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Mesenchymal stromal cells (MSCs) are characterized by an extraordinary capacity to
modulate the phenotype and functional properties of various immune cells that play
an essential role in the pathogenesis of inflammatory disorders. Thus, MSCs efficiently
impair the phagocytic and antigen-presenting capacity of monocytes/macrophages and
promote the expression of immunosuppressive molecules such as interleukin (IL)-10
and programmed cell death 1 ligand 1 by these cells. They also effectively inhibit the
maturation of dendritic cells and their ability to produce proinflammatory cytokines and
to stimulate potent T-cell responses. Furthermore, MSCs inhibit the generation and
proinflammatory properties of CD4+ T helper (Th)1 and Th17 cells, while they promote
the proliferation of regulatory T cells and their inhibitory capabilities. MSCs also impair
the expansion, cytokine secretion, and cytotoxic activity of proinflammatory CD8+ T
cells. Moreover, MSCs inhibit the differentiation, proliferation, and antibody secretion
of B cells, and foster the generation of IL-10-producing regulatory B cells. Various
cell membrane-associated and soluble molecules essentially contribute to these MSC-
mediated effects on important cellular components of innate and adaptive immunity.
Due to their immunosuppressive properties, MSCs have emerged as promising tools for
the treatment of inflammatory disorders such as acute graft-versus-host disease, graft
rejection in patients undergoing organ/cell transplantation, and autoimmune diseases.
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INTRODUCTION

Mesenchymal stromal cells (MSCs) are characterized in vitro by the adherence to plastic surfaces,
the expression of CD73, CD90, and CD105, the lack of expression of the hematopoietic and
endothelial markers CD11b, CD14, CD19, CD34, CD45, CD79a, and detectable amounts of
human leukocyte antigen (HLA)-DR as well as the capability to differentiate into adipocytes,
chondrocytes, and osteoblasts (Dominici et al., 2006; Viswanathan et al., 2019). Additionally, the
MSC committee of the International Society for Cell and Gene Therapy recommends to support
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the phenotypical characterization by functional assays
confirming hallmark properties of MSCs such as secretion
of soluble factors and immunomodulation (Viswanathan et al.,
2019). While MSCs were first isolated from bone marrow (BM),
a variety of tissues were found to harbor MSCs comprising
adipose, placenta, umbilical cord (UC), dental pulp, and other
tissues. Due to their accessibility, adipose tissue-derived (AD)-
MSCs and UC-MSCs have gained an increasing popularity,
especially for clinical studies. Even though all MSCs share
certain characteristics, the discrimination between MSCs of
different origins became particularly important since several
studies have found striking differences, regarding not only
their marker expression and cytokine profile but also their
functional properties (Kozlowska et al., 2019; Ritter et al., 2019;
Ménard et al., 2020; Petrenko et al., 2020; Song et al., 2020).
For example, BM-MSCs secreted the highest amount of pro-
angiogenic interleukin (IL)-8 and vascular endothelial growth
factor compared to MSCs derived from adipose tissue, skeletal
muscle, and skin, while AD-MSCs displayed the strongest ability
to secrete IL-6 (Kozlowska et al., 2019). Additionally, BM-MSCs
were found to have the most prominent immunosuppressive
capacities in both cell contact-dependent and paracrine settings
(Petrenko et al., 2020). Despite several challenges, MSCs have
gained increasing attention in recent years. Their differentiation
capability allows for their therapeutic use in regenerative
medicine and tissue engineering. In addition, MSCs exhibit a
low immunogenicity and display an extraordinary capacity to
modulate immune responses. While these traits make MSCs
attractive candidates for the treatment of immune-related
disorders like autoimmune diseases, acute graft-versus-host
disease (aGvHD), and sepsis, their modulatory action strongly
depends on the environmental stimuli (Wang et al., 2016). It has
been shown that under certain conditions, MSCs can promote
immune responses by secreting proinflammatory cytokines and
acting as antigen-presenting cells. Their immunostimulatory
capabilities can be converted into an immunosuppressive
phenotype by a process termed “licensing.” This phenotypic
and functional shift is mediated by inflammatory cytokines
such as interferon (IFN)-γ or tumor necrosis factor (TNF)-α
(Krampera, 2011). The dual role of MSCs should be considered
when assessing their immunomodulatory capacities and their
use in clinical applications (Carvalho et al., 2019). Here, we
focus on recent studies exploring the impact of MSCs on the
phenotype and functional properties of monocytes/macrophages,
dendritic cells (DCs), T cells, and B cells that play a major role
in various immune-driven disorders. Furthermore, the cell
membrane-associated and soluble molecules that contribute to
the immunomodulatory effects of MSCs are summarized.

