 signaling (TAMs, cancer cells, and

tolerogenic DCs express PD-1 and PD-L1), altered epigenetic

reprogramming, and nutrient-deprived stressful TME through

coordinating with the TCR signaling prove lethal to tumor-

infiltrating CD8+T cells by altering their immunometabolic

reprogramming (131, 327, 331, 332). Thus, low access to

appropriate nutrients (glucose, glutamine, and lipids) imposes a

significant barrier to Teffs via metabolic stress (333–336). For

example, T cells under hypoxic conditions with limited glucose

conditions exhibit mTORC1 signaling pathway inhibition,

decreased antigen-induced expression of genes (including cell

adhesion molecules, cell cycle progression), and CD8+T cell

proliferation and effector function (335, 337).

The insufficient glucose level in TME or TIME induces

apoptosis among Teffsviaactivating pro-apoptosis genes/proteins,

including phorbol-12-myristate-12 acetate-induced protein 1

(MAIP1/Noxa, a Bcl2 family protein) and Bcl-2-associated X

protein (Bax), destabilizing myeloid cell leukemia 1 (Mcl1), an

antiapoptotic Bcl-2 family protein (338). However, memory Teffs are

not programmed to upregulate FAS, OXPHOS, and reductive

glutaminolysis in limited glucose conditions, including TIME,

which allows them to maintain their function in the nutrient-

limited/depleted microenvironment (339). Thus, naïve T cells

survive the nutrient-depleted TME or TIME but lose their effector

function, but only memory Teffs survive and function in the

environment. In addition, increasing FAO activity in CD8+T cells

in TME or TIME can enhance their cytotoxic action as they show an

increased PPAR-a signaling and FA catabolism, which preserves

their cytotoxic action (340, 341). However, it should be noted that

tumor progression also increases co-inhibitor expression on CD8+T

cells, and PD-1 blockers delay tumor progression by affecting

tumor-infiltrating lymphocyte (TIL) metabolism and function.

The cell motility is controlled by subtype-specific transporters

called MCT1 (Slc5a12 and Slc16a1), specifically expressed on CD4+

and CD8+ T cells. The lactate accumulation suppresses the cytotoxic

action of CD8+T cells and promotes the CD4+T cells switching to

Th17 cells (Figure 8) (324). Also, IL-2 (a cytokine critical for

antitumor T cell function) signaling-mediated STAT5 activation

becomes limited in a highly acidic TME (342). This further

suppresses antitumor CD8+T cell function. The tumor-associated

Th17 cells reprogram to FoxP3+Tregs in TME. The genetic targeting

of LDHA in tumors decreases the pyruvate to lactate conversion
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restoring T and NK cell infiltration and their antitumor cytotoxic

function (325). Pyruvate dehydrogenase kinase 1 (PDHK1) via

inhibiting PDH determines the cytosolic lactate levels in T cells

that varies with T cell subtype (343). For example, Th17 cells show a

robust PDHK1 expression, whereas Tregs have it at an intermediate

level and Th1 cells have very little PDHK1. Hence, TME promotes

Th1 cells reprogramming to Th17 cells, then to Tregs under

intratumoral high lactate level that also suppresses IL-2 signaling

(342). The increase in the glutaminolysis in tumor cells also

deprives infiltrated T cells of glutamine, further compromising

their growth and proliferation (Figure 8) (344). The glutamine-

deficient TME reduces cytosolic a-KG in Th1 cells supporting their

differentiation to Tregs (345). The glutaminase (a key enzyme

involved in glutaminolysis) genetic deletion or glutamine uptake

blockade in tumor cells increases TME glutamine and upregulates T

cell infiltration (128, 346). The glutaminolysis is linked to

polyamine biosynthesis via a Myc-dependent metabolic pathway

in T cells (347). Hence, immunometabolic reprogramming among

tumor-infiltrated T cells is governed by TME, including the hypoxia

and lactate level.

