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Abstract

By acquiring, processing, and presenting both foreign and self-antigens, dendritic cells (DCs) 

initiate T cell activation that is shaped through the immunomodulatory functions of a variety of 

cell-membrane-bound molecules including BTLA-HVEM, CD40-CD40L, CTLA-4-CD80/CD86, 

CD70-CD27, ICOS-ICOS-L, OX40-OX40L, and PD-L1-PD-1, as well as several key cytokines 

and enzymes such as interleukin-6 (IL-6), IL-12, IL-23, IL-27, transforming growth factor-beta 1 

(TGF-β1), retinaldehyde dehydrogenase (Raldh), and indoleamine 2,3-dioxygenase (IDO). Some 

of these distinct immunomodulatory signals are mediated by specific subsets of DCs, therefore 

contributing to the functional specialization of DCs in the priming and regulation of immune 

responses. In addition to responding to the DC-mediated signals, T cells can reciprocally modulate 

the immunomodulatory capacities of DCs, further refining immune responses. Here, we review 

recent studies, particularly in experimental mouse systems, that have delineated the integrated 

mechanisms of crucial immunomodulatory pathways that enable specific populations of DCs and 

T cells to work intimately together as single functional units that are indispensable for the 

maintenance of immune homeostasis.
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I. INTRODUCTION

Dendritic cells (DCs) are antigen-presenting cells (APCs) that initiate and regulate T cell 

responses to foreign and self-antigens. DCs patrol various tissues and internalize such 

antigens, which they then process and present as peptides on major histocompatibility 

complexes (MHCs) to T cell receptors (TCRs) that are reactive to specific peptide:MHC 

complexes. In addition to activating T cells to combat various pathogens, DCs have a well-

established role in the induction and regulation of tolerance in the absence of pro-

inflammatory stimuli, known as the steady state.1 DCs can also sense the presence of various 

environmental signals, including materials from dead cells, microbial products, and specific 
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pro-inflammatory conditions, allowing them to discern what the appropriate immune 

response for the surrounding environment should be.2–5 Some of these environmental 

signals may also promote the tolerogenic functions of DCs.3,6–17 However, the molecular 

mechanisms by which DCs induce different immunological outcomes remain a subject of 

active investigation.

Depending on the cytokines secreted and the immunomodulatory molecules present on the 

surface of both the DCs and T cells, T cells differentiate to acquire various effector or 

regulatory functions. Moreover, DCs can modulate T cell functions through the production 

of metabolites by specific immunomodulatory enzymes. However, the interactions between 

DCs and T cells are not unidirectional because T cells can also influence certain aspects of 

DC biology. Overall, multiple immunomodulatory pathways enable DCs and T cells to work 

together as functional units that carry out diverse functions in order to promote an 

appropriate immune response (Fig. 1). Increasing our understanding of the various 

mechanisms utilized by different subsets of DCs to help shape T cell responses in order to 

maintain immune homeostasis is vital for the design of new therapies for a variety of 

diseases, including cancer, autoimmunity, and infections.

II. IMMUNOMODULATORY PATHWAYS

A. CTLA-4–CD80/86

A crucial example of an immunomodulatory molecule that facilitates a dynamic partnership 

between DCs and T cells in the maintenance of immune homeostasis is cytotoxic T-

lymphocyte antigen 4 (CTLA-4). This molecule, with its multi-faceted tolerogenic 

capabilities, is a member of the CD28 family that is expressed in activated T cells, 

particularly regulatory T (Treg) cells, in a cell-membrane-bound form.18–22 Additionally, 

CTLA-4 has been shown to be expressed and secreted by DCs.23,24 In T cells, CTLA-4 

competes with CD28 for binding of CD80 or CD86 expressed on DCs.25,26 Although the 

precise molecular signals are still unclear, signaling by membrane-bound CTLA-4 in T cells 

can result in tolerant CD4+ T cell responses, including clonal anergy or transforming growth 

factor-beta 1 (TGF-β1) production.27,28 In CD8+ T cells, CTLA-4 promotes DC-mediated T 

cell tolerance, although the mechanism by which this occurs is also unclear.29

In addition to T cell-intrinsic effects mediated by CTLA-4, studies by several groups have 

shown that Treg cells exert tolerogenic effects by modulating DC biology through several 

different mechanisms mediated by Treg cell-expressed CTLA-4. Foxp3+ Treg cells can 

inhibit autophagy in DCs by signaling with CTLA-4 to CD80 and CD86 on DCs, activating 

the phosphoinositide 3-kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) 

pathway, which downregulates transcription of Lc3b and induces nuclear exclusion of 

Foxo1, thus reducing autophagy in these cells.30 Additionally, Treg cells upregulate 

expression of CTLA-4 following TCR engagement, which then leads to the downregulation 

of CD80 and CD86 on DCs through a mechanism that is at least in part mediated by the 

trans-endocytosis of these costimulatory molecules.31–35 Another group has shown that 

CD80 on DCs binding to CTLA-4 expressed by in vitro-induced Treg cells or the fusion 

protein (CTLA-4-Fc) leads to the phosphorylation of STAT3 and subsequent nuclear factor-

kappa beta (NF-κB)-dependent downregulation of CD80 and CD86 gene transcription in 

Bourque and Hawiger Page 2

Crit Rev Immunol. Author manuscript; available in PMC 2019 February 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DCs.36 Furthermore, human DCs can secrete CTLA-4, which binds to and downregulates 

CD80 and CD86 molecules on bystander DCs, resulting in decreased CD8+ T cell activity.24 

This finding further illustrates the complex nature of interactions between DCs and T cells 

while also raising the possibility that a similar secretory mechanism may be additionally 

carried out by CTLA-4 expressed by Treg cells to influence DCs.