MODULATION OF INNATE IMMUNITY BY
MSCs

Monocytes/Macrophages
Macrophages are important components of innate immunity
and play an important role in the pathogenesis of various
immune-mediated diseases. Based on their phenotype and

functional properties, macrophages can be classified into
proinflammatory M1 and anti-inflammatory M2 macrophages
(Shapouri-Moghaddam et al., 2018). Recently, it has been
demonstrated that MSCs efficiently promote macrophage
polarization toward the M2 type, which is considered to be
beneficial in immune-driven disorders. This M2 polarizing effect
of MSCs is mediated by various soluble molecules including
prostaglandin E2 (PGE2) (Németh et al., 2009; Vasandan et al.,
2016), indolamin-2,3-dioxygenase (IDO) (François et al., 2012),
IL-6, hepatocyte growth factor (HGF) (Deng et al., 2016),
IL-1 receptor antagonist (IL-1RA) (Luz-Crawford et al., 2016),
tumor necrosis factor-inducible gene 6 protein (TSG6) (Ko
et al., 2016), and transforming growth factor (TGF)-β (Liu
et al., 2019a). Several studies suggest a key role of PGE2, as the
inhibition of PGE2 or the cyclooxygenase-2 (COX2) pathway
abrogated the observed inhibitory effects (Németh et al., 2009;
Jin et al., 2019; Ortiz-Virumbrales et al., 2020). Previous studies
using AD- or BM-MSCs indicated that the paracrine action
is partially mediated by exosomes (Biswas et al., 2019; Cho
et al., 2019; He et al., 2019; Liu et al., 2019b; Wang et al.,
2020b). The exosomes contained TGF-β, C1q, semaphorins, and
micro (mi) RNAs, regulating the macrophage polarization and
inducing overexpression of programmed cell death 1 ligand 1
(PD-L1). Moreover, MSCs can alter the macrophage phenotype
by manipulating their metabolic properties, such as glycolysis
(Vasandan et al., 2016; Deng et al., 2020).

The MSC-induced M2 polarization is accompanied by an
increased secretion of anti-inflammatory IL-10 and Arginase-
1 and a reduced production of proinflammatory cytokines
like TNF-α, IL-12, and IL-1β (Kim and Hematti, 2009; Yang
et al., 2020). Additionally, exosomes from UC-MSCs reduced
the expression of the NLR family pyrin domain containing 3
(NLRP3) inflammasome and involved downstream factors like
caspase-1, IL-1β, and IL-6 in lipopolysaccharide (LPS)-stimulated
macrophages (Jiang et al., 2019). Another study revealed that the
effect of IL-10 production by murine MSC-primed macrophages
is particularly important, as the depletion of IL-10 by antibodies
abrogated beneficial effects of MSC treatment in a model of
sepsis (Németh et al., 2009). M2 macrophages, characterized
by reduced expression of costimulatory molecules and elevated
secretion of anti-inflammatory cytokines like TGF-β, profoundly
inhibit T cell responses and induce regulatory T cells (Tregs)
(Savage et al., 2008; Schmidt et al., 2016), leading to further
immunosuppression and supporting the positive effects of MSC
therapy. MSCs also impair both the differentiation and effector
function of monocytes. Maqbool et al. (2020) discovered a
reduced expression of HLA-DR/DP/DQ and CD86 by monocytes
and macrophages upon co-culture with human UC-MSCs.
Functional analysis of this interaction revealed a significantly
decreased phagocytic capacity and antigen-presenting ability
of monocytes and macrophages when co-cultured with UC-
MSCs. Furthermore, we investigated the impact of MSCs
on various immunomodulatory properties of 6-sulfo LacNAc
monocytes (slanMo), representing a subset of pro-inflammatory
CD14−CD16+ non-classical monocytes, which may contribute
to the pathogenesis of various inflammatory diseases (Ahmad
et al., 2019). We found that MSCs profoundly suppress the
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capacity of slanMo to secrete TNF-α, IL-6, and IL-12, improve
their IL-10 production, and efficiently inhibit the slanMo-
induced proliferation of CD4+ and CD8+ T cells (Wehner
et al., 2009). Additionally, de Witte et al. (2018) demonstrated
that upon their phagocytosis by monocytes, UC-MSCs induce a
CD14++CD16+CD206+ phenotype accompanied by increased
IL-10 secretion and PD-L1 expression in mice. Further studies
revealed that the phagocytosis of cord tissue (CT)-derived-
MSCs is mediated by lipoprotein receptor-related proteins on
monocytes and macrophages (Min et al., 2020). Moreover,
the macrophage reprogramming upon phagocytosis of CT-
MSCs was shown to be dependent on cytoplasmic RNA
processing bodies (p-bodies), as p-body-deficient MSCs failed to
suppress inflammation. P-bodies are membrane-less organelles
that contain RNA, miRNA, and proteins which may facilitate
macrophage polarization upon phagocytosis of MSCs (Kulkarni
et al., 2010). We have discovered similar mechanisms, in
which the immunosuppressive effects of MSCs depend on their
apoptosis induced by recipient cytotoxic immune effector cells
(Galleu et al., 2017; Cheung and Dazzi, 2018). Remarkably,
the observed cytotoxicity differed significantly between clinical
responders and non-responders to MSC therapy. Subsequently,
apoptotic MSCs were shown to induce IDO production by
recipient phagocytic cells in a GvHD mouse model and both
the depletion of phagocytes and blockade of IDO reduced the
beneficial effects.