HIF-1a during hypoxia induces the PDL-1 (CD274) expression

in tumor cel ls , DCs, TAMs, and MDSCs to support

immunosuppressive TIME (188). For example, PD-1+ CD8+T

cells in TIME are most immunodysfunctional due to the

mitochondria loss (348). The mitochondria loss affects their

oxidative (TCA cycle, FAO, and OXPHOS) and membrane

potential (ROS and ATP production) due to PPAR-g coactivator

1a (PGC1a) loss, which programs mitochondrial biosynthesis by

Akt signaling (348). B-lymphocyte-induced maturation protein 1

(BLIMP1) activation causes PGC1a loss. The PGC1a loss increases

ROS production that, through phosphatase inhibition and the

consequent activity of NFAT, promotes T cell exhaustion through

mitochondrial dysfunction and loss (349–351). The mitochondrial

mass loss in CD8+T cells of TIME correlates well with PD-1

expression. Thus, the PD-1/PDL-1 interaction in TIME

suppresses T cell immune response governed by their metabolic

stage or alters T cell immunometabolism responsible for

immunosuppression (142). The increased lipolysis of endogenous

lipids and FAO among PD-1+CD8+T cells continuously exposed to

PDL-1-expressing cells survive longer to support the

immunosuppressive TIME. These immunosuppressive CD8+T

cells highly express CPT1A and the adipose triglyceride lipase

(ATGL), the lipolysis marker glycerol, and the release of FAs

(142). On the other hand, the Tregs PD-1 engagement with PDL-1

promotes FAO and mitochondrial OXPHOS to fuel their energy

requirement in the presence of TGF-b (142, 352).

TGF-b suppresses PI3K-mediated mTOR signaling and inhibits

glucose transporter and hexokinase 2 (Hk2) expression that favors

OXPHOS in induced-Tregs (iTregs). PD-1 reduces the TGF-b
threshold for its immunosuppressive action, including the Treg

development and function in the TIME (353). Reduced TGF-b
signaling via TGF-b type 1 receptor (TbR1) is crucial for T cell

activation and associated immune response (354). Hence, the

increased TGF-b in TME and TIME suppresses antitumor T cell

immune response through metabolic reprogramming. The details of

PD-1 signaling mediated T cell immunometabolic reprogramming
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responsible for T cell immunosuppression are discussed elsewhere

(141). Blocking PD-1/PDL-1 signaling restores glucose in TME,

which permits T cell glycolysis and IFN-g production as an

antitumor immune response (78). However, blocking PD-L1

directly in tumors inhibits their glycolysis via suppressing mTOR

signaling and glycolysis enzymes (78). Tumor and immune cell-

secreted and expressed molecules create a T cell-mediated

immunosuppressive TIME in the TME to support tumor growth,

proliferation, and metastasis via immunometabolic reprogramming.
4.6 B cells in TIME and their
immunometabolic reprogramming

Murine cancer models have indicated the role of B cells in

tumor pathogenesis and immunity, including their regulatory role

in innate immune cell infiltration in the premalignant tissue to

promote chronic inflammation, which promotes epithelial

carcinogenesis (Figure 9) (355, 356). For example, antibodies

released from activated B cells in premalignant tissues fuel

chronic inflammation through Fcg receptor (FcgR)-dependent
innate immune cell infiltration into the preneoplastic and

neoplastic TME (Figure 9). Hence, B cells have been shown to

promote cancer through promoting early malignancy via

supporting chronic inflammation. However, in established

tumors, B cells act as antitumor immune cells by promoting IFN-

g secreting Th1 immune cells, which are crucial for generating an

adequate antitumor immunity in response to checkpoint inhibitors

(357, 358). Even, intratumoral immunotherapy success depends on

B and T cell collaboration (359, 360). In humans, intratumoral B

cells are good prognosis markers for different cancers (361).