B. Indoleamine 2,3 Dioxygenase

Another important immunomodulatory mechanism facilitated by CTLA-4-CD80/86 axis is 

the induced expression of the tolerogenic enzyme indoleamine 2,3 dioxygenase (IDO) in 

DCs that is triggered through the engagement of CD80/86 by CTLA-4 expressed in Foxp3+ 

CD25+ Treg cells.37–39 IDO is the rate-limiting enzyme for tryptophan catabolism that is 

expressed by DCs and it exerts tolerogenic effects on T cell responses by producing pro-

apoptotic tryptophan metabolites and depleting the tryptophan available for surrounding T 

cells.37,40–42 Mice with a conditional deletion of CTLA-4 in Foxp3+ cells were found to 

have a 50% reduction of IDO-expressing CD11c+ DCs.43 This pathway is also important in 

humans because CTLA-4 expressed in human Treg cells signals to human monocyte-derived 

DCs through CD80 and CD86, resulting in the expression of the active form of IDO.44 

When CD8+ T cells are cultured with IDO+ DCs, the combination of tryptophan deprivation 

and the presence of tryptophan metabolite kynurenine promotes downregulation the TCR ζ-

chain, leading to decreased functionality of T cells.45 This downregulation is dependent on 

the stress-response kinase GCN2 because this effect is not seen in CD8+ T cells from 

Gcn2−/− mice.45 Furthermore, IDO can lead to the direct conversion of Foxp3-expressing 

peripheral Treg (pTreg) cells through the production of kynurenine, which can activate the 

transcription factor aryl hydrocarbon receptor (AHR) and thus induce expression of Foxp3 

in T cells.46 Furthermore, activation of AHR in DCs by other ligands can induce IDO 

expression and retinoic acid (RA) production by DCs, thus promoting their tolerogenic 

functions.47–49 IDO-derived tryptophan metabolites can also act on the DCs to increase their 

expression of the immunomodulatory molecules ILT3 (LILRB4) and ILT4 (LILRB4), which 

themselves play a role in the induction of Treg and IL-10-producing regulatory type 1 T 

(Tr1) cells.50–53 Expression of these molecules by DCs can also be increased upon 

interactions with CD8+ Treg cells, leading to the induction of CD4+ T cell anergy.54

C. TGF-β

There are also several secreted factors that mediate the diverse functions carried out by DCs, 

such as the cytokine TGF-β1, which is produced in an inactive form. Integrin αvβ8 activates 

TGF-β1 by binding to the propeptide of TGF-β1 (LAP-β1) and associating with membrane-

type 1- matrix metalloprotease (MT1-MMP) in order to cleave the pro-peptide into its active 

form.55 Mice lacking expression of integrin αvβ8 in DCs develop inflammatory bowel 

disease and autoimmunity, further demonstrating the in vivo importance of this 

immunomodulatory molecule.56 In the canonical signaling pathway, binding of mature TGF-

β1 to either TGF-βRIII or the heterodimeric receptor consisting of the TGF-βRI and TGF-

βRII subunits results in the dimerization of SMAD2 and SMAD3, which subsequently form 

a complex with SMAD4 that can translocate to the nucleus and induce gene transcription.57 

Non-canonical signaling is mediated by various kinase pathways, including the Jun N-

terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), and extracellular 
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signal-regulated kinase (ERK) pathways.57 TGF-β1 signaling is critical for Treg cell 

differentiation due to its ability to induce Foxp3 gene expression.58,59

In addition to influencing Treg cell differentiation, TGF-β1 is also important for the 

development of Th17 cells in vivo. Analogous to its function of activating TGF-β1 to its 

active form to allow the development of Treg cells, integrin αvβ8 is also required to activate 

TGF-β1 to promote the development of Th17 cells. Mice lacking integrin αvβ8 expression in 

CD11c+ DCs do not develop experimental autoimmune encephalomyelitis (EAE), a well-

established mouse model of multiple sclerosis, due to an impairment in the development of 

Th17 cells, which play a pathogenic role in EAE.60 Additionally, mice lacking integrin αvβ8 

expression in DCs are protected against infection with the helminth Trichuris muris due to 

increased expression of IL-13 as a result of more efficient differentiation of Th2 cells that 

are protective against helminth infection.61 Mice with a DC-specific conditional knockout of 

the β8 integrin subunit are also unable to generate CD4+CD8αα+ intra-epithelial 

lymphocytes.62 These studies provide further evidence that DC-expressed integrin αvβ8 

plays an important role in controlling the balance of T cell subsets by activating TGF-β1 in 

order to fight infections or maintain tolerance by promoting the differentiation of Th17 or 

Treg cells.63

D. Retinaldehyde Dehydrogenase

In addition to TGF-β1, another important soluble factor shown to modulate the 

differentiation of Treg cells is RA, which is generated during the metabolism of vitamin A 

by several related aldehyde dehydrogenase enzymes, including retinaldehyde dehydrogenase 

type 2 (Raldh2). In splenic DCs, TLR2 signaling can induce expression of Raldh2 and 

consequently the metabolism of RA through the enzyme’s actions. Together with IL-10, RA 

is able to promote the development of Foxp3+ Treg and Tr1 cells.13 RA can inhibit Th17 cell 

differentiation and also promote Treg cell differentiation in combination with TGF-β1.64 

The precise mechanism by which RA enhances Foxp3 expression in differentiating T cells is 

still unclear, although it has been shown to be independent of IL-2, STAT3, and STAT5.65 

RA also helps to promote Treg cell development by promoting Foxp3 expression that would 

normally be inhibited in the presence of CD28 co-stimulation from CD80/86 on DCs or an 

agonistic αCD28 antibody.66 RA further enhances the tolerogenic gut environment by 

inducing the expression of the gut-homing molecules integrin α4β7 and CCR9 on the 

developing Treg cells, an effect mediated by lamina propria DCs.67,68 This 

immunomodulatory axis demonstrates that multiple regulatory mechanisms are in place to 

allow DCs and T cells to maintain the appropriate level of tolerance, depending on the 

environmental context.