Dendritic Cells
Activated DCs display a unique capacity to induce T-cell
responses and are the main producers of proinflammatory
cytokines (Steinman and Banchereau, 2007; Qian and Cao,
2018). Due to these functional properties, DCs can essentially
contribute to the immunopathogenesis of various disorders like
aGvHD and autoimmune diseases. Their crucial role makes DCs
attractive targets for immune-modulating therapies (Ganguly
et al., 2013; Obregon et al., 2017). MSCs can efficiently inhibit
the differentiation of DCs from hematopoietic stem cells and
monocytes (Nauta et al., 2006; Ramasamy et al., 2007). The
latter is facilitated by the downregulation of Cyclin D2, hindering
monocytes from entering the G1 phase of the cell cycle.
Additionally, MSCs impair the maturation of DCs, reducing
their capacity to activate T cells. This is accompanied by a
decreased expression of HLA-DR, CD40, OX40L, CD80, CD83,
and CD86 (Jiang et al., 2005; Dong et al., 2018), as well as
an increased PD-L1 expression (Lu et al., 2020). Moreover,
MSCs shift the cytokine profile of DCs from proinflammatory
toward immunoregulatory. For example, a decreased secretion
of proinflammatory cytokines by CD1c+ DCs and an enhanced
expression of IL-10 secretion by plasmacytoid (p)DCs upon co-
culture with MSCs have been reported (Aggarwal and Pittenger,
2005). Similarly, the production of IL-12 by monocyte-derived
DCs (moDCs) and IFN-α by pDCs was impaired when co-
cultured with BM- and UC-MSCs, respectively (Jiang et al.,
2005; Chen et al., 2019). These effects were mediated by PGE2,
TSG6, IL-6, and macrophage colony-stimulating factor (M-CSF)
as the inhibition of these molecules abolished the observed effects
(Aggarwal and Pittenger, 2005; Jiang et al., 2005; Liu et al., 2014).

Furthermore, murine AD-MSC-derived exosomes inhibited the
IL-6 secretion and improved the release of IL-10 and TGF-β by
DCs (Shahir et al., 2020).

MSCs promote the generation of tolerogenic DCs through
different mechanisms. In particular, the induction of regulatory
DCs seems to be dependent on Notch signaling (Li et al., 2008).
The interaction between Jagged1 on BM-MSCs and Notch2
on DCs results in the generation of regulatory DCs (Li et al.,
2020b). Furthermore, the MSC-mediated reduction of major
histocompatibility complex (MHC) class II molecules, CD86, and
CD40 could be mimicked by recombinant Jagged2 and blocked
by a Notch inhibitor in a mouse model of acute lung injury
(Lu et al., 2020). Besides cell contact-dependent mechanisms,
the MSC-mediated generation of regulatory DCs is facilitated
by soluble factors. For example, it has been shown that murine
BM-MSCs induce the differentiation into regulatory DCs by
HGF secretion (Lu et al., 2019). Further functional data revealed
that rat MSCs inhibit the maturation of CD103+ DCs, leading
to a decreased ability to prime CD8+ T cells (Zhang et al.,
2020). Additionally, murine DCs that were treated with MSC-
derived exosomes failed to stimulate T-cell proliferation upon
LPS activation (Shahir et al., 2020).