However, the clonal diversity among infiltrated B cells affects

survival of patients with cancer depending on type (362–364). For

example, in TME or TIME, intratumoral B cell number highly

depends on tertiary lymphoid structures (TLSs), as tumors without

TLS have low B cell numbers (365, 366). Furthermore, B cell

maturation, selection, and expansion occur in the mature TLS of

tumor tissue that determines their antitumor (367, 368).

The mature TLS B cells increase antitumor T-cell activity in

TIME and the responsiveness of tumors to immunotherapies

(Figure 9) (368). On the other hand, B cells in immature TLSs do

not have potent antitumor action. Instead, they become tumor-

supportive (Figure 9). The B cell numbers, including the presence of

switched memory B cells in tumor TLSs, guide the success of

potential tumor immunotherapy and the associated patient

survival (365). The details of B cells in TME and TIME are

discussed elsewhere (361, 369–371). However, TLS maturation

depends on the availability of extracellular ATP molecules

(including the microbe-derived ones), which use ILC3-driven (IL-

22, TNF-a, IL-8 and IL-2) and colony-stimulating factor 2 (CSF2)-

dependent axis to induce the monocyte to macrophage transition in

TIME (372, 373). These NCR+ILC3s are in higher numbers in the

early stages (stage 1 or 2) than in later tumor stages, and their

presence directly correlates with the density of TLSs in TIME (373).

For example, gut microbiota may influence the efficacy of tumor

immunotherapy via many immunomodulatory mechanisms,
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1125874
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kumar and Stewart 10.3389/fimmu.2023.1125874
including the secretion of metabolites supporting the development

and maturation of TLSs in TIME (374). Hence, a nutrient-

competitive TME does not support the maturation of TLSs in

TIME to escape from B cells and other immune cell-based

antitumor immunity (Figure 9).

B cells are divided into B1 B cells, conventional B2 cells, and

marginal zone B (MZB) cells. MZB cells have an innate-like

function and are present mainly in the spleen along with LNs and

blood to take care of blood-borne pathogens and circulating

antigens or foreign particles (375, 376). Out of B1 (form in fetal

life and then depend on self-renewal in adult life) and B2 B cells

(constantly keep developing in BM), B1 B cells are more dependent
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on OXPHOS and glycolysis and are more active at the resting stage

than B2 B cells (377–379). In addition, B1 B cells acquire external

lipids as lipid droplets. Furthermore, B1 B cells have a unique

immunometabolic programming that depends on their location and

specific functional properties as autophagy-deficient B1-a B cells

down-regulate critical metabolic genes and accumulate

dysfunctional mitochondria (379). Hence, the autophagy gene

Atg7 is crucial to maintain their immunometabolic status to

support their high proliferative and secretary functions.

Non-proliferative naïve B cells depend on OXPHOS due to the

glycogen synthase kinase 3 (GSK3) activity required to maintain

their metabolic quiescence and prevent proliferation (380).
FIGURE 9

B cells in TIME. B cells in the premalignant tissue are the first immune cells to send signals to innate immune cells. This causes chronic inflammation.
Unresolved chronic inflammation is linked to several cancers, including lung, breast, and colorectal cancers. However, in established tumors, B cells
serve as antitumor immune cells and support intratumoral immunotherapies and Th1 immune response. However, only mature B cells perform
antitumor functions, and their maturation occurs in the TLS or TLOs. The nutrient-deprived TME or TIME does not support TLS maturation, and
immature B cells and Bregs increase immunosuppressive TIME. See text for details.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1125874
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kumar and Stewart 10.3389/fimmu.2023.1125874
However, tumors have insufficient naive non-proliferating B cells