E. BTLA–HVEM

In addition to the crucial signaling axes described above, another immunomodulatory 

pathway that is critical for the partnership between DCs and T cells involves the molecules 

B and T lymphocyte associated (BTLA) and herpesvirus entry mediatory (HVEM), which 

have also been shown to have bidirectional signaling capabilities. BTLA is a receptor of the 

immunoglobulin superfamily that was first identified as an inhibitory receptor due to its 

three immunoreceptor tyrosine-based inhibition motifs (ITIMs) which, when 
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phosphorylated, can recruit Src homology domain 2 (SH2)-containing protein tyrosine 

phosphatases, SHP-1 and SHP-2, which generally exert inhibitory effects within the cell.
69–71 BTLA was originally shown to be a negative regulator of T cell activation, but its 

functions have since proven to be more varied with roles in B cells and DCs.71,72 BTLA 

interacts with the tumor necrosis factor receptor superfamily (TNFRSF) member HVEM, 

which is expressed in naive T cells and downregulated following activation.73–75 HVEM has 

also been shown to be expressed on DCs.76,77 HVEM can additionally interact with HSV-1 

glycoprotein D (gD), lymphotoxin α (LTα3), LIGHT (TNFSF14), and CD160.71,78–80 

Upon binding to BTLA, HVEM induces NF-κB RelA expression via TNF receptor 

associated factor 2 (TRAF2) and pro-survival signals within activated T cells.73,81 The 

functional results of the interactions between BTLA and HVEM can be either inhibitory or 

activating, depending on the conditions and type of cell that expresses BTLA and HVEM. 

Such interactions have been shown to influence CD8+ T cell survival, memory formation, 

Treg cell functions, and DC homeostasis77,82–88 For example, CD8+ T cells transferred into 

Btla−/− mice fail to expand and survive in response to infection with either Listeria 
monocytogenes or vaccinia virus.82,86 The memory formation of these CD8+ T cells is 

dependent on HVEM signaling within the T cells that is induced by BTLA-expressing DCs.
86 Conversely, BTLA signaling in CD8+ T cells, presumably induced by HVEM-expressing 

DCs (although this was not directly examined), reduces their ability to expand and form 

memory responses.85 The HVEM–BTLA pathway also regulates DC homeostasis through 

an unclear mechanism, but due to ability of these molecules to signal in both directions, it is 

possible that this effect is mediated by T cells expressing either molecule, which can bind to 

its partner on DCs.77

BTLA and HVEM have both been shown to play an important role in protection from 

autoimmunity. Mice deficient in either BTLA or HVEM are susceptible to EAE.69,89 

Recently, BTLA–HVEM signaling has been shown to be critically important for pTreg cell 

differentiation.72 To do so, BTLA signals through HVEM in naive T cells to increase 

phosphorylation of mitogen-activated protein kinase (MAPK) kinase (MEK) and expression 

of ETS1, which in turn increases transcription of Cd5. The specific functions of CD5 in 

these CD5hi T cells then enable induction of Foxp3 expression and conversion into pTreg 

cells by opposing mTOR activation mediated by effector differentiating cytokines.72,90 Such 

DC-induced pTreg cells have crucial functions in mitigating autoimmunity, as shown in an 

EAE model.91,92 The diverse functions mediated by these molecular partners allow for fine-

tuning of immune responses by DCs and T cells in multiple immune settings, something that 

must be appreciated in the design of immunotherapies targeting BTLA and HVEM.

F. PD-1–PD-L1/2

Other cell-membrane-bound molecules also contribute to promotion of tolerance via Treg 

cell induction, such as programmed death ligand-1 (PD-L1). PD-L1 is a member of the B7 

family that is constitutively expressed in DCs, macrophages, mast cells, B cells, T cells, and 

some tumor cells that can bind to B7–1 (CD80) and programmed death-1 (PD-1) on 

activated T cells.93–96 PD-1 is a member of the Ig superfamily and contains both an ITIM 

and ITSM (immunoreceptor tyrosine-based switch motif) that contribute to its inhibitory 

functions by recruiting SHP-1 and SHP-2 phosphatases.95,96 PD-L1 signaling through PD-1 
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reduces the phosphorylation of Akt, mTOR, S6, and ERK2 while upregulating PTEN 

expression, the combination of which allows for efficient Treg differentiation.97 PD-L1 

signaling can lead to the formation of iTreg cells in combination with TGF-β1.97,98 PD-1 

signaling has been shown to be an important mechanism for pTreg cells development in vivo 
as well.99 To enhance this process, CD11c+ DCs can upregulate PD-1 in naive T cells during 

priming by signaling with PD-L1 and the related molecule PD-L2, promoting the 

development of Foxp3+ Treg cells that are protective against autoimmunity such as in an 

EAE model.100 However, the efficient induction of such anti-autoimmune pTreg cells also 

requires signals mediated by HVEM engaged by BTLA expressed on DCs.72 As already 

discussed above, the resulting increase in the functions of CD5 in T cells inhibits mTOR, 

thereby limiting T cell sensitivity to effector cytokines and promoting pTreg cell 

differentiation.90 Overall, the interactions between DCs and T cells are a dynamic process, 

allowing them to collaborate in order to promote tolerance.

