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Immuno-positron emission tomography (immunoPET) is a molecular imaging modality

combining the high sensitivity of PET with the specific targeting ability of monoclonal

antibodies. Various radioimmunotracers have been successfully developed to target a

broad spectrum of molecules expressed by malignant cells or tumor microenvironments.

Only a few are translated into clinical studies and barely into clinical practices.

Some drawbacks include slow radioimmunotracer kinetics, high physiologic uptake in

lymphoid organs, and heterogeneous activity in tumoral lesions. Measures are taken

to overcome the disadvantages, and new tracers are being developed. In this review,

we aim to mention the fundamental components of immunoPET imaging, explore

the groundbreaking success achieved using this new technique, and review different

radioimmunotracers employed in various solid tumors to elaborate on this relatively new

imaging modality.
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INTRODUCTION

There is an expanding insight into the role of different molecules and pathways in the development
and progression of cancer. The growing knowledge about the involved molecules and processes
has resulted in the modification in cancer management; therefore, targeted therapies and
immunotherapies are increasingly utilized to treat different malignancies (1–3). This process was
accelerated by the production of monoclonal antibodies (mAbs), following advances in DNA
technology and Ab engineering (4). The targets can be membrane receptors, enzymes, or various
molecules in signaling pathways, which are overexpressed or specifically present in a particular
tumor or its microenvironment (5). Targeting molecules include Abs and Ab fragments, small
molecule inhibitors, selective high-affinity ligands, some peptides, and aptamers (5, 6).

The first human radioimmunoimaging was conducted in 1978 using 131l-labeled whole
immunoglobin G (lgG) targeting carcinoembryonic antigen (CEA) (7) with inherent drawbacks.
Since then, significant efforts have been implemented to develop ideal radioimmunoimaging
tracers and radiopharmaceuticals for different cancers. The ideal tracer should be target-specific,
biologically inert, highly stable in serum, minimally immunogenic, with rapid biodistribution and
background clearance. Physiochemical characteristics to facilitate radiolabeling are also crucial
(6, 8). For instance, manufactured small-sized Ab fragments (Fab) show higher specificity and rapid
biodistribution and provide superior imaging characteristics over whole Abs (9, 10).
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In the era of ever-growing targeted therapy, there is
a requirement for accurate targeted imaging. Although
immunohistochemistry (IHC) is the integral modality for
detecting biomarkers (11), the non-invasive evaluation of the
whole-body remains a compelling field of research, especially
for patient selection and response evaluation. Medical imaging
has a fundamental role in managing solid tumors, among which
positron emission tomography (PET) is of particular importance
(12). PET-based imaging demonstrates different functional
and biochemical procedures occurring in normal tissues and
malignant tumors at the cellular and molecular levels (12, 13).

The recent advances in PET acquisition systems, providing
highly sensitive imaging (13), coupled with developments in
labeling methods (14) and the specific targeting offered by
mAbs, build the foundation of immunoPET. ImmunoPET is
molecular imaging used for (1) the evaluation of biodistribution
of Abs or their fragments in normal and malignant tissues,
(2) the non-invasive detection of expression of target
molecules and their heterogeneity in whole-body, and 3)
prediction of response to targeted therapies (15). Although
the concept of immunoPET is simple, it is an umbrella term
covering almost all aspects of medical imaging, including
oncology, infection/inflammation, neurological diseases, and
drug development.

In this review, we aimed to provide a simplified summary of
the current state of immunoPET in oncology. First, we briefly
present the principles of immunoPET. Afterward, we focus on
the Ab-based immunoPET in solid tumors and discuss the
various developed probes in preclinical and clinical studies for
each cancer.

THE CONCEPT OF IMMUNOPET

PET is a non-invasive and powerful imaging procedure with a
wide range of clinical and research applications. PET provides
the three-dimensional mapping of organs and lesions using a
radioactive tracer. Radionuclides are incorporated either into
compounds normally used by the organs, such as glucose, or
into molecules that bind to receptors, peptides, cytokines, or
other components of cellular pathways (16, 17). Recent advances
in the development of PET systems and sophisticated software
enable rapid, highly sensitive imaging (18). The combination of
the superior targeting specificity of immune system-associated
molecules and the inherent high sensitivity of PET technique
establishes the principle of ImmunoPET (19). These tracers can
specifically target various molecular pathways involved in the
tumor biology (4).

Generally, the successful development of immunoPET in
oncology is highly dependent on knowledge about the processes
involved in tumor biology, choice of tumor-targeting vectors,
radionuclides and chelators, and conjugation strategies. A
vast number of molecules and processes are involved in
tumor development and progression (20), the details of which
are beyond the scope of this review. Some of the studied
targets for imaging are discussed in more detail in the
next section.

A variety of tumor-targeting vectors have been investigated for
immunoPET. Full-length Abs are among the most used forms
(21). Abs and associated amino acid-based macromolecules
have been developed to display high specificity and binding
affinity toward molecular targets overexpressed by cancer cells
and tumor microenvironment (4). Their development dates
back to the beginning of the twentieth century when Paul
Ehrlich brought up the “magic bullet” idea to seek out and
eradicate the spirochete of syphilis without affecting normal
tissues (22).

MAbs are Abs with specificity for one particular epitope on
an antigen (23). Despite the clinical success, these Abs come
with a number of limitations including slow blood clearance,
serum sickness, low target-to-background ratio (TBR), and
the necessity of repetitive imaging (24). Moreover, high costs
of production limit their use in developing countries. Thus,
smaller Ab constructs have been engineered to overcome these
limitations (25). Engineered Abs have a faster clearance rate,
higher TBR, and are suggested to penetrate solid tumors more
effectively (26).

