
The inhibitory effect that one viral infection often exerts 
on the infectivity of a different virus was first observed 
in 1804 by Edward Jenner, who reported that herpetic 
infections could prevent the development of vaccinia 
lesions1. In retrospect, this observation might be the 
first documented description of what was later coined 
as the viral interference phenomenon. This phenom‑
enon was first described in detail for plant viruses in 
the early 1930s2. After that, similar observations were 
made with bacteriophages3 and with animal viruses4. 
In 1954, Nagano and Kojima reported the inhibition of 
viral growth in areas of rabbit skin that had been previ‑
ously inoculated with ultraviolet‑inactivated vaccinia 
virus, and in 1957, during a study of the interference 
produced by heat-inactivated influenza virus, Isaacs 
and Lindenmann identified that a secreted factor was 
responsible for this phenomenon and they termed it 
interferon (IFN)5.

Type I IFNs belong to a family of cytokines that 
attracted much attention owing to their protective 
role against viral infection. IFNs are widely expressed 
cytokines that possess strong antiviral and immuno
modulatory properties. The IFN family can be classified 
into three main types of cytokines — type I, type II and 
type III IFNs. In humans and mice, the type I IFN family 
is composed of 16 members, namely 12 IFNα subtypes, 
IFNβ, IFNε, IFNκ and IFNω6. By contrast, the type II 
IFN family includes only one cytokine: IFNγ, which 
also exhibits antiviral activities. The third type of IFNs 
is the IFNλ family, which includes IFNλ1 (also known as 
IL‑29), IFNλ2 (also known as IL‑28A) and IFNλ3 (also 
known as IL‑28B). On the basis of protein sequence and 

structure, type III IFNs are markedly different from 
type I and type II IFNs and are more similar to mem‑
bers of the interleukin‑10 (IL‑10) family; however, they 
provoke antiviral responses and induce the activation of 
IFN-stimulated genes (ISGs)7.

Recent evidence has uncovered new roles for this 
family of cytokines beyond their well-known function in 
viral interference. This article highlights the function of 
type I IFNs in modulating immune responses. We map 
the molecular signalling pathways activated by type I 
IFNs, and describe the function of these cytokines in the 
response to bacterial ligands and their role in inflamma-
some activation. In addition, we discuss the role of type I 
IFNs in intestinal homeostasis and in inflammatory and 
autoimmune diseases such as coeliac disease, psoriasis, 
multiple sclerosis and cancer.

Type I IFN production and signalling
Induction of type I IFNs by bacterial ligands. Type I 
IFNs can be produced by almost every cell type, includ‑
ing leukocytes, fibroblasts and endothelial cells. The 
signalling pathways that lead to the induction of type I 
IFNs differ depending on the stimulus and the respond‑
ing cell types, but they ultimately lead to the activation 
of some common signalling molecules, including TNF 
receptor-associated factor 3 (TRAF3)8 and the transcrip‑
tion factors IFN regulatory factor 3 (IRF3) and IRF7. 
Dimerized IRF3 and IRF7 translocate to the nucleus 
and, concomitantly with the transcription factor nuclear 
factor-κB (NF-κB), bind to both the IFNA and IFNB pro‑
moters9 to initiate the transcription of these IFN genes. 
Although the most important function of type I IFNs is 
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Viral interference
The antagonistic or inhibitory 
effect induced by one virus or 
its components on the 
propagation of another virus.
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Abstract | Interferon‑α (IFNα) and IFNβ, collectively known as type I IFNs, are the major 
effector cytokines of the host immune response against viral infections. However, the 
production of type I IFNs is also induced in response to bacterial ligands of innate immune 
receptors and/or bacterial infections, indicating a broader physiological role for these 
cytokines in host defence and homeostasis than was originally assumed. The main focus of 
this Review is the underappreciated immunomodulatory functions of type I IFNs in health 
and disease. We discuss their function in the regulation of innate and adaptive immune 
responses, the response to bacterial ligands, inflammasome activation, intestinal 
homeostasis and inflammatory and autoimmune diseases.
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IFN-stimulated genes
(ISGs). These genes contain 
promoters that are responsive 
to interferon (IFN) signalling, 
and they are responsible  
for the antiviral and 
immunomodulatory properties 
of IFNs. Over 400 such genes 
have been identified by 
microarray analyses. Some, 
such as RNA-activated protein 
kinase, ribonuclease L, MX1 
(myxovirus resistance 1)  
and ISG15 (IFN-stimulated 
gene of 15 kDa), have 
well-documented antiviral 
activities, but the precise 
biological function of most  
of these genes is unknown.

Inflammasome
A cytosolic multiprotein 
complex that activates 
caspase 1 and regulates the 
release of IL‑1β and IL‑18 in 
response to exogenous 
pathogens and endogenous 
danger signals. This complex 
minimally consists of a 
danger-sensing initiator 
component and the effector 
component, which is mature 
caspase 1.

Coeliac disease
An immune-mediated 
enteropathy triggered by 
intolerance to dietary ingestion 
of glutamine- and proline-rich 
proteins, collectively known  
as gluten, which is present  
in wheat, barley, rye and  
other grains. This disease 
results in gastrointestinal 
symptoms such as diarrhoea, 
nutrient malabsorption and 
weight loss.

Multiple sclerosis
A chronic inflammatory disease 
of the central nervous system 
that causes the progressive 
destruction of the myelin 
sheaths around axons in any 
area of the brain, optic nerve 
and spinal cord. This results in 
slower nerve impulses.

typically considered to be in the induction of an antiviral 
immune response, these cytokines are also induced in 
response to many bacterial pathogens or their products, 
mainly through Toll-like receptor (TLR)-dependent 
pathways10,11.