The immunomodulatory functions of DCs can also regulate the balance of effector T cell 

subsets in order to refine the immune response to better protect against infections. A key 

example of this type of functionality is PD-L2, which binds to PD-1 with higher binding 

affinity than PD-L1 and has more limited expression that can be upregulated during 

inflammation on DCs, macrophages, mast cells, peritoneal B1 and memory B cells.101–103 

In a recent study, it was observed that patients infected with malaria had a decrease in the 

number of PD-L2+ DCs and that patients with a higher ratio of PD-L2+ to PD-L1+ DCs had 

reduced parasitemia.104 Using a murine model of malaria infection, they went on to show 

that PD-L2 on DCs played a protective role by outcompeting PD-L1 for PD-1 expressed by 

T cells, thus preventing T cell exhaustion and controlling the infection. They additionally 

used in vitro DC: T cell co-cultures to show that PD-L2 can increase the expression of CD3 

and ICOS by T cells, an opposite effect of that observed to be mediated by engagement of 

PD-1 through PD-L1. This combination of effects led to more effective Th1 responses, 

which are critical for effective immunity against malaria.104 That study highlights the idea 

that immunomodulatory molecules have varied context-dependent functions, some of which 

may still be unknown.

As its name implies, PD-L1 signaling can additionally induce programmed cell death, 

specifically apoptosis, of PD-1+ T cells.105 The pro-apoptotic function of DC-expressed PD-

L1 is likely mediated by the pro-apoptotic molecule Bim, although this mechanism has not 

been directly examined for interactions between DCs and T cells.106 PD-L1–PD-1 

interactions have also been shown to shorten the time of interaction between DCs and T 

cells, which prevents disease in a model of autoimmune diabetes.107 PD-L1+ DCs can also 

downregulate TCR expression in CD8+ T cells by signaling through PD-1 to upregulate Cbl-

b E3 ubiquitin ligase in CD8+ T cells, preventing hyperactivation and autoimmunity.108 

Furthermore, conditional deletion of PD-L1 in DCs limits EAE severity by reducing 

antigen-specific CD4+ T cell activation in the early stages of EAE in addition to inhibiting 

differentiation of T follicular helper and regulatory (TFH and TFR) cells.109
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G. OX40–OX40L

An additional member of the TNFRSF with diverse immunomodulatory functions is OX40 

(CD134, TNFRSF4), which is expressed in a cell membrane form in activated CD4+ and 

CD8+ T cells.110–112 Its ligand, OX40L (CD252, TNFSF4), is expressed in DCs and also 

macrophages, B cells, and endothelial cells.113–116 OX40 signaling can influence several 

aspects of T cell biology, including proliferation, survival, and memory, by activating the 

PI3K and NF-κB pathways through TRAF molecules.116 Although OX40 has been shown to 

skew T cells toward the Th2 phenotype by signaling through NFATc1 to upregulate 

expression of IL-4, its signaling can also help Th1 responses in the presence of certain 

cytokines.116,117 OX40 signaling has also been shown to suppress Foxp3 expression in naive 

T cells, preventing their conversion to pTreg cells in the presence of TGF-β1.118,119 

However, OX40 signaling can also induce the proliferation of Treg cells, although the 

precise molecular mechanism by which this occurs still needs to be characterized.120,121

H. ICOS–ICOS-L

Similar to the OX40–OX40L axis, interactions between the cell-membrane-bound molecule 

inducible T cell costimulator (ICOS), which is a member of the CD28 family that is 

expressed in activated T cells, and its ligand, ICOS-L (B7RP-1, CD275, B7h, B7-H2), which 

is expressed in DCs, B cells, and macrophages, can result in functionally diverse responses.
122–124 Although other signaling molecules may be involved, ICOS signals in T cells are 

mostly mediated by PI3K and TBK1, which is a member of the inhibitor of NF-κB kinase 

(IKK) family.125–127 In addition to its role in driving differentiation and cytokine production 

of Th1 and Th2 cells, this interaction can also promote tolerance by increasing the 

development of antigen-specific Treg and Tr1 cells.17,128–133 Although the majority of 

research investigating the functions of ICOS signaling in T cells does not specify the cell 

type expressing ICOS-L, it has been shown that DC-expressed ICOS-L promotes the 

development of effective T cell-dependent antibody responses as well as IL-10-producing 

Tr1 cells.134–136 ICOS–ICOS-L interactions may also be bidirectional because ICOS-L 

signaling induced by ICOS-Fc or ICOSIg in monocyte-derived DCs (moDCs) and bone 

marrow-derived dendritic cells (BMDCs) alters cytokine secretion and antigen presentation 

by these cells.137,138

I. CD27–CD70

Another pathway with varied functions that are crucial for the functional partnership 

between DCs and T cells involves CD70 and CD27. CD70, which can be expressed by DCs 

in response to signals from CD4+ T cells or the environment, is a cell-membrane-bound 

TNF superfamily (TNFSR) member that engages TNFRSF member CD27, which is 

expressed on T cells.139–141 CD27 signals in T cells are mediated by TRAF2 and TRAF6, 

which in turn activate NF-κB and JNK.142–144 Downstream, this signaling can increase 

expression of IL-12Rβ2 and T-bet in naive T cells and thus promote the differentiation of 

Th1 cells.145 CD27 signaling also represses Th17 differentiation in developing T cells by 

suppressing expression of IL-17 and CCR6 at the transcriptional level via the JNK pathway 

as well as through epigenetic modifications.146 Additionally, thymic medullary DCs that 

express CD70 signal to CD27+ thymocytes and promote survival of thymus-derived Treg 
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(tTreg) cells by inhibiting the mitochondrial apoptotic pathway.147 In addition to mediating 

intracellular signaling upon engagement with CD70, CD27 expressed by B, T, or tumor cells 

has also been shown to reciprocally induce signals into CD70+ NK and B cells through the 