(371). The germinal center (GC) B cells have different

immunometabolic requirements depending on their location in

the light zone (LZ) and dark zone (DZ). For example, in mature

GCs (the microanatomical sites of antibody diversification (B cell

clonal expansion) and affinity maturation), the DZ has large and

mitotically active proliferating B cells (centroblasts) undergoing

somatic hypermutation (SHM). These DZ B cells depend on

glycolysis for the energy demand and differentiate into LZ B cells

(381). Whereas the LZ of the GC contains a large portion of

infiltrating and non-proliferative quiescent naïve B cells, which

are also called centrocytes and compete for antigen presentation to

follicular helper T (Tfh) cells mainly depend on OXPHOS (382,

383). However, LZ B cells expressing BCR and CD40 are rewired to

highly express c-Myc, stimulating mitochondrial biosynthesis and

genes required for glycolysis, promoting their re-entry to the DZ of

the GC (384–386). These c-Myc-expressing centrocytes also express

HIF-1a to support anaerobic glycolysis (387).

Memory B cells depend on OXPHOS for their metabolic

demand. In contrast, plasma cells (PCs) or antibody-secreting B

cells depend on OXPHOS and other carbon-utilizing metabolic

pathways, including the TCA cycle, and nucleotide biosynthesis

(PPS or PPP) that supports ribosome synthesis or ribogenesis, but

not glycolysis (388–390). This glucose deprivation of PCs does not

affect their humoral functions, but OXPHOS and glutaminolysis

inhibition impairs their growth and differentiation. Hence, B cell

activation requires considerable mitochondrial remodeling due to

extensive OXPHOS. In addition, long-lived plasma cells (LLPCs)

also depend on amino acid metabolism (glutaminolysis) and

autophagosome formation (391, 392). Notably, PC metabolic

reprogramming may also be affected by other factors, including

the type of antibody production, location, and other metabolites

(vitamins). For example, vitamin B1 supports the TCA cycle in

Peyer’s patches in IgM-producing PCs without affecting IgA

production (393). The tumor-infiltrating IgM memory B cells and

switched memory B cells (IgG- and IgA-producing PCs) are present

in different cancers, including breast cancer (BC), renal cell

carcinoma (RCC), and head and neck squamous cell carcinoma

(HNSCC) (394–396). The GC B cells, plasmablasts, and plasma cells

are present in non-small cell lung cancers (NSCLCs), RCCs,

HNSCC, and ovarian and prostate cancers (367, 395–397).

In TME or TIME infiltrated B cells under the influence of IL-6,

IL-1b, IL-12p35, and low oxygen (tumor-promoting molecules),

which polarize to regulatory B cells (Bregs), producing TGF-b,
granzyme B (GZMB), IL-10, and IL-35, which promote tumor

growth and metastasis (398–402). The metabolic reprogramming

among Bregs in TIME is unclear, but IL-10 secretion depends on

glucose influx-dependent OXPHOS, PPP, amino acid metabolism,

and oxygen level in the TME. Also, a balance between Bregs and PCs

derives potential antitumor immunity during pancreatic cancer

(403). However, IL-35 in TME breaks this balance and stimulates

the STAT3-paried box 5 protein (PAX5, a transcription factor

crucial for B cell differentiation) complex, upregulating B cell

lymphoma 6 (BCL6, a transcriptional regulator) in naive B cells.

BCL6 inhibition in tumor-educated B cells reverses dysregulated B

cell differentiation and stimulates the intra-tumoral accumulation
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of PCs and Teffs. This renders pancreatic tumors sensitive to anti-

PD-1 blockade (403). Hence, B cell metabolic reprogramming in the

TME or TIME alters their antitumor action and promotes their

polarization to tumor-supportive Bregs.
5 Targeting immunometabolic
reprogramming in cancer