TLRs are the key sensors of microbial invasion in 
mammals12, and they activate an innate defence pro‑
gramme that is crucial for host survival. Each TLR 
senses a particular subset of microbial signature mol‑
ecules. Most TLRs that recognize bacterial products 
are linked to the induction of type I IFNs10; these TLRs 
include TLR3, TLR4, TLR7 and TLR9. Signalling 
through TLR3 and TLR4 induces type I IFN production 
in a broad range of cell types in a manner dependent 
on TIR-domain-containing adaptor protein induc‑
ing IFNβ (TRIF). By contrast, TLR7, TLR8 and TLR9 
induce type I IFN production in dendritic cells (DCs) 
— mainly plasmacytoid DCs (pDCs) — via a pathway 
dependent on myeloid differentiation primary-response 
protein 88 (MYD88) (TABLE 1).

However, it became evident that TLR-deficient ani‑
mals can still produce type I IFNs in response to RNA 
and DNA ligands13,14. These TLR-independent pathways 
include the cytoplasmic sensors retinoic-acid-inducible 
gene I (RIG‑I) and melanoma differentiation-associated 
gene 5 (MDA5). In addition, stimulator of IFN genes 
(STING) and DNA-dependent activator of IRFs (DAI; 
also known as DLM1 and ZBP1) have been reported 
to induce type I IFNs in response to cytosolic DNA15,16. 
STING is an endoplasmic reticulum-associated protein 
that has been shown to respond to DNA from various 
pathogens — including Listeria monocytogenes and the 
DNA virus herpes simplex virus 1 (HSV‑1) — in macro
phages, DCs and epithelial cells15. DAI, which was the 
first cytosolic DNA receptor to be described, recog‑
nizes viral, bacterial and mammalian double-stranded 
DNA and induces type I IFN production through the 
activation of TANK-binding kinase 1 (TBK1), which 

subsequently phosphorylates IRF3 (REF. 16). In addition, 
DAI stimulates the production of pro-inflammatory  
cytokines — such as IL‑6 and tumour necrosis factor 
(TNF) — through the activation of the kinase receptor-
interacting protein 1 (RIP1), which leads to the phospho‑
rylation of NF‑κB inhibitor‑α (IκBα) and the subsequent 
activation of NF‑κB17. However, DAI-deficient cells 
can still induce type I IFN production in response to 
foreign DNA18, suggesting the existence of additional 
mechanisms that contribute to type I IFN production 
in response to cytosolic DNA. Indeed, a recent study 
showed that DNA-dependent RNA polymerase III can 
use cytosolic DNA as a template to synthesize RNA 
containing a 5ʹ-triphosphate group, and that this RNA 
activates the RIG‑I–IPS1 (IFNB-promoter stimulator 1; 
also known as MAVS) signalling pathway19.

Signalling pathways activated by type I IFNs. Type I 
IFNs signal through a common heterodimeric recep‑
tor, known as the IFNα/β receptor (IFNAR), which is 
expressed by nearly all cell types. This receptor consists 
of two subunits — IFNAR1 and IFNAR2 (REF. 20) — that 
are constitutively associated with Janus kinase 1 (JAK1) 
and non-receptor tyrosine kinase 2 (TYK2)21. Activation 
of JAK1 and TYK2 results in the tyrosine phosphoryla‑
tion and activation of several signal transducer and acti‑
vator of transcription (STAT) family members; in most 
cells these include STAT1, STAT2, STAT3 and STAT5, 
but in lymphocytes type I IFNs also activate STAT4 and 
STAT6 (REFS 22,23).

Activation of STAT1 and STAT2 leads to the recruit‑
ment of IRF9 and the formation of a STAT1–STAT2–IRF9 
complex, which is known as the IFN-stimulated gene fac‑
tor 3 (ISGF3) complex. This complex then migrates to the 
nucleus and binds to IFN-stimulated response elements 
(ISREs) in the promoters of ISGs to initiate gene tran‑
scription. Other STAT complexes that do not recruit IRF9, 
including STAT1 homodimers, bind to IFNγ-activated 