Immunoglobulin G (IgG) is the most common type of Abs.
IgG is composed of two main parts, crystallizable fragment
(Fc) and antigen-binding Fragment (Fab), which contain
polypeptides of heavy and light chains forming the constant
and variable fragments of the IgG. The smaller fragments used
for radiolabeling contain the variable domain. Fab and (Fab

′

)2
fragments are made by omitting the Fc region from Abs. They
can have more rapid renal clearance and improved tumor
penetration. However, their production is difficult and cannot be
obtained from all subclasses of Abs (27). The smaller molecule,
single-chain fragment variable (scFv), consists only of light and
heavy variable chains. scFvs are produced more easily and are
one of the most popular used fragments (28). The chains are
attached with a non-covalent association, making scFv normally
unstable. A disulfide bond between chains is used to increase
stability, forming disulfide fragment variable (dsFv), and single-
chain disulfide fragment variable (scdsFv). Proper tumor uptake
and retention could be achieved by increasing the valency of
scFvs molecules. Multivalent scFvs such as diabodies, tribodies
and tetrabodies are favorable agents for radioimmunoimaging.
In comparison with monovalent scFvs, tumor the retention time
is augmented in multivalent scFvs. Also, their clearance time
is shorter than whole Abs but equivalent to monovalent scFvs
(25). scFvs are cleared through the urinary system, and there is
significant retention in the kidneys (29).

Minibody is another engineered Ab fragment, produced by
combining scFv molecule with human IgG1 constant heavy
chain-3 (CH3) (30). Application of minibody is a mean to
surmount slow renal clearance, which is the major problem of
scFvs (29). Nanobodies or single-domain antibodies (sdAbs) are
the smallest fragments of Abs obtained from the camelid heavy-
chain-only Abs (31). Nanobodies are easier to produce and are
more stable than scFvs (31). Finally, there is a smaller engineered
targeting protein, affibody, which is derived from the IgG binding
region. Affibodies seem to be a suitable protein for imaging but
suffer from rapid clearance and decreased avidity to the targets
(Figure 1) (27).
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FIGURE 1 | The schematic illustration of an antibody and its fragments. The

schematic illustration of an antibody and its fragments. IgG has two main

parts, crystallizable Fragment (Fc) and antigen-binding Fragment (Fab). They

contain fragments (constant [C] and variable [V]) which are composed of

polypeptides of heavy (H) and light (L) chains. Due to inappropriate imaging

characteristics, smaller fragments of Abs, which contain the variable domain

for targeting, were developed. Fab and (Fab
′

)2 fragments are made by

omitting the Fc region from Abs. scFv consists only of light and heavy variable

chains. dsFv has a disulfide bond between chains, and scdsFv has both

non-covalent and disulfide bonds to increase stability. scFv dimers (diabody)

and multimers (not shown) provide more than one binding site. They can be

multivalent scFvs containing different targeting fragments (bsAb). Minibody is

an engineered Ab fragment, a combination of scFv with human IgG1 CH3.

Nanobodies are the smallest fragment produced from natural heavy-chain-only

Abs. CH, constant heavy chain; CL, constant light chain; dsFv, disulfide

fragment variable; Fab, antibody fragment; Fc, crystallizable fragment; IgG,

Immunoglobulin G; scdsFv, single-chain disulfide fragment variable; scFv,

single-chain fragment variable; VH, variable heavy chain; VL, variable light

chain; VHH, variable heavy chain of heavy-chain-only antibodies.

IMMUNOPET IN DIFFERENT
MALIGNANCIES

ImmunoPET is known to provide excellent specificity and
sensitivity in detecting some tumors (32, 33). However, some
drawbacks include suboptimal imaging properties (feasibility,
long imaging protocols), low expression of the targets in tumoral
lesions, and high background activity in some organs.

Several molecules are involved in the development of different
malignancies (Table 1). Receptor tyrosine kinases (RTKs) have
been among the most explored targets for developing anticancer
therapeutic and imaging agents. Substantial efforts have been
made to establish immunoPET probes for revealing the
heterogeneous expression of RTKs. The human epidermal
growth factor (HER) family is one of the most evaluated RTKs,
including four members, HER1-4 (101). A number of mAbs
and Ab fragments have been developed for preclinical and
clinical studies targeting anti-epidermal growth factor receptor
(EGFR, known as HER1) in various malignancies (101), HER2
mostly in breast cancer (102), and HER3 in different solid
tumors (103–106). Other RTKs, such as vascular endothelial-
derived growth factor/receptor (VEGF/VEGFR) (107) and
platelet-derived growth factor/receptor (PDGF/PDGFR) (82),
and insulin-like growth factor-1 receptor (IGF-1R) (74) have also
been targeted for immunoPET imaging.

Processes other than only high Ag-Ab affinity are required for
appropriate targeting. The heterogeneous tracer uptake and high
physiologic activity, especially in the liver and lymphoid tissue,
can make imaging with these probes challenging (15, 106, 108).
Preinjection of the cold tracer might decrease the hepatic uptake
(109). Also, long radioimmunotracer clearance time for whole
Abs can limit the tumor visualization (67, 110, 111). On the other
hand, the renal retention of the smaller fragments is higher (112–
115). Moreover, the poor vascular permeability of the tumors
rather than the unfavorable characteristics of the probe can affect
the outcome (17, 116).

The binding of programmed cell death protein ligand-1
(PD-L1) on the tumor cells to PD-1 on T-cells suppresses T-
cell function and helps tumors escape the immune system.
Immune checkpoint inhibitors (ICIs) are Abs that block PD-
L1 and show therapeutic effect in various malignancies (117).
Several radiolabeled ICIs have been developed for immunoPET,
showing high physiologic uptake in lymphoid tissues (118, 119).
Preinjection of unlabeled anti-PD-L1 may be useful for the
PD-L1 expression evaluation (120). Also, T-cells in the tumor
microenvironment impact response to therapies (121, 122) that
have been evaluated in different malignancies (123–126), which
can be used as a biomarker for response evaluation.