The dendrimer-mediated nanomedicine-based therapeutic

targeting of TAM-specific mitochondria in glioblastoma has

stimulated their anticancer function (404, 405). Also, targeting

TAMs of pancreatic ductal adenocarcinoma (PDA) to block the

pyrimidine metabolites’ release, including deoxycytidine, sensitizes

tumors to the anticancer drug gemcitabine (a pyrimidine anti-

nucleoside) (406). The pyrimidine synthesis in M2 macrophages

occurs in response to the increased FAO and TCA cycle (406). Also,

serine metabolism is crucial for M1 to M2 macrophage polarization

to support immunosuppressive TIME. Serine depletion, either by

inhibiting phosphoglycerate dehydrogenase (PHGDH, crucial in

the serine biosynthesis pathway) or by exogenous serine and glycine

restriction, robustly enhances the polarization of M1 macrophages

with antitumor potential along with suppressing M2 macrophages

(407). Serine metabolism inhibition in macrophages increases the

insulin-like growth factor-1 (IGF1) expression via decreasing the S-

adenosyl methionine (SAM)-dependent histone H3 lysine 27

trimethylation. IGF1 then stimulates p38-dependent Janus kinase

or JAK–STAT1 axis, promoting M(IFN-g) or M1 polarization and

suppressing M(IL-4)) or M2 macrophages (407). Hence, targeting

macrophage metabolism in different cancers can increase the

efficacy of available chemotherapies.

Also, targeting glutamine metabolism in TME blocks the

immunosuppressive effects of MDSCs, induces their activation-

induced cell death (AICD), and the MDSC transition to

antitumor M1 macrophages (138). Glutamine metabolism

inhibition, specifically to tumor and myeloid cells with a prodrug

called 6-diazo-5-oxo-L-norleucine (DON), decreases CSF3 level in

TME that blocks MDSCs recruitment and induces immunogenic

cell death, promoting the recruitment of M1 macrophages.

Targeting glutamine metabolism also inhibits the tryptophan

metabolism generating immunosuppressive kynurenine

metabolites (138). However, glutamine deprivation in CD8+T

cells of hepatocellular carcinoma (HCC) induces their apoptosis

due to mitochondrial dysfunction (408). Hence, cell-specific

glutamine metabolism targeting specifically in the TME/TIME

may serve as a potential immunometabolism regulatory approach.

However, lactate treatment increases the stemness of CD8+T cells to

augment their antitumor action by inhibiting histone deacetylase

(HDAC) activity that acetylates H3K27 of the transcription factor 7

(Tcf7) super-enhancer locus causing its increased gene expression

(409). Furthermore, the adoptive transfer of CD8+T cells treated in

vitro with lactate show an increased antitumor action. Hence,

adoptive transfer of oncometabolites’ treated T cells may serve as

immune cell-based therapeutics for cancer due to their epigenetic

modification and resistance development to harsh TME. However,

further studies are needed in this direction.
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The CD28-mediated co-stimulation among tumor (ccRCC)

infiltrated CD8+T cells has restored their defective glycolysis and

mitochondrial oxidative metabolism by upregulating Glut3 (410,

411). However, an early study indicated that glycolysis does not

support long-term memory CD8+T cell formation and their

antitumor action (412). Hence, it becomes crucial to explore these

effects related to glycolysis in naïve CD8+T cells or tumor-infiltrated

CD8+T cells to better design immunometabolic reprogramming

approaches specific to different cancers. CD47 regulates CD8+ T cell

activation, proliferation, and fitness in a context-dependent

manner, including cancer (413). So, it will be novel to understand

the impact of CD47 engagement on glycolysis in CD8+T cells in

TIME or homeostasis. For example, CD47 blockage on CD8+T cells

mediates immunogenic tumor destruction (414, 415). Furthermore,

the decreased CD47 expression on cancer cells increases

macrophage infiltration in tumors with an enhanced potential to

phagocytose cancer cells (416). CD47 expression increases in TME

in response to IL-18 released from macrophages during

chemotherapy (doxorubicin). IL-18 upregulates L-amino acid

transporter 2 (LAT2) expression in tumor cells, enhancing leucine

and glutamine uptake. Glutamine and leucine are two potent

mTORC1 signaling stimulators. Thus, increased cellular leucine

levels and glutaminolysis activate mTORC1 signaling, which by c-

Myc activation, induces CD47 transcription and expression (416).