Table 1 | Inducers of type I IFNs and responding cells

Inducer Source Receptor Localization Responding cell

ssRNA, dsRNA Viruses RIG‑I and MDA5 Cytoplasm Multiple cell types

Cytosolic DNA Viruses or bacteria STING, DAI and RNA 
polymerase III

Cytoplasm Multiple cell types

dsRNA Viruses TLR3–TRIF Endosomes Macrophages, cDCs and 
epithelial cells

LPS Gram-negative bacteria TLR4–TRIF Plasma membrane Macrophages and cDCs

Viral glycolipids Viruses TLR4–TRIF Plasma membrane Macrophages and cDCs

ssRNA Viruses or damaged 
host cells

TLR7–MYD88 Endosomes pDCs, cDCs and 
macrophages

Imiquimod Synthetic TLR7–MYD88 Endosomes pDCs, cDCs and 
macrophages

ssRNA Viruses TLR8–MYD88 Endosomes cDCs

CpG DNA Bacteria or viruses TLR9–MYD88 Endosomes pDCs, cDCs and 
macrophages

cDC, conventional DC; DAI, DNA-dependent activator of IRFs; DC, dendritic cell; dsRNA, double-stranded RNA; IFN, interferon; 
LPS, lipopolysaccharide; MDA5, melanoma differentiation-associated gene 5; MYD88, myeloid differentiation primary-response 
protein 88; pDC, plasmacytoid DC; RIG‑I, retinoic-acid-inducible gene I; ssRNA, single-stranded RNA; STING, stimulator of IFN 
genes; TLR, Toll-like receptor; TRIF, TIR-domain-containing adaptor protein inducing IFNβ.
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Figure 1 | Signalling pathways activated by type I and type II IFNs. Different signal transducer and activator of 
transcription (STAT) family members can be activated by interferons (IFNs). STAT1 homodimers can be formed in response 
to both type I IFNs and type II IFN (IFNγ). These homodimers bind to IFNγ-activated site (GAS) enhancer elements in the 
promoters of IFN-stimulated genes, and this results in the induction of genes encoding pro-inflammatory cytokines and 
apoptotic factors. Type I and type II IFNs can also activate STAT3 homodimers, and this can result in the production of both 
pro-inflammatory cytokines and anti-inflammatory cytokines (such as interleukin‑10 (IL‑10)), although the underlying 
mechanisms are not known. STAT1–STAT2 heterodimers, which are activated by type I IFNs, bind to IFN regulatory factor 9 
(IRF9) in the cytosol to form the IFN-stimulated gene factor 3 (ISGF3) complex, which in turn migrates to the nucleus to 
bind to IFN-stimulated response elements (ISREs) and activate antiviral and antibacterial genes. In addition, type I IFNs 
stimulate IL‑10 production either through the phosphoinositide 3‑kinase (PI3K)–AKT pathway or through STAT3 homodimers. 
Finally, in a STAT-independent manner, type I IFNs activate both p38, which is an upstream activator of several genes 
regulated by ISREs and GAS elements, and mammalian target of rapamycin (mTOR), which regulates mRNA translation. 
CREB, cAMP-responsive-element-binding protein; IFNAR, IFNα/β receptor; IFNGR, IFNγ receptor; JAK, Janus kinase;  
SBE, STAT3‑binding element; TBX21, T box 21; TYK2, non-receptor tyrosine kinase 2.

site (GAS) enhancer elements in the promoters of ISGs24,25. 
Both type I and type II IFNs can induce the activation 
of GAS elements through, for example, the formation of 
STAT1 homodimers. However, in contrast to type I IFNs, 
IFNγ cannot induce the formation of ISGF3 complexes 
and therefore is not able to promote the engagement of 
ISRE sites to activate those genes that have only ISREs in 
their promoters21 (FIG. 1).

In addition, both type I and type II IFNs can induce the 
recruitment and phosphorylation of STAT3 (REFS 21,26). 
Following its phosphorylation, STAT3 forms homo
dimers that translocate to the nucleus, where they bind 
to STAT3‑binding elements (SBEs). STAT1 and STAT3 
have a high level of sequence similarity and can hetero
dimerize and activate similar genes in vitro27. However, 
in vivo, the sets of genes that are activated by these two 

factors are very different28 and depend on the cell type 
and the activating cytokine, and in many physiological 
contexts STAT1 and STAT3 exert opposing effects. For 
example, in most cell types, STAT1 activates several pro-
apoptotic and anti-proliferative genes29,30, whereas STAT3 
inhibits apoptosis and promotes proliferation through the 
induction of anti-apoptotic genes of the B cell lymphoma 
(BCL) family and of oncogenes such as MYC31,32.

STAT1 and STAT3 also have opposite roles in inflam‑
mation. IFNγ-dependent STAT1 activation usually 
mediates a pro-inflammatory response that favours the 
recruitment of immune cells to the site of inflammation33, 
and this increases the production of pro-inflammatory 
mediators34 and enhances antigen processing and pres‑
entation by MHC class I and II molecules35,36. By con‑
trast, STAT3 is a key mediator of IL‑10 signalling, which 
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Peyer’s patches
Collections of lymphoid tissue 
that are located in the mucosa 
of the small intestine, with an 
outer epithelial layer that 
consists of specialized 
epithelial cells called M cells.

negatively regulates pro-inflammatory responses by 
activated macrophages and DCs and can directly inhibit 
STAT1 activation37. Interestingly, other receptors, such as 
the IL‑6 receptor, can activate STAT3, but this does not 
result in an anti-inflammatory response, possibly owing 
to the participation of additional regulatory factors, 
such as members of the suppressor of cytokine signal‑
ling (SOCS) family38,39. This dual ability of STAT3 to dif‑
ferentially regulate inflammation in different scenarios 
might explain some of the controversial roles that type I 
IFNs have in different human conditions (discussed 
below). Several studies also suggest that cross-regulation 
between STAT1 and STAT3 and their relative abundance 
in a cell are the defining factors that determine the bio‑
logical effects of their upstream activators, such as IL‑6 
and IFNs40,41.

Type I IFNs were also shown to promote the produc‑
tion of IL‑10 by lipopolysaccharide (LPS)-stimulated 
macrophages42 and by LPS-stimulated human periph‑
eral blood mononuclear cells (PBMCs)43. This effect 
was initially attributed to the activation of STAT3 and 
IRF1 in IFNα-stimulated human monocytes44. However, 
another study indicated that IFNβ stimulates IL‑10 pro‑
duction independently of STAT3, by activating a signal‑
ling pathway mediated by JAK1 and phosphoinositide 
3‑kinase (PI3K). This pathway increases the phospho‑
rylation and nuclear translocation of cAMP-responsive-
element-binding protein (CREB), which promotes 
IL‑10 production in human DCs45 (FIG. 1). It is not clear 
why IL‑10 production is mediated by different signal‑
ling pathways in response to IFNα (the STAT3 pathway) 
and IFNβ (the PI3K pathway). However, the differential 
activation of STAT3 versus STAT1, the ability to induce 
IL‑10 production and/or the participation of additional 
regulatory elements may explain the diverse effects of 
type I IFNs in several pathological conditions.