Many other proteins and molecules are overexpressed in
different tumors, making them potential targets for immunoPET
imaging. Some molecules and pathways are engaged in the
development of various malignancies, and some are particularly
found in distinct tumors. Below, we review the relevant evaluated
probes in different malignancies.

Breast Cancer
Breast cancer is a heterogeneous malignancy with different
features and outcomes (127). HER2 is a well-known prognostic
biomarker and an effective therapeutic target (127, 128). Despite
multiple therapeutic agents (127, 129), there is an unmet need
to identify the patients who may benefit from these expensive
and potentially toxic pharmaceuticals (109). There is intrapatient
and intratumoral heterogeneity in expression of HER2 (15,
109, 130, 131), which is also dynamic over the disease course
(129). This impacts the therapy response and the treatment
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TABLE 1 | Biomarkers targeted in different malignancies for immunoPET imaging.

Biomarker Type Role

A33 (34) Transmembrane glycoprotein Interacts in cell adhesion.

ACKR3 (35) Transmembrane protein Interacts in cell adhesion, angiogenesis, tumor development and progression.

Axl (36) Transmembrane RTK Responsible for cancer development and progression

Associated with survival.

CA 15-3 (MUC1) (37) Transmembrane glycoproteins Expressed on normal and malignant epithelial cells, possessing different functions

(cell surface protection, cellular adhesion).

CA125 (MUC16) (38) Transmembrane glycoproteins Expressed on normal and malignant epithelial cells, possessing different functions

(cell surface protection).

CA6 (39) tumor-associated mucin 1-sialoglycotope antigen Results of aberrant glycosylation in cancer cells.

CA-IX (40) Cell surface protein Overexpressed in hypoxia.

Associated with tumor aggressiveness.

Cadherin-17 (CDH17) (41) Transmembrane protein Plays role in the adhesion of cells.

CD11b (42) Transmembrane protein, a part of macrophage-1

antigen

Expressed on tumor-associated myeloid cells.

Interacts in cell adhesion, migration, and complement 3 activation.

CD30 (43) Transmembrane glycoprotein, member of TNF

superfamily

Upregulated in T-cell activation.

Regulates cytotoxic function of NK and T-cells.

CD38 (44) A cell surface receptor and enzyme Interacts in cell proliferation.

May have role in resistance to ICIs.

CD44 (45) A non-kinase transmembrane glycoprotein Interacts in cell adhesion, migration, and metastasis.

Responsible for cancer development and progression

CD44v6 (46) An oncogenic variant of the cell surface molecule

CD44

Responsible for cancer progression, invasion, and metastasis, overexpressed in

squamous epithelium.

Associated with resistance to therapy.

CD47 (47) Transmembrane protein (macrophage immune

checkpoint)

Plays role in the downregulation of immune response.

Associated with poor prognosis.

CD133 (Prominin-1) (48) Transmembrane glycoprotein A stem cell identification marker.

Associated with progression and poor prognosis.

CD146 (MUC18) (49, 50) A cell surface protein Interacts with VEGFR, activates epithelial-to-mesenchymal transition, which promotes

metastatic potential and resistance to apoptosis.

Associated with progression, invasion, and metastasis.

CD147 (51) transmembrane protein of Ig superfamily Inducts MMPs and VEGF expression.

Associated with tumor growth and metastasis.

CDCP1 (52) Transmembrane receptor Regulates signaling pathways in tumors.

Relays cancer promotion and associated with poor prognosis.

CEA (53–55) Cell surface glycoprotein Modulates intercellular adhesion, promotes cellular aggregation, and mediates

transduction.

Correlates with poorer survival.

Enhances the potential of metastasis.

CTLA-4 (CD152) (56) A membrane protein (Immune check point) Plays role in the downregulation of immune response.

CXCR4 (57) Transmembrane receptor for the chemokine CXCL12 Plays role in chemotaxis and cell proliferation.

Dll4 (58) A ligand of Notch family transmembrane receptors Activates Notch signaling and improves vascular function in tumors.

Associated with poor prognosis.

Disease-associated ECM

protein (59)

ECM proteins ECM plays role in invasion, prognosis, angiogenesis, and resistance to therapies.

Endoglin (CD105) (60) Accessory receptor for TGF-β Overexpressed in endothelial of tissues with angiogenesis.

Associated with poorer prognosis.

EpCAM (CD326) (61) glycoprotein Interacts in cell adhesion, intercellular interaction and migration.

FAP-α (62) Transmembrane serine protease Interacts in multiple mechanisms involved in tumor proliferation invasion, progression

and resistance to therapy.

Associated with poor prognosis.

Gal-3 (63) Galactoside-binding protein Modulates cell growth.

Associated with prognosis.

GITR (64) Co-stimulatory molecule for T-cell Differential immune T-cell response.

GPC3 (65) Cell-surface protein Regulates cell growth.

Associated with poor prognosis.

(Continued)
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TABLE 1 | Continued

Biomarker Type Role

GRP78 (66) A heat shock protein Induced by lack of glucose.

Associated with poor prognosis.

HER1 (EGFR) (67) Transmembrane RTK Involved in signal transduction, responsible for transcription of various genes.

Enhances tumor cell survival, proliferation, and differentiation.

Related with resistance to treatment.

HER2 (CD340) (68) Transmembrane RTK Involved in signal transduction, responsible for transcription of various genes.

Important role in the growth, progression, and metastasis.