Hence, CD47 blocking in CD8+T cells and tumor cells may increase

tumor clearance and patient survival through metabolic alteration

of tumor and immune cells.

Additionally, glutarate administration reduces the tumor

burden by increasing CD8+T cells in the TME and systemic

circulation and their antitumor function by immunometabolic

reprogramming (417). The glutarate reprograms CD8+T cell

immunometabolism responsible for their cytotoxic function,

involving a post-translational modification of the pyruvate

dehydrogenase E2 (PDHE2) subunit of the PDH complex

(PDHc). The PDHc glutarylation induces a rapid pyruvate

conversion to lactate and increased glycolysis in CD8+T cells to

reprogram their antitumor function (417). Furthermore, the

magnesium (Mg2+) treatment increases the co-stimulatory

function of leukocyte function-associated antigen-1 (LFA-1) on

CD8+T cells to exert their cytotoxic action against tumor cells via

different mechanisms, including immunometabolic reprogramming

(418, 419). CAR-T cells also exert an improved and more extended

antitumor function uponMg2+ supplementation. Notably, TME has

less available Mg2+ for immune cells, including CD8+T cells, due to

its high usage by tumor cells. Hence, intratumoral Mg2+

supplementation improves antitumor TIME to fight against

tumors and improves CAR-T cell-based immunotherapy.

L-arginine availability to T cells increases their survival by

immunometabolic reprogramming (transition of glycolysis to

OXPHOS). It promotes their differentiation to central memory-

like T cells with anti-tumor activity without inducing mTOR

signaling (420). L-arginine increases T cell survival in TME

through targeting transcriptional regulators bromodomain

adjacent to the zinc finger domain 1B (BAZ1B) or Williams

syndrome transcription factor (WSTF), PC4 and SFRS1

interacting protein 1 (PSIP1), and translin (TSN) (420). The
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mitochondrial arginase 2 (Arg2) depletion in CD8+T cells

increases their survival and antitumor action (421). The CD8+T

cell-specific Arg2 inhibition synergizes the antitumor action of PD-

1 blocking checkpoint inhibitors. Thus, l-arginine depletion in the

TME or TIME by tumor cells and myeloid suppressor cells due to

the activation enzymes (Arg1 and iNOS2) compromises an efficient

antitumor action of T cells, including CD8+T cells to clear tumor

cells (422). The use of genetically modified bacteria (Escherichia coli

Nissle 1917 strain) or ECN that utilizes ammonia to synthesize L-

arginine in tumors has increased antitumor T cell infiltration in

TME or TIME to clear the tumor (423, 424). This genetically

modified bacteria used as bacterial anticancer therapy (BAT)

works synergistically with PD-1 blockers to clear tumors. Hence,

emerging immunometabolic reprogramming targeting different

cancers has a better future as a specific-immune cell-based tumor

targeting and synergizing the available checkpoint inhibitors.
6 Future perspective and conclusion

The immune system is key to checking the induction,

development, growth, and metastasis of cancer. Immunometabolic

reprogramming among immune cells governs their stimulatory and

inhibitory immune functions depending on the stimuli and tissue

environment. Thus, it has become crucial to understanding

immunometabolic reprogramming and its governing factors in

TIME. The development of a robust immunosuppressive TIME has

become a landscape for tumor growth, proliferation, and metastasis.

For example, increased lactate levels in TME or TIME induce

immunosuppressive immunometabolic reprogramming and block

the antitumor function of immune cell-based immunotherapies

(adoptive T cell therapies) and checkpoint inhibitors (425, 426).

LDHA inhibitor (GSK2837808A) has improved the antitumor

activity of CD8+T cells via altering their immunometabolic

reprogramming responsible for their exhaustion and apoptosis (426).