In addition to the JAK–STAT signalling pathways, 
there is evidence that type I IFNs activate other (non-
STAT) signalling pathways that have crucial roles in 
their different biological properties. For example, it has 
been shown that type I IFNs activate signalling path‑
ways mediated by mitogen-activated protein kinases 
(MAPKs), specifically p38 and extracellular signal- 
regulated kinase 1 (ERK1) or ERK2. p38 activity is 
required for type I IFN-dependent transcription of sev‑
eral genes that are regulated by ISREs and GAS elements 
in an STAT-independent manner46–48. The functional 
relevance of this signalling pathway in the biological 
effects of type I IFNs was evidenced by several studies 
indicating that p38 is required for the growth-inhibitory 
and antiviral effects of type I IFNs49,50. In addition to the 
induction of the p38 signalling cascade, the MAPK/
ERK kinase (MEK)–ERK pathway is activated by type I 
IFNs51 and participates in the response to viral infec‑
tion52. Finally, as mentioned above, type I IFNs can also 
induce the activation of the PI3K signalling pathway 
in a STAT-independent manner53,54. The PI3K path‑
way has an important role in mediating gene transcrip‑
tion in response to both type I and type II IFNs and is 
essential for mediating their antiviral effects against the 
encephalomyocarditis virus in vitro55. Activation of the 

PI3K signalling cascade controls the activation of mam‑
malian target of rapamycin (mTOR), which regulates 
mRNA translation. Notably, it was shown that type I IFNs 
activate pathways for the initiation of mRNA translation 
that are downstream of mTOR, such as the pathway that 
involves the activation of p70 S6 kinase and the subse‑
quent phosphorylation of the S6 ribosomal protein56,57. 
The activation of mTOR by type I IFNs was unrelated to 
the activation of STAT family members and had no effect 
on gene transcription56,57, indicating that mTOR selec‑
tively regulates IFN-induced mRNA translation. In terms 
of biological relevance, the activation of mTOR signalling 
has been shown to mediate the antiviral effects of IFNα 
against the hepatitis C virus58.

Modulating immune responses by type I IFNs
Type I IFNs and suppression of intestinal inflammation. 
The intestinal microbiota influences the development of 
local and systemic immune responses and the prolifera‑
tion and barrier functions of the intestinal epithelium, 
in part via the activation of host TLRs59. Over the last 
few years, data from our laboratory and others have 
shown that the systemic administration of TLR9 ligands 
reduces the severity of colonic injury and inflammation 
in models of experimental colitis60–62, in part through the 
TLR9‑induced production of type I IFNs by DCs60. In 
addition, IFNα enhances the barrier function of intes‑
tinal epithelial cells in vitro by activating STAT3, which 
maintains the expression of several key tight junction 
molecules, such as members of the claudin family (J.L., 
unpublished observations). Similarly, activation of TLR3 
by the synthetic viral RNA polyinosinic–polycytidylic 
acid (polyI:C), which induces type I IFN production 
in many cell types, was shown to protect mice from 
experimental colitis62. Furthermore, Ifnar–/– mice were 
extremely susceptible to dextran-sulphate sodium (DSS)-
induced colitis60,63, and the administration of recombi‑
nant IFNβ to DSS-treated wild-type mice mimicked the 
anti-inflammatory effects of TLR9 ligands60.

 Different types of haematopoietic cells contribute 
to DSS-induced colonic inflammation. The depletion 
of CD11chi DCs after DSS administration showed that 
type I IFNs induced by TLR9‑activated CD11chi DCs 
attenuate the severity of colitis in this model64. This study 
also showed that, depending on their mode of activation, 
DCs can enhance or inhibit acute DSS-induced colitis by 
secreting various cytokines (such as TNF, IL‑6, IL‑10 and 
type I IFNs), by regulating the production of chemokines 
that affect the composition of the cellular infiltrate, and 
by affecting the rate of resolution of inflammation in the 
colon64. In addition, a recent study using a genetically 
modified strain of Lactobacillus acidophilus that consti‑
tutively expresses IFNβ reported that the local expres‑
sion of IFNAR1 by CD103+ DCs in the Peyer’s patches is 
necessary for protection against DSS-induced intestinal 
inflammation63. In this study, saturating expression of 
IFNβ before the induction of colitis resulted in the tran‑
sient suppression of IFNAR1 expression on intestinal 
CD103+ DCs; this prevented IFNβ from signalling dur‑
ing the inflammatory period, mimicking the phenotype 
of Ifnar–/– mice with DSS-induced colitis63.
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Regulation of adaptive immune responses by type I 
IFNs. In addition to the T cell-independent protective 
effects of TLR9‑mediated type I IFN induction, the role 
of TLR9 agonist-induced protection in T cell-dependent 
intestinal inflammation has also been evaluated. TLR9 
signalling in DCs in the lamina propria of the small 
intestine was shown to regulate the functions of regula‑
tory T (TReg) cells and effector T cells65. In this study, TReg 
cell induction was inhibited by DNA derived from com‑
mensal bacteria through TLR9, and this was shown to 
favour the development of protective mucosal immune 
responses; however the role of type I IFNs in these effects 
was not clarified65. In a T cell-transfer model of colitis, 
treatment with a TLR9 ligand in the absence of type I 
IFN signalling failed to induce functionally suppressive 
CD4+CD62L+ T cells, whereas pretreatment of the donor 
mice with recombinant IFNβ and subsequent T cell 
transfer resulted in reduced intestinal inflammation and 
decreased secretion of pro-inflammatory cytokines66. 
Indeed, a role for type I IFNs in TLR9‑induced protec‑
tion in T cell-dependent colitis was previously shown in 
germ-free mice; in this study, type I IFNs were shown 
to induce the expression of regulatory markers on 
CD4+CD62L+ T cells67. These data correlate with previ‑
ous reports that type I IFNs induce regulatory capaci‑
ties in T cells68,69. Therefore, type I IFNs seem to exert a 
protective effect in the intestinal mucosa in both acute 
and chronic models of colitis.