HER3 (69) Transmembrane RTK Responsible for cancer development and progression.

Associated with poor prognosis and resistance to therapy.

HGF (70) Cytokine A ligand for MET.

Associated with tumor development, progression and therapy resistance.

hk2 (71) trypsin-like enzyme Enhances sperm motility.

Released in blood when the prostate gland structure is compromised.

ICAM-1 (CD54) (72) Transmembrane protein Plays role in cell adhesion.

ICOS (CD278) (73) Co-stimulatory molecule for T-cell Differential immune T-cell response.

IGF-1 (74) Transmembrane RTK Plays role in the development of cancer, proliferation, apoptosis, angiogenesis, tumor

invasion, resistance to therapy

Integrin αvβ6 (75) Cell surface receptor Interacts with cell adhesion.

Plays role in progression.

L1CAM (76) Transmembrane protein Plays role in cell adhesion, proliferation, migration, and invasion.

LGR5 (77) Transmembrane glycoprotein, a marker of stem cells Incorporates in tumor growth, therapy, and likely recurrence.

Associated with metastasis, resistance, and poor prognosis.

MET (70) Transmembrane RTK Receptor of HGF.

Tumor development, progression and therapy resistance

MG7 (78) Gastric cancer-specific antigen Overexpressed in gastric cancer.

Associated with poor prognosis.

MSLN (79) Membrane-bound surface

glycosylphosphatidylinositol

Help tumor peritoneal implantation, proliferation and survival

MT1-MMP (80) Endopeptidases Degradation of ECM helping cell migration.

Associated with tumor progression and metastasis.

OX40 (CD134) (64) Co-stimulatory molecule for T-cell Differential immune T-cell response.

PD-1/L1 (CD274) (81) Transmembrane protein (immune checkpoint) Plays role in the downregulation of immune response.

Associated with resistance to therapy.

PDGF/PDGFR (82) Transmembrane RTK Incorporates in tumor cell growth and angiogenesis.

Syndecan-1 (CD138) (83) Transmembrane cell-surface heparan sulfate

proteoglycans

Affects several steps in tumor progression and facilitate metastasis.

Correlates with poor prognosis and an aggressive phenotype.

Periostin (84) ECM protein Plays role in adhesion and motility in tumor microenvironment

peroxiredoxin-I (85) Cell surface receptor Plays role in oxidative stress.

Prognostic factor for lung cancer.

PSA (86) Kallikrein-like serine protease Enhances sperm motility.

Released in blood when the prostate gland.

PSCA (87) cell surface protein Overexpressed in prostate cancer.

Plays role in signal transduction.

Correlates with progression, metastasis and poor prognosis.

PSMA (88) A transmembrane glycoprotein Overexpressed in prostate cancer.

Increases aggressiveness of prostate cancer.

RAGE (89) Transmembrane receptor Binding to multiple ligands.

Plays role in transition to cancer.

RANKL (90) A member of TNF Plays role in osteoclastogenesis and bone

Homeostasis.

Plays resistance to immunotherapy.

TAG-72 (91) Membrane-bound glycoprotein A glycoprotein with mucin properties, overexpressed in some adenocarcinomas.

Associated with progression.

TAM (92) Macrophage Associated with metastasis and poor response different therapies.

Associated with poor survival.

TF (CD142) (93) Transmembrane glycoprotein receptor Initiates of the coagulation cascade.

(Continued)
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TABLE 1 | Continued

Biomarker Type Role

TfR (94) Transmembrane glycoprotein Involves in iron uptake and cell growth.

TGF-β (95) Cytokine Plays a significant role cell proliferation, differentiation and apoptosis.

Associated with poorer prognosis

TIL (96) Lymphocyte Responsible for malignant cells’ death.

The presence of TIL correlates with survival.

TIM-3 (97) Immune checkpoint Plays role in the downregulation of immune response.

TRA-1-60 (98) Cell-surface antigen, a biomarker of stem cell Associated with drug resistance and recurrence.

TROP-2 (99) Transmembrane glycoprotein Possesses stem-cell like qualities.

Regulates proliferation, transformation and progression.

VEGF/VEGFR (100) Transmembrane RTK Responsible for tumor angiogenesis.

Associated with progression and poor prognosis.

ACKR3, Atypical chemokine receptor 3, known as C-X-C chemokine receptor type 7; CA 15-3, Carcinoma antigen 15-3; CA125, Carbohydrate antigen 19-9; CA6, Carbonic anhydrase

6; CA-IX, Carbonic anhydrase-IX; CD, Cluster differentiation; CDCP1, CUB domain-containing protein 1; CEA, Carcinoembryonic antigen; CTLA-4, Cytotoxic T-lymphocyte associated

protein-4; CXCR4, C-X-C chemokine receptor type 4; Dll4, Delta-like ligand 4; ECM, Extracellular matrix; EGFR, Epidermal growth factor receptor; EpCAM, Epithelial cellular adhesion

molecule; EphA2, Ephrin receptor A2; FAP-α, Fibroblast activation protein-alpha; Gal-3, Galactoside-binding protein galectin-3; GITR, Glucocorticoid-induced tumor necrosis factor

receptor; GPC3, Glypican-3; GRP78, Glucose-regulated protein; HER, Human epithelial receptor; HGF, Hepatocyte growth factor; hk2, Human kallikrein-related peptidase 2; ICAM-1,