REGULATION OF ADAPTIVE IMMUNITY
BY MSCs

T Cells
CD4+ T helper (Th) cells and CD8+ cytotoxic T cells (CTLs)
play a pivotal role in the immunopathogenesis of aGVHD,
autoimmune diseases, and other inflammatory disorders.
Activated CTLs efficiently destroy cells and secrete large amounts
of proinflammatory cytokines such as TNF-α and IFN-γ.
Stimulated CD4+ T cells improve the capacity of DCs to induce
CTLs by the interaction between CD40 on DCs and CD40 ligand
on CD4+ T lymphocytes. Furthermore, CD4+ T cells provide
help for the maintenance and expansion of CTLs by secreting
cytokines such as IL-2. Previous studies have demonstrated that
MSCs can profoundly suppress the proliferation of CD4+ and
CD8+ T cells by both paracrine and cell contact-dependent
mechanisms (Di Nicola et al., 2002; Krampera et al., 2003, 2006).
While some authors argue that the anti-proliferative effect is not
mediated by apoptosis (Krampera et al., 2006; Benvenuto et al.,
2007), others reported an increased apoptosis of lymphocytes
upon co-culture with MSCs (Zhao et al., 2012). This effect was
dependent on the expression of Fas ligand (FasL) as the knock-
down of FasL in MSCs by small interfering (si) RNA abrogated
the effect on T lymphocytes as well as their therapeutic impact.
As demonstrated by Akiyama et al. (2012), BM-MSCs secrete
monocyte chemotactic protein 1 (MCP-1) to recruit T cells for
FasL-mediated apoptosis in a mouse model of systemic sclerosis.
More recently, it has been reported that particularly exosomes
from murine MSCs mediate the cell cycle arrest of T cells through
upregulation of cyclin-dependent kinase inhibitor 1B (CDKN1B)
and downregulation of cyclin-dependent kinase 2 (Cdk2) (Lee
et al., 2020). Besides the effect on the viability and proliferation
of T cells, MSCs can also inhibit the generation and function
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of Th1 and Th17 cells while promoting Th2 cells and Tregs.
BM-MSC-educated DCs mediate a shift from Th1 to Th2 and
induce Tregs, which is accompanied by a decreased secretion of
proinflammatory cytokines like IFN-γ, IL-17, and IL-6, whereas
the production of IL-4 and IL-10 is increased (Wang et al., 2008;
Ge et al., 2010). This effect seems to be partially dependent
on IDO, as the impact was less prominent in IDO knock-out
MSCs. Novel findings indicated that the inhibition of Th17 cells
by murine MSCs is also mediated by HGF (Chen et al., 2020).
Furthermore, it has been reported that BM-MSCs impair the
IL-17 production by Th17 cells in a contact-dependent manner
and induce their interconversion into Tregs (Luz-Crawford et al.,
2019). They also provided evidence for a novel mechanism,
in which MSCs transfer their mitochondria to Th17 cells, and
subsequent experiments demonstrated that the artificial transfer
of mitochondria impaired their IL-17 production. These findings
are supported by another study that showed a mitochondrial
transfer from MSCs to CD4+ rather than CD8+ T cells, which

induced increased mRNA levels of FOXP3, CD25, cytotoxic T
lymphocyte antigen 4 (CTLA-4), and TGFβ1 (Court et al., 2020).
This subsequently led to the generation of a highly suppressive
CD25+FoxP3+ T cell population. Additionally, exosomes from
UC-MSCs inhibited CD8+ and Th1 cells and reduced their
secretion of IFN-γ and TNF-α in a mouse model of contact
hypersensitivity (Guo et al., 2019). The exosomes also induced
Tregs and promoted their IL-10 secretion. Multiple studies
demonstrated that MSCs support the expansion and inhibitory
capacity of Tregs and foster their generation from conventional
T cells (English et al., 2009; Engela et al., 2013; Khosravi et al.,
2017). Involved molecules include HGF, PGE2, TGF-β, and IL-10
(Chen et al., 2020). A recent study confirmed that the promotion
of Tregs arises from an epigenetic conversion of conventional T
cells to Tregs rather than expansion of natural Tregs (Azevedo
et al., 2020). In a murine model of respiratory infection, UC-
MSCs were shown to be engulfed by lung phagocytes, which
then secreted C-X-C motif ligand (CXCL)9 and CXCL10,