Type I IFNs have been shown to have an important 
role in the differentiation of both CD4+ and CD8+ T cells. 
Initial studies found that IL‑12 signalling in CD4+ 
T cells and the subsequent activation of STAT4, which 
in turn promotes T‑bet expression, are crucial events 
in T helper 1 (TH1) cell differentiation70. In addition to 
IL‑12, type I IFNs were shown to induce the tyrosine 
phosphorylation and DNA binding of STAT4 (REF. 71) 
and to act directly on human T cells, but not mouse 
T cells, to drive TH1 cell development72. However, it was 
later reported that type I IFNs activate STAT4 directly 
and that this activation is required for IFNγ production 
during viral infections in mice73,74. Thus, phosphoryla‑
tion of STAT4 has been detected in response to type I 
IFN treatment of both human and mouse T cells74–76 but, 
in contrast with IL‑12, type I IFNs were unable to sustain 
STAT4 phosphorylation and therefore were not suffi‑
cient to drive TH1 cell commitment in vitro75,77. However, 
type I IFNs regulate TH1 cell differentiation and effector 
functions in vivo by synergizing with other cytokines, 
such as IL‑18 and IL‑21 (REFS 78–80). Moreover, type I 
IFNs have been associated with the suppression of TH2 
and TH17 cell-mediated responses. In human cells, type I 
IFNs reversed TH2 cell commitment by suppressing 
the expression of the TH2 cell-associated transcription  
factor GATA-binding protein 3 (GATA3)78. Similarly, 
type I IFNs also suppress the differentiation of TH17 cells 
in both mice81 and humans82.

Forkhead box P3 (FOXP3)+ TReg cells have a pivotal 
role in maintaining immunological tolerance and homeo
stasis. IFNβ treatment markedly improved the fre‑
quency and suppressive function of TReg cells in patients 
with relapsing–remitting multiple sclerosis9,83 and in  

patients with chronic hepatitis C virus infection84, and 
also increased Foxp3 mRNA expression in PBMCs from 
patients with relapsing–remitting multiple sclerosis85. 
FOXP3+ TReg cells show functional and phenotypical plas‑
ticity in response to environmental cues and are capable 
of secreting pro-inflammatory cytokines, for example 
during severe inflammation86,87. Recently, a higher fre‑
quency of IFNγ-secreting TReg cells has been reported 
in untreated patients with relapsing–remitting multiple 
sclerosis compared with the frequency in control indi‑
viduals88. By contrast, in patients treated with IFNβ, the 
frequency of IFNγ+FOXP3+ T cells was similar to that 
in healthy controls88. In addition, ongoing studies in our 
laboratory indicate that type I IFN signalling is essential 
for the maintenance of FOXP3 expression in vivo and for 
the suppressive activity of TReg cells in a model of T cell-
mediated colitis in mice (S. E. Lee, J.M.G.-N. and E.R., 
unpublished observations). These data suggest a novel 
role for type I IFNs in TH cell differentiation, as well as in 
the suppressive function of TReg cells.

Type I IFNs and inflammasome activation. Four dif‑
ferent initiator components that activate different 
types of inflammasome in response to different stimuli 
have been identified: NOD‑, LRR- and pyrin domain- 
containing  1 (NLRP1), NLRP3, NOD‑, LRR- and 
CARD-containing 4 (NLRC4; also known as IPAF) and 
absent in melanoma 2 (AIM2)89.

Recently, an inhibitory role for type I IFNs in the acti‑
vation of the inflammasome has been reported90. In this 
study, type I IFNs inhibited IL‑1β production through 
two different mechanisms. First, IFNβ signalling directly 
inhibited the NLRP1 and NLRP3 inflammasomes 
(but not the NLRC4 and AIM2 inflammasomes) in a 
STAT1‑dependent manner. Second, type I IFNs induced 
the production of IL‑10, which in turn activated the 
transcription factor STAT3 in an autocrine manner to 
reduce the levels of pro-IL‑1α and pro-IL‑1β90 (FIG. 2a). 
Furthermore, type I IFNs increased the susceptibility 
of mice to Candida albicans infection, an effect that 
was attributed to the reduction in IL‑1β production90. 
Therefore, these data suggested an inhibitory role of 
type I IFNs in inflammasome activation.