Intercellular adhesion molecule-1; ICI, Immune checkpoint inhibitor; ICOS, Inducible T-cell costimulatory receptor; IGF-1, Insulin-like growth factor-1; LGR5, Leucine-rich repeat-

containing, G protein-coupled receptor 5; MMP, Matrix metalloproteinases; MSLN, Mesothelin; MT1-MMP, Membrane type-1 matrix metalloproteinases; MUC, Mucin; OX40, Tumor

necrosis factor (ligand) superfamily, member 4; PD-1/PD-L1, Programmed cell death protein-1/ligand; PDGF/PDGFR, Platelet-derived growth factor/receptor; PSA, Prostate-specific

antigen; PSMA, Prostate-specific membrane antigen; RAGE, Receptor for advanced glycation end products; RANKL, Receptor activator of nuclear factor kappa B ligand; RTK, Receptor

tyrosine kinase; TAG-72, Tumor-associated glycoprotein-72; TAM, Tumor-associated macrophages; TF, Tissue factor; TfR, Transferrin receptor; TGF-β, Transforming growth factor beta;

TIL, Tumor-infiltrating lymphocyte; TIM-3, T-cell immunoglobulin and mucin domain-containing-3; TNF, Tumor necrosis factor; TROP-2, Known as tumor-associated calcium signal

transducer 2; VEGF/VEGFR, Vascular endothelial-derived growth factor/receptor.

options for patients. In this regard, several studies investigated
radiolabeled mAbs and their fragments to develop new imaging
agents targeting HER2. Proper tumor uptake and visualization
of HER2-positive lesions were demonstrated using 89Zr-labeled
pertuzumab and trastuzumab in the preclinical (132, 133) and
phase I clinical studies (102, 131, 134, 135).

Although new lesions were found (102), some HER2-positive
lesions showed no significant uptake (102, 134), and the
detection rate of 79–89% was reported (102, 134). Interestingly,
HER2-targeting tracer uptake, suggesting HER2-positivity, was
demonstrated in metastases from HER2-negative primary
tumors (130, 131). The heterogenicity was also illustrated
in metabolism on [18F]FluoroDeoxyGlucose PET/computed
tomography ([18F]FDG PET/CT), with a discrepancy in the
same-lesion standardized uptake value (SUV) between [18F]FDG
and [64Cu]Cu-trastuzumab in HER2-positive lesions (109).
This observation suggests a complementary role for both
scans, further evaluated in a multicenter study (15). Gebhart
et al. showed that pre-treatment [89Zr]Zr-trastuzumab PET/CT
accompanied by early metabolic response assessment using
[18F]FDG PET/CT best predicts the outcome after trastuzumab
therapy (15). Moreover, to guide the treatment approach,
[89Zr]Zr-trastuzumab PET/CT increased physicians’ confidence
or altered management in a substantial ratio of patients (136).
Also, early changes in [89Zr]Zr-trastuzumab uptake correlated
with response to therapy with a new experimental agent (137).
The liver uptake is substantial with whole Abs, which may be
decreased by the cold pharmaceutical preinjection (109).

To improve pharmacokinetics, scholars developed different
HER2-targeting small Ab fragments in preclinical studies (138–
141). Also, to enable early imaging and feasibility of labeling

with more accessible radionuclides, such as 68Ga, promising Ab
fragments are investigated in early phase clinical studies (112–
115, 142), showing a high correlation between the probe uptake,
[68Ga]Ga-ABY-025, and pathology (142). Expectedly, the renal
retention is higher using Ab fragments (112–115).

Regulation of the immune system by ICIs have shown
therapeutic efficacy in triple-negative breast cancer (143).
Evaluating PD-L1 expression, Bensch et al. reported a
heterogeneous tracer uptake in a few cancer types, including
triple-negative breast cancer (144). The intensity of [89Zr]Zr-
atezolizumab (anti-PD-L1) uptake best correlated with outcome
compared to IHC in their study (144). Currently, the role of
[89Zr]Zr-atezolizumab PET/CT is being investigated for patient
selection for ICIs therapy (NCT02478099 and NCT02453984).
Moreover, [89Zr]Zr-Avelumab, another anti-PD-L1 ligand, is
developed for the imaging of breast cancer in preclinical studies
(145, 146).

In addition, CEA is a cell surface adhesion molecule (53),
correlating with poor survival in breast cancer (54). Imaging
with anti-CEA immunoPET seems promising. TF2 is a bispecific
trivalent mAb comprising two humanized anti-CEA and an
antihistamine-succinyl-glycine (HSG) hapten Fab fragments.
This unique structure enables TF2 to be used in pretargeted
imaging of malignancies with CEA expression (147). It showed
more bone metastases than conventional imaging (148, 149) and
helped delineate the clinical target volume for stereotactic body
radiotherapy in CEA-positive metastatic breast cancer (148).

Furthermore, markers of tumor anagenesis have been targeted
for immunoPET, which can be used as response prediction
biomarkers to anti-angiogenesis therapies (150). The anti-VEGF,
[89Zr]Zr-bevacizumab, localized almost all primary breast lesions
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(25/26) but was limited in the detection of metastatic lymph
nodes (4/10) (151). Also, the uptake of anti-endoglin (anti-
cluster of differentiation [CD]105), an accessory receptor for
transforming growth factor-β (TGF-β), was demonstrated in
mice models (60, 152–155).

There are also other prognostic biomarkers which have been
evaluated for the imaging of triple-negative breast cancer in
preclinical studies, such as syndecan-1 (CD138) (83) and IGF-
1 (74).

Lung Cancer
Non-small cell lung cancer (NSCLC) is also a heterogeneous
malignancy (156). Radioimmunoimaging in lung cancer has been
performed in preclinical and clinical studies for various purposes.