FIGURE 1 | MSCs alter the phenotype and function of monocytes/macrophages, DCs, T- and B-cells. Soluble molecules and EVs released by MSCs induce a shift
toward an M2 phenotype, which is accompanied by a reduced secretion of proinflammatory cytokines and an increased production of anti-inflammatory molecules.
Furthermore, the expression of CD86 and MHC II as well as their phagocytic and antigen presentation capacity is impaired by MSCs. Additionally, MSCs inhibit the
maturation and differentiation of DCs, resulting in a reduced expression of costimulatory molecules, increase the expression of PD-L1, and shift their cytokine profile
from proinflammatory toward regulatory. This interaction is mediated by cell-membrane-associated and soluble molecules. MSCs impair both CD4+ and CD8+ T
cells via soluble factors, mitochondrial transfer, and EVs. They also inhibit the generation of Th1 and Th17 cells, while promoting Tregs and Th2 cells. Moreover, they
decrease the cytokine secretion and cytotoxicity of CTLs. Furthermore, MSCs hinder the proliferation, maturation, and antibody secretion of B cells and foster the
generation of IL-10-producing Bregs.
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leading to the recruitment of particularly suppressive C-X-C
motif receptor (CXCR)3+ Tregs (Li et al., 2020a). In addition
to T helper cells, MSCs also significantly impair the IFN-γ
production and cytotoxic activity of CTLs (Maccario et al., 2005;
Malcherek et al., 2014).

B Cells
Activated B lymphocytes produce large amounts of specific
antibodies and regulate immune responses by secreting
cytokines. Therefore, B cells can crucially contribute to a variety
of autoimmune diseases and other antibody-driven pathological
mechanisms. MSCs inhibit the proliferation of B cells through
an arrest in the G0/G1 phase of the cell cycle (Tabera et al.,
2008). Further analyses have shown that MSCs also markedly
inhibit the pDC-induced maturation of B cells. Similarly, Magatti
et al. (2020) reported a decreased proliferation, maturation, and
antibody secretion mediated by MSCs. They also demonstrated
that the conditioned medium of MSCs reduces the expression of
CD205, CD14, and Toll-like receptor 9 by B cells and that the
observed effects are partially mediated by PGE2. A recent study
reported that human UC-MSCs impaired the maturation of B
cells by secretion of TGF-β (Park et al., 2020). Another important
soluble factor is IL1-RA, as MSCs from IL1-RA-deficient mice
were unable to inhibit B-cell differentiation (Luz-Crawford et al.,
2016). In a mouse model of LPS-induced acute lung injury,
MSC treatment blocked the expression of genes involved in
chemokine signaling and immunoglobulin expression by B
cells (Feng et al., 2020). While multiple studies support the
MSC-induced inhibition of B cell antibody secretion, others
argue that MSCs actually promote their antibody production
as well as survival, proliferation, and differentiation (Traggiai
et al., 2008). The effects of activated MSCs on B cells can vary
depending on the level of stimulation. Whenever LPS induced a
strong IgG production, this effect was reduced by the addition of
MSCs, while a lower LPS-induced IgG secretion was associated
with an enhancing effect of MSCs (Rasmusson et al., 2007).
Several studies support the differential action of MSCs on B
cells, depending on their activation status and the environment.
For example, IFN-γ-primed pediatric MSCs inhibited naïve,
memory, and total B cell proliferation, while unprimed MSCs
failed to do so (Palomares Cabeza et al., 2019). Similarly, Luk
et al. (2017) demonstrated that AD-MSCs only reduce the
proliferation and IgG secretion of B cells upon IFN-γ exposure,
while non-stimulated MSCs induced regulatory B cells (Bregs)
and IL-10 production. Further analysis revealed that both
interactions are dependent on IDO signaling. Interestingly, the
separation of B cells and MSCs in a transwell assay inhibited the
suppressive properties of MSCs, suggesting that the involved
mechanism requires cell contact or at least close proximity.
Another study demonstrated that IL-35 plays a crucial role in
the induction of IL-10-producing Bregs by MSCs (Cho et al.,
2017). Besides the direct secretion of soluble factors, MSCs
also mediate their effects on B cells via extracellular vesicles
(EVs). For example, EVs from MSCs that were pretreated to
mimic inflammatory conditions inhibit the reorganization
of the actin cytoskeleton, which is a crucial event during
early B cell activation (Adamo et al., 2019). Furthermore, the