By contrast, previous work reported a positive effect 
of type I IFNs in inflammasome activation during 
Francisella tularensis infection91. The cytosolic patho‑
gens F. tularensis and L. monocytogenes were both shown 
to induce a type I IFN response that was essential for 
caspase 1 activation and IL‑1β production. Consistent 
with this, F. tularensis DNA released into the cytosol 
activated the production of type I IFNs via IRF3, and 
this was necessary for the activation of the DNA-sensing 
AIM2 inflammasome92 (FIG. 2b). The discrepancies 
regarding the role of type I IFN signalling in the pro‑
duction of IL‑1β might be related to the type of inflam‑
masome; that is, type I IFNs mediate the inhibition of the 
NLRP3 inflammasome but the activation of the AIM2 
inflammasome. Of particular interest, however, is the 
case of L. monocytogenes, which has been shown to acti‑
vate the NLRP3 inflammasome89 and to increase IL‑1β  
production in an IFNβ-dependent manner.
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Figure 2 | Type I IFNs regulate inflammasome activation. a | Type I interferons (IFNs) inhibit the production of IL-1β by 
the inflammasome through two different mechanisms. First, they activate signal transducer and activator of transcription 1 
(STAT1), which directly inhibits the NOD‑, LRR- and pyrin domain-containing 1 (NLRP1) and NLRP3 inflammasomes but not 
the absent in melanoma 2 (AIM2) or NOD‑, LRR- and CARD-containing 4 (NLRC4) inflammasomes. Second, type I IFNs 
induce the production of interleukin‑10 (IL‑10), which binds to the IL‑10 receptor (IL‑10R) in an autocrine manner and 
activates STAT3, which in turn reduces the levels of the precursors pro-IL‑1α and pro-IL‑1β. b | Type I IFN signalling is 
required for efficient activation of the AIM2 inflammasome in response to Francisella tularensis. After the bacterium enters 
the phagosome, the phagosome is rapidly acidified. Acidification causes the release of bacterial DNA into the cytosol,  
and this DNA activates an unidentified DNA sensor, which in turn activates IFN regulatory factor 3 (IRF3) to initiate the 
production of type I IFNs. IFNβ then binds to the IFNα/β receptor (IFNAR) in an autocrine manner to enhance the activation 
of the AIM2 inflammasome, possibly by increasing phagosomal acidification and/or bactericidal activity, thereby favouring 
the release of more bacterial DNA. CREB, cAMP-responsive-element-binding protein; TLR, Toll-like receptor.

The cytokines IL‑1α and IL‑1β both bind to IL‑1 
receptor type 1 (IL‑1R1), leading to the activation of 
NF‑κB, MAPKs and certain IRFs93,94. In a recent study, we 
showed that IL‑1R1 is necessary for the TLR9‑dependent 
activation of a type I IFN and IL‑10 response95. The mech‑
anism by which IL‑1R1 signalling modulates type I IFN 
production involves changes in the ubiquitylation profile 
of TRAF3, an E3 ubiquitin ligase that interacts with both 
MYD88 and TRIF, and the type of ubiquitylation deter‑
mines whether type I IFNs or pro-inflammatory cytokines 
are produced8,96. Lysine 48 (K48)-linked polyubiquityla‑
tion of TRAF3 leads to its proteosomal degradation and 
the activation of MAPKs and pro-inflammatory cytokines, 
whereas K63‑linked polyubiquitylation of TRAF3 results 
in the activation of IRFs and subsequent type I IFN pro‑
duction96,97. K63‑linked, but not K48‑linked, polyubiq‑
uitylation of TRAF3 is greatly reduced in the absence of 
IL‑1 signalling. This effect is mediated by deubiquitylat‑
ing enzyme A (DUBA; also known as OTUD5)95, which 
specifically cleaves the K63‑linked polyubiquitin chain on 
TRAF3 (REF. 97). Together, these data suggested a model in 
which IL‑1R1 positively regulates TLR-induced type I IFN 
production (FIG. 3). This mechanism may explain previ‑
ous observations of IL‑1R1‑mediated protection against 
intestinal damage from Citrobacter rodentium infection98 
and DSS-induced colitis98,99.

Type I IFNs and bacterial infections. Although type I 
IFNs are induced by bacterial pathogens, the role of 
type I IFNs in the context of bacterial infections is not 
completely understood. Bacterial induction of type I 
IFNs can be mediated through the TLR-dependent 
recognition of bacterial products, such as LPS, or 
through the TLR-independent recognition of bacte‑
rial ligands that are delivered to the host cytosol. Many 
investigators have reported a variety of beneficial but 
also detrimental immune functions for type I IFNs dur‑
ing bacterial infection. For example, type I IFNs have 
an important role in mediating the pathology of LPS-
induced septic shock84. By contrast, type I IFNs impair 
the clearance of L. monocytogenes100,101, Mycobacterium 
tuberculosis102 and Chlamydia muridarum83,103, and they 
are detrimental to host survival after infection with 
F. tularensis104.

Two mechanisms have been proposed to explain 
these phenomena. The first mechanism suggests that 
microorganisms induce type I IFN production as a strat‑
egy to induce apoptosis in lymphocytes, resulting in the 
suppression of adaptive immune responses105. The sec‑
ond mechanism proposes that type I IFNs suppress the 
production of IL‑17A and IL‑17F, which are necessary 
for neutrophil-mediated bacterial clearance104. By con‑
trast, type I IFNs are necessary for host resistance against 

R E V I E W S

130 | FEBRUARY 2012 | VOLUME 12	  www.nature.com/reviews/immunol

© 2012 Macmillan Publishers Limited. All rights reserved



Nature Reviews | Immunology

TLR4

LPS

Endosome

TRAF3
degradation

TRAF3
stabilization

Pro-inflammatory
cytokines

Type I IFNs

p50 p65

NF-κB

IL-1R1

IL-1α
or IL-1β

CpG
DNA

TLR9

TRAF3 TRAF3 K63-linked
ubiquitin 
chain

K48-linked
ubiquitin 
chain

DUBA

IRF3MAPKs

Systemic lupus 
erythematosus
(SLE). An autoimmune disease 
characterized by the presence 
of circulating immune 
complexes that contain 
antinuclear antibodies bound 
to self nucleic acids and other 
nuclear antigens.

Inflammatory bowel disease
(IBD). A chronic inflammatory 
condition that affects the 
intestinal tract. The proposed 
pathogenesis of IBD involves a 
complex model that includes 
abnormalities of innate 
immune function and their 
relationship with the 
commensal microbiota, 
inappropriate release of 
pro-inflammatory cytokines 
and other mediators, 
alterations of the intestinal 
epithelial barrier, and a 
cytokine imbalance that 
promotes the 
pro-inflammatory activity of 
adaptive immune cells.

other bacterial pathogens. Mice deficient in IFNAR 
showed decreased survival and increased bacterial bur‑
dens after infection with Streptococcus pneumoniae or 
Escherichia coli106, and this was attributed to the reduced 
expression of certain cytokines, such as TNF or IFNγ. 
Moreover, type I IFNs were shown to play an important 
part in restricting the growth of Legionella pneumophila 
in macrophages107. Taken together, these data show that 
type I IFNs have a wide range of immunomodulatory 
effects in response to bacterial infections, and this clearly 
expands the old notion that type I IFNs serve only as 
antiviral cytokines.