Furthermore, TME or TIME lactate levels can be lowered using MCT1

and MCT4 lactate transporter inhibitors (AZD3965) to improve the

existing immune cell-based therapies (427–429).

The increased lactate accumulation in TME or TIME occurs due to

overwhelming glycolysis in tumor cells (426). Thus, tumor cell-specific

glycolysis can also be a therapeutic approach that directly targets tumor

cells, and will also increase the efficacy of immune cell-based

immunotherapies and checkpoint inhibitors via decreasing the TME

lactate levels (430–433). Fumarate accumulation in TME also inhibits B

cell function via covalent inhibition of a tyrosine kinase LYNN of the B

cell receptor (BCR) signaling pathway (434). The fumarate deposition

blocks BCR signaling-mediated antitumor action, including antibody

production and cytokine release. Additionally, fumarate has other

tumor-supportive effects by altering different immune cells, but its

impact on their immunometabolic reprogramming remains to study

(435). Hence, targeting tumor cell-specific glycolysis and lactate and

fumarate accumulation in TME indirectly enhances the antitumor

action of immune cells by immunometabolic reprogramming. Many

metabolic inhibitors with potential to clinical translation are at different

clinical trial stages (II and III), which can be used to reprogram TME

immunometabolism (23, 25).
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Calcium carbonate (CaCO3) nanoparticles coated with 4-

phenylimidazole (4PI) inhibit IDO1 to increase the radiotherapy

efficacy (436). These nanoparticles are called acidity-IDO1-

modulation nanoparticles (AIM NPs), which instantly neutralize

protons (H+) and release 4PI to inhibit the immunosuppressive

IDO1 activity in the TME. Thus, AIM NPs reinforce the

radiotherapy via modulating the immunosuppressive metabolic

reprograming in the TME. Another nanoparticle-based approach

during low dose radiotherapy has increased ICIs (PD-1/PD-L1

blockers) efficacy via reprograming immunosuppressive TME

immunometabolism in triple negative breast cancer (TNBC) patients

(437). This approach involves scavenging the reduced nicotinamide

adenine dinucleotide phosphate (NADPH) inside tumor cells by

developing the nanomolecule (BMS202@HZP) targeting hypoxia and

PD-1/PD-L1 interaction during low dose radiotherapy against TNBC

(437). Along with conventional nanomedicine, thermal-immuno

nanomedicine is emerging as potential antitumor therapy (438–440).

Hence understanding and developing nanomedicine-based approaches

specifically targeting TME immunometabolism have a bright future for

tumor immunotherapy. For instance, understanding metabolic

reprograming, including immunometabolism can rewire radio-

oncology for better therapeutic ratio or outcome (441). We need

further studies in this direction.

Aging is one of several predisposing factors for cancer as it alters

immune cell functions via inducing altered immunometabolism

(442, 443). For example, the B cells of older people show a

significant reduction in their OXPHOS compared to glycolysis

(444). Also, T cells isolated from older adults exhibit decreased

glycolysis and OXPHOS but increased mitochondrial ROS

generation, indicating an impaired mitochondrial function (442).

Aging-associated immunometabolic reprogramming among older

adults induces a stage of chronic inflammation that may serve as

cancer predisposing factor. Thus, the immunometabolic profile of

aged people may indicate their future risk for cancer. Spermidine, a

polyamine considered an antiaging molecule enhances the

antitumor action of CD8+T or nanobody-based CAR-T cells (Nb

CAR-T) cells via immunometabolic reprogramming that increases

IFN-g and IL-2 production (445).