Guidelines recommend targeted therapies for treating NSCLC
using anti-EGFR and anti-VEGF/R mAbs (157). Similar to other
therapies, it is crucial to predict the response before or early
during the treatment. Radiolabeled Abs targeting EGFR (such as
panitumumab and cetuximab) (10, 158–160) and VEGF/VEGFR
(bevacizumab and ramucirumab) (150, 161, 162) have shown
increased uptake in tumoral cells, including NSCLC (163–165).
In pilot clinical studies, the feasibility and safety of administration
of [89Zr]-cetuximab (111) and [89Zr]Zr-bevacizumab (166) were
demonstrated in patients with NSCLC, showing TBRs of 0.9–
4.5 and 0.7–8.6 in tumoral lesions for [89Zr]Zr-cetuximab and
[89Zr]Zr-bevacizumab, respectively (111, 166).

ICIs are also increasingly administered in NSCLC patients
with expression of PD-1/PD-L1 (167–169). Scholars have
developed radiolabeled-ICIs to non-invasively evaluate the
expression of PD-1/PD-L1 (170–172) and cytotoxic T-
lymphocyte associated protein-4 (CTLA-4) (56). In clinical
studies, [89Zr]Zr-nivolumab (anti-PD-1), [18F]BMS-986192
(anti-PD-L1 adnectin) (118) and [89Zr]Zr-pembrolizumab
(anti-PD-1) (173) demonstrated heterogeneous uptake and
delineation of lesions larger than 2cm in some patients. The
tumor uptake was insignificantly higher in responders to the
anti-PD-1 treatment (118, 173).

The presence of tumor-infiltrating lymphocytes (TILs)
correlates with survival in different malignancies (96). Also,
the amount of T-cell infiltration after immunotherapy in the
tumor microenvironment impacts the response (121, 122). The
non-invasive evaluation of these cells may predict response to
immunomodulatory therapies. Probes have been developed to
monitor TILs dynamics after therapy (123–126). In this regard,
an anti-CD8 minibody, [89Zr]Zr-IAB22M2C, showed a favorable
biodistribution (174), and currently, it is under investigation in
phase II clinical trial for different solid tumors (NCT03802123).
Also, the presence of tumor-associated macrophages (TAMs),
indicating poorer survival (92), CD30, a marker of T-cell
activation (175), and inducible T-cell costimulatory receptor
(ICOS), a costimulatory signaling molecule (73) have been
assessed using immunoPET.

MET is an RTK, a receptor of hepatocyte growth factor (HGF),
which plays a role in the development, progression, and therapy
resistance (70). ImmunoPET shows potential in the non-invasive
evaluation of MET expression (176, 177). Another biomarker,
CD146, interacts with VEGFR (17). It is overexpressed in about

50% of lung cancers and correlates with poor survival (178, 179).
The [64Cu]Cu-YY146 mAb showed a positive correlation with
CD146 expression (49) and strong binding to CD146-expressing
cell lines (50). Daratumumab (anti-CD38 mAb) is approved
for treating multiple myeloma and is being investigated in a
phase I/II clinical trial (NCT03665155). CD38 may have a role
in resistance to immunotherapies (44). [89Zr]Zr-daratumumab
uptake has been reported in the CD38-expressing lung cancer
model (44). Other probes against RTK [HER2 (180) and Axl (36)]
and peroxiredoxin-I, a marker of oxidative stress (85), have also
been assessed in NSCLC.

Colorectal Cancer
Tumor biomarkers are being investigated in metastatic colorectal
cancer and are used to guide patient selection due to variable
responses to available targeted therapies (181, 182).

Anti-EGFR therapy is used for Kirsten rat sarcoma virus
(KRAS) wild-type tumors; however, not all patients respond
to this therapy (183, 184). Anti-EGFR immunoPET using
cetuximab and panitumumab showed specific but heterogeneous
uptake in EGFR-expressing preclinical models (67, 160, 185,
186) and colorectal cancer patients (184). Evaluating the clinical
impact in patient selection for therapy, van-Helden et al. failed
to demonstrate a relation between [89Zr]Zr-cetuximab-positivity
and treatment response or outcome (183). Also, the high liver
sequestration of [89Zr]Zr-cetuximab in normal liver tissue is
vital in colorectal cancer, limiting its diagnostic ability in liver
metastasis (108).

Anti-CEA Ab scintigraphy was used for the first human
radioimmunoimaging (7), and it is a relevant target for
immunoPET (55). Different mAb and small Ab fragments
have been developed for preclinical studies (187–189).
However, pretargeted imaging using bispecific Ab (bsAb)
seems more promising. Bispecific tracers (anti-CEA × anti-
HSG) demonstrated highly specific tumor localization (190–193)
and may outperform [18F]FDG PET/CT (194). A recent phase
I trial depicted the safety and feasibility of [68Ga]Ga-IMP288
PET/CT (an anti-CEA × anti-HSG) with TF2 pretargeting,
showing encouraging diagnostic performance for the detection
of colorectal cancer metastases with the sensitivity of 88% and
specificity of 100% (195).

T-cell redirecting bsAb are novel agents that target different
antigens on T-cells and tumor cells, facilitating T-cell antitumor
response (196). Using bsAbs, an anti-CEA× anti-CD3 [[89Zr]Zr-
AMG 211 (197)], and an anti-CEA × anti-interleukin-2
[[89Zr]Zr-CEA-IL2v (198)] showed specific uptake in CEA-
positive tumors, highlighting the potential value of such probes
in immunomodulatory therapy response monitoring.

A33 is a glycoprotein responsible for cell adhesion,
overexpressed in 95% of colorectal cancers (34). [124I]I-
huA33 PET/CT localized tumoral lesions in colorectal
cancer patients (34, 199); however, the tracer uptake was
also seen in normal bowel (34). To improve pharmacokinetics,
pretargeted imaging was also evaluated, producing high-quality
images in the preclinical studies (200, 201). The expression of
another prognostic cell adhesion glycoprotein, CD44, was also
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demonstrated in colorectal cancer models (202, 203). Tumor-
associated glycoprotein-72 (TAG-72) was also targeted (204),
which is a prognostic cell membrane molecule overexpressed in
colorectal cancer with mucin (MUC) properties.