Type I IFNs in autoimmune disease
The connection between type I IFNs and several auto‑
immune and inflammatory disorders is well known, 
although there is considerable variation in the pre‑
cise mechanisms and in the role of these cytokines 
in each condition. Some autoimmune diseases (such 
as psoriasis and systemic lupus erythematosus (SLE)) 
are improved by the inhibition of type I IFNs or their 
upstream regulators. By contrast, other conditions 
that are characterized by strong TH1 and/or TH17 cell 
responses — such as arthritis, inflammatory bowel dis-
ease (IBD) and multiple sclerosis — benefit from the 
administration of type I IFNs (FIG. 4). All these inflam‑
matory conditions have an important impact on public 
health and are the focus of numerous analyses that are 
readily available in the literature. Therefore, they are 
only briefly discussed here.

Inflammatory bowel disease. IBD encompasses two 
major clinical entities: Crohn’s disease and ulcerative 
colitis. Conventional therapies for IBD include 5‑amino‑
salicylic acid (5‑ASA), antibiotics (such as ciprofloxacin 
and metronidazole), corticosteroids, immunosuppres‑
sants and TNF-specific antibodies (such as infliximab 
and adalimumab)108. However, poor efficacy in some 
cases (with 5‑ASA or antibiotic treatment) or the devel‑
opment of serious side effects (with corticosteroid treat‑
ment) led to the search for other biological therapies. 
Given their mechanisms of action and their beneficial 
effects on intestinal homeostasis in animal models, 
type I IFNs have been tested as a treatment for IBD. 
Although a few clinical studies of IFNα or IFNβ therapy 
in patients with ulcerative colitis initially showed prom‑
ising results109–111, most of these studies failed to demon‑
strate a beneficial therapeutic effect112–115. Furthermore, 
documented cases of the exacerbation of ulcerative coli‑
tis during IFNα therapy for chronic hepatitis C infec‑
tion116,117 and of the development of ulcerative colitis in 
patients with multiple sclerosis following treatment with 
IFNβ1a118 call into question whether type I IFNs have a 
therapeutic role in IBD.

Coeliac disease. Coeliac disease has a strong genetic 
component, as it is highly associated with HLA‑DQ2 
and HLA‑DQ8 alleles119. The pathogenesis of coeliac 
disease involves the polarization of T cells into TH1 cells 
and the production of high levels of IFNγ in response 
to gluten120. TH1 cell polarization is driven by many 

cytokines, including IL‑21, IL‑18 and IFNα121, the levels 
of which are usually elevated in the mucosa of untreated 
patients with coeliac disease122. Interestingly, the addi‑
tion of IFNα-specific, but not IL‑18‑specific, block‑
ing antibodies to biopsy specimens from patients with 
coeliac disease inhibits IFNγ production in ex vivo 
organ cultures123. Activation of gluten-specific CD4+ 
T cells requires that gluten antigens be presented by 
antigen-presenting cells (APCs) that express HLA‑DQ2 
or HLA‑DQ8 (REFS 124,125). The expression of these 
alleles is relatively low in normal mucosa, but can be 
upregulated on APCs by type I and type II IFNs, and 
this facilitates the activation of other inflammatory cells, 
thereby favouring an inflammatory response to gluten 
peptides122,126,127. Notably, enteric viruses can induce the 
production of type I IFNs, leading to the upregulation of 
HLA‑DQ2 or HLA‑DQ8 on APCs, and this would result 
in the perfect milieu for the activation of gluten-specific 
TH1 cells. The development of coeliac disease in patients 
undergoing treatment with recombinant type I IFNs, 
such as patients with hepatitis C virus infection122,128, 
also supports this hypothesis.

Figure 3 | IL‑1R1 signalling regulates type I IFN 
production. Interleukin‑1 receptor 1 (IL‑1R1) signalling 
positively modulates the production of type I interferons 
(IFNs) through the differential ubiquitylation of TNF 
receptor-associated factor 3 (TRAF3). Lysine 48 
(K48)-linked polyubiquitylation of TRAF3 leads to its 
proteosomal degradation and the production of 
pro-inflammatory cytokines. By contrast, K63‑linked 
polyubiquitylation of TRAF3 triggers the activation of IFN 
regulatory factor 3 (IRF3) and the subsequent production 
of type I IFNs. The absence of IL‑1 signalling results in 
increased levels of deubiquitylating enzyme A (DUBA), 
which cleaves the K63‑linked but not the K48‑linked 
ubiquitin chains on TRAF3. LPS, lipopolysaccharide; 
MAPK, mitogen-activated protein kinase; NF-κB, nuclear 
factor-κB; TLR, Toll-like receptor.
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Psoriasis. Psoriasis is a T cell-mediated chronic inflam‑
matory skin disease that is characterized by the produc‑
tion of large amounts of type I IFNs by pDCs that are 
recruited to and accumulate in the dermis. High levels 
of type I IFNs are responsible for the local activation 
and expansion of pathogenic T cell populations, which 
in turn trigger the abnormal proliferation and differ‑
entiation of keratinocytes and the development of dif‑
fuse epidermal hyperplasia, known as acanthosis. The 
activation of TH17 cells has been associated with this 
phenomenon129, and the blockade of type I IFN signal‑
ling by IFNAR-specific antibodies effectively inhibited 
the activation of autoreactive T cells and the develop‑
ment of skin lesions in a xenograft model of psoriasis130. 
In addition, antibodies specific for blood DC antigen 2 
(BDCA2; also known as CLEC4C) suppressed the pro‑
duction of type I IFNs by pDCs through the activation 
of SRC family protein tyrosine kinases, and this also 
inhibited the activation of autoreactive T cells and the 
development of skin lesions131.