P13K/Akt and MEK pathways, raising the possibility that similar reverse signaling may 

occur in CD70+ DCs during their interactions with T cells.148,149 For example, CD27+ tTreg 

cells inhibit Th1 responses by downregulating expression of CD70 in DCs.150 The 

expression of CD70 by DCs can also be downregulated once it binds to CD27 through 

transcriptional regulation.151

In addition to its crucial roles in CD4+ T cell biology, the CD27–CD70 immunomodulatory 

axis is also vital for effective CD8+ T cell responses. DC-expressed CD70 has been 

implicated in the direct priming of CD8+ T cells as well as the expansion and survival of 

primed CD8+ T cells by signaling through CD27 in these T cells.152–156 Furthermore, this 

pathway plays a critical role in the process that allows DCs to mediate CD4+ T cell help of 

CD8+ T cell responses. Expression of CD70 by DCs has been shown to be necessary for 

CD4+ T cell-helped CD8+ responses by instilling a specific gene transcription profile in 

developing CD27+ CD8+ T cells.157

J. CD40–CD40L

In addition to increasing expression of CD70 by DCs, CD4+ T cells help CD8+ T cell 

responses via CD40–CD40L interactions to modulate other aspects of DC biology. CD40 is 

TNFRSF member that can be expressed on DCs, where it is engaged by TNFSF member 

CD40L (CD154), which is pre-dominantly expressed by activated CD4+ T cells.158–161 Like 

the other TNFSF members, CD40 signaling is mediated by the TRAF molecules, especially 

TRAF6, resulting in MAPK and JNK activation and subsequent changes in gene expression 

of various immunomodulatory molecules, such as CD80, CD86, and IL-12.161 CD40–

CD40L interactions are also important in the thymus, where CD40L+ CD4 single-positive 

thymocytes interact with CD40+ thymic DCs to promote upregulation of surface molecules 

CD40, PD-L1, CD86, CD200, and MHCII, as well as several other genes associated with 

DC functions to promote the formation of tTreg cells by CD40+ DCs.162 CD40 and CD70-

mediated signaling cooperate to promote clonal expansion of CD8+ T cells in response to 

CD40 engagement, an effect that is diminished when interaction between CD70 and CD27 

are blocked.163 T cells can further refine the Th1 response by increasing expression of CD70 

in DCs expression by engaging DC-expressed CD40 during a concomitant treatment with 

poly I:C.164,165

K. IL-12 Family Cytokines

CD40 signaling can additionally induce the production of different cytokines by DCs. An 

important example of such cytokines is IL-12, the namesake member of the IL-12 family of 

cytokines that is composed of two subunits, IL-12p35and IL-12p40, that together form 

IL-12p70. Upon binding to its receptor, which consists of the IL-12Rβ1 and IL-12Rβ2 

subunits, TYK2 (tyrosine kinase 2) and JAK2 (Janus kinase 2) are recruited, allowing for the 

activation of STAT4 and subsequent induction of interferongamma (IFN-γ) expression in 

Th1-differentiating T cells.166 Expression of heterodimeric IL-12p70 is induced in response 
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to cross-linking of DC-expressed CD40 in vitro, but a microbial stimulus must be 

administered to achieve the same effect in vivo.167

Although not necessarily induced by CD40 signaling, DCs can also express other members 

of the IL-12 family of cytokines that carry out important immunomodulatory functions. One 

of these is IL-23, which is composed of the IL-12p40 and IL-23p19 subunits. Its receptor 

consists of the IL-12Rβ1 and IL-23R subunits and, after recruitment of TYK2 and JAK2, its 

signals are mediated by STAT2 and STAT4.166 IL-23 plays an important role in Th17 cell 

biology by helping to maintain IL-17 expression.168–170 Another IL-12 family member is 

IL-27, which is composed of the IL-27p28 and EBV-induced gene 3 (Ebi3) subunits. Its 

receptor (IL-27R) is also composed of two subunits: gp130 and WSX-1/TCCR (IL-27Rα), 

which recruit JAK1, JAK2, and TYK2 in order to activate STAT1 and STAT3.166 IL-27 is 

produced by a variety of cells, including DCs in response to poly I:C.171 IL-27 signaling can 

promote Th1 cell differentiation by inducing expression of T-bet and IL-12Rβ2 in a STAT1-

dependent manner.172,173 Furthermore, Foxp3+ Treg cells can induce the production of 

IL-27 and TGF-β1 by DCs, which synergistically promote the differentiation of Tr1 cells.174 

Specifically, IL-27 signals in T cells to induce expression of c-Maf, IL-21, and ICOS in 

order to promote differentiation of Tr1 cells.175–177 Moreover, IL-27 signaling in DCs 

induces the expression of the ectonucleotidase CD39, an enzyme that degrades extracellular 

ATP to ADP and thus promotes a tolerogenic environment for developing T cells.178 Tumor-

infiltrating DCs also express CD39, which mediates their ability to inhibit T cell activation 

when cultured in vitro.179 Another soluble factor that increases the tolerogenic capacity of 

DCs is vasoactive intestinal peptide (VIP), a neuropeptide secreted by T cells that can 

increase the ability of DCs to induce Treg cells.180 These pathways highlight how DCs and 

T cells can work together using multiple interconnected immunomodulatory pathways to 

maintain immune homeostasis in a tightly regulated manner.

III. FUNCTIONAL SPECIALIZATION OF DC SUBSETS

Over the past few years, our knowledge about the development of various DC subsets has 

greatly expanded.181–183 Briefly, DCs are divided into two main groups: conventional DCs 

(cDCs) and plasmacytoid DCs (pDCs). The cDC population can be further delineated into 

the cDC1 and cDC2 subsets on the basis of the transcription factors required for their 

development. The cDC1 subset, which requires the transcription factors Irf8, Id2, and Batf3 

for development, can be distinguished by expression of XCR1 as well as CD8α, CD103, 

DEC205, CD24, and DNGR-1/CLEC9A.181,182,184,185 The cDC2 lineage, which requires 

the transcription factor Irf4 for development, can be distinguished by expression of CD172a 

(SIRPα) in addition to CD11b, CD4, and DCIR2.181,182,184,185 pDCs depend on the 

transcription factors Irf8 and E2–2 for their development and can be distinguished by their 

expression of B220, Siglec-H, and Bst2.181,182,184,185 In addition to the rapid progress made 

in DC subset classification in recent years, our understanding of the functional importance of 

such delineations has also improved.