Moreover, the cancer stem cell hypothesis suggests the
possible role of cancer stem cells in the progression of
malignancies. In this regard, a few molecules have successfully
targeted stem cells in preclinical studies, such as CD133 (205)
and LGR5 (leucine-rich repeat-containing, G protein-coupled
receptor 5) (77, 206). Additionally, probes monitoring TILs in
response to immunotherapy have been evaluated in colorectal
cancer models (124, 125).

There are other factors involved in tumor development,
progression, and poor prognosis in colorectal cancer, assessed as
targets for immunoPET in preclinical studies for the detection
of colorectal cancer cell lines, including HER3 (69), angiogenesis
factors [VEGFR (161) and PDGFRβ (82)], and hypoxia (M75
targeting carbonic anhydrase-IX [CA-IX]) (40, 207).

Prostate Cancer
Ongoing studies are striving to improve imaging in prostate
cancer. The prostate-specific membrane antigen (PSMA) is
known as a suitable target for prostate cancer imaging and
therapy (208, 209). Agents targeting PSMA are classified into
three groups: Abs, aptamers, and PSMA inhibitors (210). Here,
we discuss Abs against the PSMA molecule and other targets for
immunoPET imaging of prostate cancer.

ProstaScint ([111In]In-capromab-pentitide) was the first FDA-
approved mAb-based imaging, employing a mAb against PSMA
(7E11) to detect occult pelvic lymph node metastases and
recurrence of prostate cancer (211, 212). However, the binding
of 7E11 to the intracellular epitope of PSMA resulted in low
sensitivity for detecting metastases (213). To overcome this
limitation, extracellular-binding mAbs were developed, such as
J591 (88), labeled with imaging and therapeutic radionuclides
(214–216). In a clinical study, the humanized [89Zr]Zr-J591
(huJ591) showed accuracies of 60% and 95% for the detection
of soft-tissue and bone metastases (217). However, mAbs have
a prolonged circulation time due to their large size (218). In
this regard, the third generation mAbs (minibodies/diabodies)
were developed (219, 220). [89Zr]Zr-IAB2M, aminibody, showed
a favorable biodistribution (221) and promising diagnostic
performance compared to magnetic resonance imaging (MRI)
and [68Ga]Ga-PSMA PET/CT (222). It had a sensitivity of 88%
and a low specificity of 34% (222). Also, other anti-PSMA Abs,
[64Cu]Cu-3/A12 (223, 224), and [124I]I-ScFvD2B (225), have
successfully localized PSMA-positive prostate cancer xenografts.

One of the challenges in prostate cancer imaging is tumors
with no or negligible PSMA uptake. Therefore, tracers targeting
biomarkers of poorer prognosis may help detect or treat this
subset of patients.

Various other Abs or Ab fragments have been evaluated
in preclinical studies. Prostate stem cell antigen (PSCA) is a
cell membrane protein that plays a part in signal transduction.
Because of the slow kinetics of whole mAbs, different Ab
fragments have been produced to target PSCA in preclinical
studies (87, 226–228). It may become helpful in response

evaluation to anti-androgen therapy (87). Low non-specific
uptake has been reported with [124I]I-A11 minibody (226) and
slightly better with its smaller fragment, [89Zr]Zr-A2cDb diabody
(227, 229). Furthermore, TROP-2, known as tumor-associated
calcium signal transducer 2, is a glycoprotein possessing stem-
cell like qualities, overexpressed in some malignancies, (99).
Pretargeted imaging with bsAbs, anti-TROP-2 × anti-HSG, may
improve TBR and provide a fast, sensitive, and specific tool for
prostate cancer imaging (218, 230). Also, a scFv against CD133,
[89Zr]Zr-HA10, localized in aggressive prostate cancer models
(231, 232).

Others are anti-EpCAM Ab against epithelial cell adhesion
molecule (233), [64Cu]Cu-1A2G11 targeting IGF-1R (234),
[89Zr]Zr-Bstrongomab against TRA-1-60, an stem cell biomarker
(98), [89Zr]Zr-11B6 against androgen receptor-regulated human
kallikrein-related peptidase 2 (71), and [89Zr]Zr-5A10 against
free prostate-specific antigen (235).

Prostate cancer cells have been targeted with different Abs and
Ab fragments; however, few have been investigated in human
studies. Mainly because PSMA inhibitors, showing favorable
theranostic values (208, 209), have cast a shadow on other
targets in prostate cancer. However, immunoPET may further
help evaluate the aggressive variants (231, 232) or androgen
receptor status or guide androgen receptor deprivation therapy
(71). Also, it can have a role in radioimmunotherapy of patients
who are not candidates or not responding to the currently
available therapies.

Gastric Cancer
ImmunoPET has been investigated in gastric cancer only in
limited studies. Targeted therapy against HER2 is recommended
to treat gastric cancer with HER2-overexpression (168).
ImmunoPET has shown promising results in the non-invasive
evaluation of HER-positive lesions. Radiolabeled anti-HER2
(236, 237) and anti-HER3 (mAb3481) (238) successfully
detected gastric cancer cells in mice models. Also, to assess
therapy response after HER2-targeted therapy, a decrease
in [89Zr]Zr-trastuzumab uptake was demonstrated in the
gastric cancer xenografts (239). Additionally, the dynamics
of HER2 expression after pretreatment with lovastatin was
evaluated using HER2 targeted immunoPET (240, 241). In
initial clinical studies, [89Zr]Zr-trastuzumab has shown a wide
range of no to intense uptake in HER2-positive gastroesophageal
cancers (242, 243). The uniformly high [89Zr]Zr-trastuzumab
uptake in all lesions was associated with a good response to
therapy (243).