Systemic lupus erythematosus. The activation of pDCs 
by nucleic acid-containing immune complexes leads to 
the production of large amounts of type I IFNs, and ele‑
vated levels of IFNα are detected in the blood of patients 
with SLE132,133. Type I IFNs in the serum of patients with 
SLE were responsible for the differentiation of mono‑
cytes into DCs and the expression of MHC class II 
molecules and the co-stimulatory molecules CD80 and 
CD86 by these DCs. In addition, normal monocytes 
cultured with serum from patients with SLE, but not 
those cultured with autologous serum, could present 
self antigens to autoreactive T cells134. In another study, 
type I IFNs produced by pDCs, together with IL‑6, 
were also shown to induce plasma cell differentiation135. 

Patients with SLE are treated with various medications, 
including non-steroidal anti-inflammatory drugs, 
glucocorticoids and immunosuppressants. Many of 
these therapies are associated with severe adverse 
effects. Therefore, there is a medical need for more-spe‑
cific and safer therapies that target selective pathways 
involved in the pathogenesis of SLE. Recent data from 
a Phase I clinical trial showed that the administration 
of neutralizing antibodies specific for IFNα effectively 
inhibited the overexpression of IFNα‑inducible genes in 
skin lesions of patients with SLE136.

Multiple sclerosis. It is generally considered that both 
TH1 and TH17 cells are involved in the pathogenesis 
of multiple sclerosis and experimental autoimmune 
encephalomyelitis (EAE; an animal model of multiple 
sclerosis). Human recombinant IFNβ therapy is widely 
prescribed for certain stages of multiple sclerosis, par‑
ticularly relapsing–remitting multiple sclerosis137. Two 
human recombinant IFNβ forms are currently used: 
IFNβ1a, which is produced in Chinese hamster ovary 
cells; and IFNβ1b, which is produced in E. coli 138. The 
exact mechanism behind the beneficial effect of type I 
IFNs in multiple sclerosis and EAE is not known, 
but recombinant IFNβ reduces the attack frequency 
and severity of multiple sclerosis138,139. However, not 
all patients with relapsing–remitting multiple scle‑
rosis respond to treatment, and the development of 
IFNβ-specific autoantibodies may cause relapses and 
side effects.

IFNβ-deficient mice are more susceptible to EAE 
development140, and type I IFNs can attenuate EAE in 
mice141, suggesting that IFNβ modulates both multiple 
sclerosis and EAE. In addition, the conditional dele‑
tion of Ifnar1 showed that specific myeloid cells, such 
as monocytes and macrophages142 or DCs143, modulate 
autoimmune inflammation of the central nervous sys‑
tem in an IFNAR-dependent manner. The expression 
of IFNAR by microglial cells (brain-endogenous macro
phages) also modulates the severity of EAE142. IFNβ 
reduces the ability of microglial cells to present antigens, 
and this in turn reduces the recruitment and effector 
functions of encephalitogenic T cells144. Another mecha‑
nism that was proposed to explain the immunomodula‑
tory effects of IFNβ in patients with multiple sclerosis 
involves the induction of IL‑10. Indeed, upregulation 
of IL‑10 production is a hallmark of IFNβ treatment in 
patients with multiple sclerosis145.

Cancer. Type I IFNs have been extensively used for the 
treatment of several types of cancer, including haemato‑
logical malignancies (for example, hairy cell leukaemia 
and some B or T cell lymphomas) and solid tumours 
(for example, melanoma, renal cell carcinoma and 
Kaposi’s sarcoma)146,147.

IFNα1‑producing tumour cells were shown to be 
less tumorigenic and less able to metastasize when 
transferred into mice, and this was attributed to the 
activation of several host antitumour mechanisms at 
the tumour site148. These studies suggested that type I 
IFNs could act as an adjuvant in cancer vaccines133. 
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Indeed, IFNα showed an effective adjuvant activity in 
patients with melanoma149. In addition to their putative 
role as adjuvants in antitumour vaccines, type I IFNs 
inhibit angiogenesis and act on DCs to enhance the 
ability of these cells to cross-present apoptotic antigens 
to CD8+ T cells150 to trigger a cytotoxic T lymphocyte 
response151,152.

The main pitfall for the use of type I IFNs as an anti‑
tumour therapy is the frequent severe side effects, which 
decrease the enthusiasm for the application of type I 
IFNs in this clinical setting.

Concluding remarks
Our understanding of the functions of type I IFNs and 
the mechanisms that control these functions is con‑
tinuously evolving. Since their discovery, type I IFNs 

have been associated with host defence responses to 
viral infections, and it is only recently that their func‑
tions in bacterial infections and in immune-mediated 
and inflammatory disorders have been appreciated. 
The molecular mechanisms by which type I IFNs exert 
their immunomodulatory functions and the reasons 
why they restrain the development of some immuno‑
pathologies while increasing the severity of others are 
still largely unknown. One possible explanation for 
these opposing effects could be found in the differen‑
tial regulation of STAT family members in different 
tissues or organs under different physiological and/or 
inflammatory conditions. A better understanding of 
the underlying pathophysiology is mandatory for the 
design of effective treatments with type I IFNs or with 
type I IFN-specific neutralizing antibodies.
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