The immunomodulatory molecules discussed in section II highlight how DCs and T cells 

work together in a dynamic partnership, allowing them to control immune responses and 

maintain homeostasis. However, rather than affecting the functions of the entire population 
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of DCs, expression of these molecules can be specific to particular DC subsets and therefore 

can also help to explain the functional specialization attributed to them. Specifically, cDC1s 

have multiple mechanisms mediating their ability to promote Th1 and Treg cell 

differentiation (Fig. 2), whereas cDC2s can promote Th2 and Th17 differentiation (Fig. 3).
1,182 Additionally, both cDC1s and cDC2s can exert additional tolerogenic functions through 

multiple mechanisms (Figs. 2 and 3).1 pDCs are important for antiviral responses in addition 

to promoting tolerance through various mechanisms.186

A. cDC1s

Various immunomodulatory molecules mediate the ability of cDC1s to promote Th1 

responses. cDC1s from the spleen and lymph nodes are the predominant producers of the 

crucial Th1-polarizing cytokine IL-12 among DC subsets in response to microbial stimuli or 

to T cell-derived signals mediated through CD40.167,187–190 Despite this, IL-12 is not the 

only molecule mediating Th1 differentiation by cDC1s, because in vivo targeting of antigen 

to DEC205+ cDC1s, along with αCD40 and poly I:C, results in the induction of IFN-γ+ T 

cells even in IL-12-deficient mice.164 This is likely due to the signaling of CD70 and CD27 

because the ability of cDC1s to induce Th1 differentiation is lost when CD70 is blocked, 

demonstrating the importance of this molecule in this process.164,165 Another level of 

regulation that further refines the Th1 response is mediated by the upregulation of CD70 

expression in cDC1s in response to engagement of CD40 and a concomitant treatment with 

poly I:C.164,165

In addition to Th1 responses, DC-mediated CD4+ T cell help of CD8+ T cell responses has 

recently been shown to specifically depend on XCR1+ cDC1s because mice deficient in this 

subset have diminished proliferation, effector differentiation, and memory function in CD8+ 

T cells.191 As discussed above, CD70 is important for this process, even though cDC1s and 

cDC2s express similar levels of this molecule in the steady state.192 With that in mind, 

another aspect of CD8+ T cell responses is controlled by CD70+ cDC2s, which promote the 

expansion of CD8+ T cells in response to influenza infection by signaling through CD27 on 

the CD8+ T cells.193 Other aspects of CD8+ T cell function are mediated by cDC1s 

independently of CD4+ T cell help. For example, BTLA+ cDC1s promote survival and 

memory formation of CD8+ effector T cells in response to vaccinia virus and Listeria 
monocytogenes infections by signaling through HVEM in CD8+ T cells.82,86

Although it was originally thought that all DCs were able to induce pTreg cell differentiation 

in the steady state, increasing evidence has made it clear that cDC1s may be responsible for 

Treg cell differentiation in the periphery.1,98,194–196 When antigen is targeted to all CD11c+ 

DCs in vivo in the steady state, pTreg cells are formed at a much lower frequency than when 

antigen is selectively targeted to DEC205+ cDC1s, even though they comprise only a minor 

portion of all CD11c+ DCs.72 This finding was expanded upon to show that this function of 

DEC205+ cDC1s is due to the specific expression of BTLA, which signals through HVEM 

in naive T cells to induce pTreg cell conversion.72 CD8α+DEC205+ cDC1s also express 

more TGF-β1 and latent-TGF-β binding protein 2 (Ltbp2) at the transcriptional level.194 In 

addition to this, CD103+ and CD8α+ cDC1s are able to activate TGF-β1 to its active form 

through the activity of the integrin αvβ8, helping to promote the differentiation of Treg cells, 
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and the β8 integrin subunit has shown to be specifically expressed by Irf8-dependent cDC1s 

in mice.62,197–199 CD103+ cDC1s from the mesenteric lymph nodes or small intestine 

lamina propria are able to more efficiently promote de novo differentiation of Treg cells than 

CD103neg cDC2s through their specific expression of Raldh2, although this subset-specific 

difference is lost when exogenous TGF-β1 is added to the cultures.62,67,200,201 Further, 

thymic medullary CD8α+ cDC1s promote survival of tTreg cells by inhibiting the 

mitochondrial apoptotic pathway through CD70–CD27 interactions.147

cDC1s are also the predominant source of the tolerogenic enzyme IDO, helping this subset 

to further promote tolerogenic responses through the multiple effects of tryptophan 

metabolism discussed in section II.B.39–41,202 Additionally, cDC1s are also the main source 

of the cytokine IL-27 in response to poly I:C, which helps them to promote Tr1 cell 

differentiation.171 In another tolerogenic function, Batf3-dependent cDC1s in the renal 

lymph node signal through PD-L1 to induce apoptosis of PD-1+ CD8+ T cells, promoting 

cross-tolerance to circulating antigens filtered by the kidneys.105 Expression of PD-L1 on 

CD103+ cDC1s is also important for successful checkpoint blockade therapy with αPD-L1 

monoclonal antibodies.203 By expanding this population of DCs in the tumor with FMS-like 

tyrosine kinase 3 ligand (Flt3L) and poly I:C, the investigators showed that tumor-infiltrating 