treatment of B cells with MSC-derived EVs induced the negative
modulation of the PI3K-AKT signaling pathway that is involved
in cell proliferation and survival. More recently, it has been
demonstrated that MSC-EVs block the interaction between
follicular T helper cells and germinal B cells, potentially leading
to a reduced GvHD score in a mouse model of chronic GvHD
(Guo et al., 2020). In contrast, it has also been reported that the
effects of AD-MSCs on B cells are mainly mediated by soluble
factors and not EVs (Carreras-Planella et al., 2019).

CONCLUSION

MSCs display an extraordinary capacity to modulate the
phenotype and functional properties of various immune cells
(Figure 1). Thus, they excel in inhibiting the maturation
and function of DCs and macrophages, while promoting
a shift toward regulatory DCs and anti-inflammatory M2
macrophages. They also effectively impair the proliferation and
proinflammatory functional properties of B- and T-lymphocytes
and induce the generation of Tregs and Bregs. Their
immunosuppressive capacities, especially in an inflammatory
setting, allow them to efficiently induce clinical responses in
patients with immune-mediated disorders (Munneke et al.,
2016; Panés et al., 2016; Wang et al., 2016; Bader et al., 2018).
Recently, several pre-clinical studies presented promising results
in using MSCs or MSC-derived EVs to treat acute lung injury or
acute respiratory distress syndrome in Covid-19 patients, and a
multitude of clinical studies are currently ongoing (Leng et al.,
2020; Moll et al., 2020; Saldanha-Araujo et al., 2020).

However, a significant proportion of patients with immune-
mediated disorders fail to respond to MSC-based therapy.
The heterogeneity and high plasticity of MSCs entail several
challenges and might explain the differences in the clinical
outcome. For example, recent evidence suggests that AD-
MSCs exhibit a stronger immunosuppressive capacity compared
to donor-matched BM-MSCs (Ménard et al., 2020). Besides
differing origins, additional differences of studies working
with MSCs arise from variations in culture conditions and
experimental settings. It has been shown that factors like isolation
procedure, seeding density, and media composition alter the
phenotype of MSCs, emphasizing the need for standardized
protocols (Bara et al., 2014; Czapla et al., 2019; Wang et al.,
2020a). Another approach to deal with heterogeneous results
in clinical trials is the use of biomarkers to predict the clinical
response and pre-select superior donor MSCs and eligible
patients. For example, TSG6 expression was shown to be a
positive predictor of MSC efficacy in a mouse model of sterile
inflammation (Lee et al., 2014). While the ideal biomarker
would comprise a univariable marker by which MSCs can be
selected prior to therapy, this is unlikely to be achieved due to
the extraordinary plasticity of MSCs. Instead, mechanistic and
functional evaluation may yield better results, such as the level of
cytotoxicity by recipient T and natural killer cells toward MSCs
which differed significantly between clinical responders and non-
responders in a study with GvHD patients (Galleu et al., 2017).
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To circumvent the need for cytotoxic actions from recipient
cells, the use of apoptotic MSCs proposes another attractive
approach and decreases the potential risk of a contribution to
tumorigenesis by living MSCs (Weiss and Dahlke, 2019). The
cryopreservation required for on demand solutions of viable
cells is yet another challenge, as it was shown to influence both
phenotypic and functional characteristics of MSCs (Moll et al.,
2016). Interestingly, the IFN-γ-mediated licensing of MSCs prior
to therapy might not only enhance their immunosuppressive
properties but also protect from cryo-induced reduction of
viability (Carvalho et al., 2019). Furthermore, cell-free therapies
using MSC-derived EVs have gained increasing attention, since
they are easier to generate and administer in large quantities,
more suitable for long-term storage, and easier to handle in terms
of safety and quality control (Phinney and Pittenger, 2017).

Despite these hardships, the capacity to adapt their
immunomodulatory effects according to environmental stimuli
makes MSCs superior candidates for several therapeutic
approaches. Nevertheless, additional research is required to
further unveil the underlying molecular mechanisms and
determine optimal isolation, cell culture, and cryopreservation
conditions to make MSCs meet their expectations in
clinical practice.
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