OVT is an emerging area to convert cold tumors to hot tumors or

TME through reprogramming immunosuppressive TIME to pro-
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inflammatory antitumor immunity when used alone or with

available checkpoint inhibitors (446–449). However, how OVT

modulates the immunometabolic reprogramming among specific

immune cells of TIME is an exciting research area to delineate. Also,

immunometabolism has emerged as a novel way to target specific

immune cell populations in diverse diseases, including sepsis,

autoimmunity, and other infectious diseases. The information

discussed in the present article specifies that the immunometabolic

reprogramming among infiltrated immune cells alters in TME or

TIME and needs great attention as it diverts immune cells’ normal

antitumor function to support tumor growth and metastasis. Hence,

immunometabolic reprogramming is another cancer hallmark with

significant therapeutic potential based on cancer stages and immune

cell population. Thus, studying cancer-associated immunometabolic

reprogramming will help to design better immune cell-based therapies,

BATs, and OVTs in the future.
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Differential reliance on lipid metabolism as a salvage pathway underlies functional
differences of T cell subsets in poor nutrient environments. Cell Rep (2018) 23:741–55.
doi: 10.1016/j.celrep.2018.03.084

340. Zhang Y, Kurupati R, Liu L, Zhou XY, Zhang G, Hudaihed A, et al. Enhancing
CD8+ T cell fatty acid catabolism within a metabolically challenging tumor
microenvironment increases the efficacy of melanoma immunotherapy. Cancer Cell
(2017) 32:377–391.e9. doi: 10.1016/j.ccell.2017.08.004

341. Bailis W, Shyer JA, Chiorazzi M, Flavell RA. No oxygen? no glucose? no
problem: fatty acid catabolism enhances effector CD8+ TILs. Cancer Cell (2017)
32:280–1. doi: 10.1016/j.ccell.2017.08.013

342. Gaggero S,Martinez-Fabregas J, Cozzani A, Fyfe PK, LeprohonM, Yang J, et al. IL-2
is inactivated by the acidic pH environment of tumors enabling engineering of a pH-selective
mutein. Sci Immunol (2022) 7:eade5686. doi: 10.1126/sciimmunol.ade5686

343. Gerriets VA, Kishton RJ, Nichols AG, Macintyre AN, Inoue M, Ilkayeva O,
et al. Metabolic programming and PDHK1 control CD4+ T cell subsets and
inflammation. J Clin Invest (2015) 125:194–207. doi: 10.1172/JCI76012
Frontiers in Immunology 27
344. Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, et al. The
transcription factor myc controls metabolic reprogramming upon T lymphocyte
activation. Immunity (2011) 35:871–82. doi: 10.1016/j.immuni.2011.09.021

345. Klysz D, Tai X, Robert PA, Craveiro M, Cretenet G, Oburoglu L, et al.
Glutamine-dependent a-ketoglutarate production regulates the balance between T
helper 1 cell and regulatory T cell generation. Sci Signal (2015) 8:ra97. doi: 10.1126/
scisignal.aab2610

346. Leone RD, Zhao L, Englert JM, Sun IM, Oh MH, Sun IH, et al. Glutamine
blockade induces divergent metabolic programs to overcome tumor immune evasion.
Science (2019) 366:1013–21. doi: 10.1126/science.aav2588

347. Gnanaprakasam JNR, Sherman JW, Wang R. MYC and HIF in shaping
immune response and immune metabolism. Cytokine Growth Factor Rev (2017)
35:63–70. doi: 10.1016/j.cytogfr.2017.03.004

348. Scharping NE, Menk AV, Moreci RS, Whetstone RD, Dadey RE, Watkins SC,
et al. The tumor microenvironment represses T cell mitochondrial biogenesis to drive
intratumoral T cell metabolic insufficiency and dysfunction. Immunity (2016) 45:374–
88. doi: 10.1016/j.immuni.2016.07.009

349. Scharping NE, Rivadeneira DB, Menk AV, Vignali PDA, Ford BR, Rittenhouse
NL, et al. Mitochondrial stress induced by continuous stimulation under hypoxia
rapidly drives T cell exhaustion. Nat Immunol (2021) 22:205–15. doi: 10.1038/s41590-
020-00834-9
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