CD8+ T cells were better able to control tumor growth upon αPD-L1 therapy, showing the 

importance of this pathway for anti-tumor responses.203

B. cDC2s

Irf4-dependent cDC2s have been shown to play a key role in the development of Th17 

responses through their production of several different cytokines. Intestinal CD103+CD11b+ 

and lung CD11b+ cDC2s are crucial sources of IL-6 and IL-23p19, which promote Th17 

differentiation in this environment.204–206 Additionally, cDC2s can trans-present IL-6 in 

complex with IL-6Rα, allowing them to signal to T cell-expressed gp130 which 

subsequently induces STAT3 phosphorylation and pathogenic Th17 cell differentiation, a 

process that is required for the development of EAE.207 This specialization is shared with 

other cDC2s that may frequently come in contact with the commensal and pathogenic 

microorganisms, such as dermal CD301b+ cDC2s that also preferentially produce 

IL-23.208,209 Consistently, in response to αCD40 or LPS stimulation cDC2s from the 

mesenteric lymph nodes also express more IL-23p19 and IL-6 at the transcriptional level.200 

This is functionally important during infection because mice lacking cDC2s are unable to 

mount a successful Th17 response to infection with the fungus Aspergillus fumigatus.206

cDC2s have clearly been shown to play an important role in Th2 cell differentiation, 

although specific mechanisms are not always entirely clear. Mice lacking Irf4-dependent 

cDC2s fail to develop protective Th2 cell responses against infection with Nippostrongylus 
brasiliensis.210,211 Mice lacking expression of the transcription factor Klf4 in cDC2s fail to 

mount a protective Th2 cell response to the helminth Schistosoma mansoni while remaining 

unsusceptible to house dust mite (HDM)-induced allergic inflammation.212 HDM-induced 

allergic inflammation is mediated by Th2 cell differentiation by Irf4-dependent cDC2s that 

secrete IL-10 and IL-33.213,214 In an additional mechanism controlling Th2 cell 

differentiation, OX40L expression can also be induced in CD11b+ intestinal cDC2s in 
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response to Schistosoma mansoni soluble egg antigens, helping to promote a Th2 response 

against the antigens.215 OX40L expression can be upregulated on lamina propria-derived 

CD103+ cDC1s in the mesenteric lymph nodes following administration of cholera toxin in 

a murine model of allergic sensitization to dietary antigens. This upregulation leads to more 

efficient Th2 differentiation by increased expression of Th2-differentiating cytokines, 

showing a compensatory redundancy in subset-specific role depending on different 

environmental signals.216 Further, Irf4-dependent cDC2s from skin-draining lymph nodes 

that are marked by expression of PD-L2 drive Th2 responses from effector and memory 

CD4+ T cells in vivo, although this effect does not appear to be dependent on PD-L2 

functionality itself.211

Although cDC1s play a dominant role in the de novo induction of pTreg cells, some pTreg 

cells can be induced by cDC2s that also have a function in the expansion of existing tTreg 

cells.194,196,217,218 This expansion is due to cDC2-mediated proliferation of existing Treg 

cells through a contact-dependent mechanism that also requires IL-2 provided by CD4+ 

conventional T cells.194,219 The immunomodulatory molecules controlling this contact-

dependent proliferation have not yet been clearly identified, although in vitro experiments 

with BMDCs suggest that OX40L may be required.120 In addition to expanding existing 

Treg cells, certain subsets of cDC2s in the skin and oral cavity can directly promote pTreg 

cell differentiation via RA, which is produced by these DCs through the enzymatic activity 

of Raldh2.220,221 Specificity of aldehyde dehydrogenase activity is not seen in lymph-borne 

DCs derived from the intestine because all subsets have the ability to generate RA, which 

subsequently induces gut-homing CCR9 expression in T cells.222 Interestingly, a role for 

integrin αvβ8 in the induction of Treg cells in humans has been shown, although its 

expression was specifically induced by pro-inflammatory signals in the human intestinal 

CD1c+ cDC2 counterpart, highlighting the more complex possible roles of site-specific DC 

activation in tolerance.223

In addition to their effects on Treg cells, cDC2s also play a tolerogenic role in non-obese 

diabetic (NOD) mice by increasing Zbtb32 expression in T cells upon specific delivery of 

antigen.218 Zbtb32 is a transcription factor that decreases proliferation and IFN-γ 
production when overexpressed in T cells from these mice.218 Although that study shows 

that cDC2s play an important role in the establishment of tolerance, the conflicting evidence 

on the specific roles of cDC2s in regard to pTreg cell induction warrants further 

investigation of these processes and the controlling mechanisms.

C. pDCs

Although they do not present antigen as efficiently as cDCs, pDCs are able to produce large 

amounts of type I IFNs upon recognition of viral particles by TLR7 or TLR9.224,225 This 

production of type I IFN supports the development of effective anti-viral CD8+ T cell 

responses by helping XCR1+ cDC1s to more efficiently cross-present antigens to CD8+ T 

cells.226 pDCs also have important roles in the regulation of tolerogenic T cell responses via 

multiple immunomodulatory mechanisms.186 pDCs promote Treg cell differentiation 

through their expression of multiple immunomodulatory molecules in the steady state or in 

response to various stimuli, some of which include Raldh, IDO, PD-L1, ICOS-L, and TGF-
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β1.17,135,202,227–233 IDO expression can be induced in pDCs following engagement of pDC-

expressed CD200R by CD200, a widely expressed cell surface glycoprotein.230 

Additionally, expression of PD-L1 in pDCs is induced by IL-27.234 In addition to the 

tolerogenic functions described in section II.B that are mediated by its enzymatic activity, 

IDO has also been shown to function as a signaling molecule in pDCs.229 Upon TGF-β1 

signaling, ITIMs on IDO are phosphorylated by Fyn kinase, allowing the molecule to 

activate the non-canonical NF-κB pathway and recruit SHP proteins, leading to increased 

expression of IDO, TGF-β1, and type I IFNs.229 pDCs further contribute to tolerance by 

promoting the development of IL-10-producing CD4+ and CD8+ T cells that can suppress 

primary T cell responses.135,235

A recently described pathway utilized by pDCs for the maintenance of tolerance utilizes the 

neuronal guidance molecules Neuropilin-1 (Nrp1) and Semaphorin-4a (Sema4a).236 

Engagement of Treg cell-expressed Nrp1 by Sema4a expressed on intratumoral pDCs results 

in a PTEN-mediated reduction of Akt phosphorylation and increased nuclear localization of 

the transcription factor Foxo3a, thus promoting functional stability of Treg cells.236 

Induction of Nrp1 signaling in Treg cells by Sema4aIg in mice with B16 melanoma tumors 

promotes expression of IFN-γ and IFN-γR in Treg cells, thus reducing their suppressive 

function and therefore tumor size.237 Interestingly, Sema4a is also expressed by cDCs and 

can interact with CD72 and Tim-2 to promote T cell activation.238,239 This finding further 

promotes the idea that it is necessary to study the effects of these immunomodulatory 

pathways mediated by different DC subsets because the functional outcome may differ 

depending on cell type or environment.

IV. CONCLUSIONS

Our knowledge of immunomodulatory mechanisms has greatly increased in recent years, 

resulting in a better appreciation of the dynamic and tightly regulated functional partnership 

between DCs and T cells that govern effective immune responses to pathogens or tumors 

while also maintaining tolerance. Although the majority of research has focused on how 

DCs modulate T cell responses, it is clear that T cells can affect DC functionality in turn. 

Several of the molecules discussed here also have bidirectional signaling capacities or can be 

expressed on either cell type. Further investigations will be required to determine how these 

interactions between immunomodulatory molecules on DCs and T cells affect both types of 

cell in order to fully understand how these cells work together to orchestrate immune 

homeostasis. This will also help in the development of more precise therapies that target the 

immunomodulatory functions of DCs to treat cancer, autoimmunity, or infection.
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ABBREVIATIONS:

APC antigen-presenting cell
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BMDC bone marrow-derived dendritic cell

BTLA B and T lymphocyte associated

CTLA-4 cytotoxic T-lymphocyte antigen 4

cDC conventional dendritic cell

DC dendritic cell

EAE experimental autoimmune encephalomyelitis

HVEM herpesvirus entry mediatory

ICOS inducible T cell costimulatory

IDO indoleamine 2,3 dioxygenase

ITIM immunoreceptor tyrosine-based inhibition motif

iTreg in vitro-induced (or inducible) regulatory T cell

MHC major histocompatibility complex

moDC monocyte-derived dendritic cell

mTOR mechanistic target of rapamycin

PD-1 programmed death-1

PD-L1/2 programmed death ligand-1/2

pDC plasmacytoid dendritic cell

pTreg peripheral regulatory T cell

RA retinoic acid

Raldh retinaldehyde dehydrogenase

SHP-1/2 Src homology domain 2-containing protein tyrosine phosphatase ½

TCR T cell receptor

TGF-β transforming growth factor beta

TNFRSF tumor necrosis factor receptor super-family

TNFSF tumor necrosis factor superfamily

Tr1 regulatory type 1 T cell

TRAF TNF receptor-associated factor

Treg regulatory T cell

tTreg thymus-derived regulatory T cell
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FIG. 1: 
DCs and T cells form a functional partnership. DCs and T cells express a variety of surface 

molecules that work together as ligands and receptors in order to control various aspects of 

the immune response. Some of these pathways, such as BTLA–HVEM and CD27–CD70, 

have been shown to induce bidirectional signaling, although the impact of such bidirectional 

interactions between DCs and T cells remains mostly unclear at this point. In addition, DCs 

secrete or activate a variety of cytokines that influence T cell differentiation and 

proliferation. DCs upregulate expression of the CD70 and IL-12 in response to CD40 

signaling induced by T cell-expressed CD40L. DCs can also produce the tolerogenic 

tryptophan-catabolizing enzyme IDO in response to signals mediated by CTLA-4 in T cells.
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FIG. 2: 
Immunomodulatory mechanisms of cDC1s. cDC1s are important for the induction of Th1 

and tolerogenic T cell responses through several mechanisms. (A) cDC1s mediate T cell 

tolerance through several mechanisms, including pTreg induction by BTLA–HVEM, PD-

L1–PD-1, RA, and TGF-β signaling. Expression of the enzyme IDO in response to 

CTLA-4–CD80/86 signaling also promotes tolerance through tryptophan deprivation and the 

production of metabolites, including kynurenine. (B) cDC1-expressed IL-12 and CD70, 

which are upregulated in response to CD40 signaling, work together to promote Th1 

differentiation from naive CD4+ T cells. (C) cDC1s can promote CD4+ T cell-dependent 

expansion and effectiveness of CD8+ T cell responses through CD70–CD27 interactions. 

BTLA–HVEM signaling additionally plays a role in memory formation of CD8+ T cells in 

response to both viral and bacterial infections. cDC1s can also induce apoptosis of CD8+ T 

cells through PD-L1–PD-1 signaling.
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FIG. 3: 
Immunomodulatory mechanisms of cDC2s. cDC2s are important for the induction of Th2 

and Th17 responses as well as some aspects of tolerogenic T cell responses through several 

mechanisms. (A) cDC2s can promote the expansion of Treg cells, potentially through OX40 

signaling. They also promote pTreg cell formation in some environments through their 

production of RA by Raldh2. (B) cDC2s are the main source of the Th17-polarizing 

cytokines IL-23 and IL-6, the expression of which can be upregulated by CD40 signaling. 

(C) cDC2 promote Th2 responses through OX40-L–OX40 signaling as well as through the 

production of Th2-polarizing cytokines. PD-L2 may also play a role in Th2 differentiation.
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