A few studies evaluated the MET/HGF pathway in gastric
cancer. Radiolabeled rilotumumab (anti-HGF mAb) and
onartuzumab (anti-MET mAb) non-invasively detected HGF
and MET expression, respectively (244, 245). Additionally, MG7,
a gastric cancer-specific antigen, is a prognostic biomarker (78).
PET imaging of anti-MG7 Abs in gastric cancer xenografts
showed a favorable binding affinity (246), but its application may
be limited due to the overexpression of MG7 in helicobacter-
related gastric disease (247). Also, radiolabeled anti-cadherin17
Ab (CDH17, an adhesion protein) was introduced as a potential
probe for CDH17-positive gastric cancer (248).
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Hepatocellular Carcinoma (HCC)
Imaging HCC, especially for lesions smaller than 2cm, is
still challenging (249). There are only few studies that used
immunoPET to evaluate HCC. Glypican-3 (GPC3) is a cell
surface protein overexpressed in HCC (65). Different anti-
GPC3 89Zr-labeled mAbs have been introduced, showing specific
uptake in xenografts (250–252). To overcome the long biological
half-life and weak tumor penetration, a F(ab

′

)2 fragment
([89Zr]Zr-αGPC3-F(ab’)2) was also developed (253). CD146 and
CD38 are also expressed in HCCs. Imaging with an anti-CD146
dual-labeled tracer (89Zr- and near-infrared fluorophore (NIRF),
YY146-ZW8000), and an anti-CD38 ([64Cu]Cu-daratumumab)
showed specific tracer uptake in preclinical studies (254, 255).

Esophageal Cancer
ImmunoPET of esophageal cancer using multiple targets can
provide useful information to detect primary tumors and
metastases and identify tumor phenotype to facilitate patient
selection for targeted therapies (57, 84, 256, 257).

Anti-EGFR imaging has been evaluated in a few preclinical
studies, showing potential for [64Cu]Cu-cetuximab PET/CT
for the EGFR-expression detection and patient selection for
cetuximab treatment (257, 258).Moreover, the detection ofHER2
expression was evaluated in a small number of patients with
gastroesophageal cancer (242). Similar to other malignancies,
there was a wide range of uptake intensity from no uptake
to SUV of 22.7 (242). Additionally, the decrease in vascular
density after anti-VGEF treatment was depicted by [89Zr]Zr-
bevacizumab immunoPET (259). Finally, the overexpression of
some biomarkers, such as periostin, an extracellular matrix
(ECM) protein (84), and atypical chemokine receptor 3
(ACKR3), a cell adhesion transmembrane protein (35), was non-
invasively depicted in esophageal cell lines.

Head and Neck Squamous Cell Carcinoma
(HNSCC)
A few targets such as EGFR and CD44v6 have been evaluated
in HNSCC (260, 261). Therapeutic Abs targeting EGFR
showed promising outcomes in HNSCC treatment (262). Hence,
ImmunoPET can be a valuable approach for diagnosis, treatment
response prediction, and RIT planning in this group of cancers
(46, 263–266). Several studies assessed the correlation of
radiolabeled cetuximab uptake with EGFR expression to predict
response to anti-EGFR therapies in HNSCC (67, 266–268),
showing a clear tumor visualization in almost all patients (8/9)
in phase I clinical trial (111). Similar to other malignancies, a
mismatch of [89Zr]Zr-cetuximab (67, 111, 268) and [64Cu]Cu-
panitumumab (116) uptake and EGFR expression was reported.
However, an anti-EGFR affibody strongly correlated with EGFR
expression alteration in response to cetuximab (269). Heat
shock protein 90 (HSP90) is significantly associated with many
oncoproteins and an interesting target for therapy (260). After
HSP90 inhibitor therapy in a preclinical model, the amount
of [124I]I-cetuximab uptake was decreased in xenografts, but
the uptake of [124I]I-CD4v6 was unaffected (260). CD44v6 is
a specific isomer of CD44, expressed in cells with squamous
differentiation and overexpressed in squamous cell carcinomas

in different organs (270). Preclinical studies on engineered anti-
CD44v6 Abs, Ab fragments, and minibodies reported specific
tumor uptake and more favorable kinetics in HNSCC animal
models (46, 271, 272). In one of the first clinical studies,89Zr-
labeled anti-CD44v6, U36, detected primary tumors in all
subjects and had equal performance to CT and MRI for the
metastatic lymph node detection (273).

Thyroid Cancer
Thyroid cancer is a common malignancy, effectively managed
with radioactive iodine. However, management of less common
thyroid cancer subtypes is challenging. Recently, various
molecules were evaluated for targeted imaging and therapy in
these cancers (274, 275).

Expression of PDGFRα has been correlated with treatment
resistance and risk of recurrence in papillary thyroid carcinoma
(PTC). [64Cu]Cu-D13C6, a PDGFRα targeting mAb, had specific
uptake in PTCmodels, which can be of significant potential given
that PTC is the most prevalent type of thyroid cancer (276).
Moreover, β-galactoside-binding protein galectin-3 (Gal-3) is a
biomarker, expressed only in thyroid cancer cells (63). 89Zr-
labeled targeting IgG and Fab fragments successfully detected
thyroid cancer lesions and can potentially be used for identifying
recurrence and metastasis (277–281).

Some anaplastic thyroid carcinomas (ATC) overexpress
HER2. In this regard, dual-tracer imaging by 89Zr- and IRDye
800CW-labeled pertuzumab depicted HER2-expressing ATC cell
lines (282). Similar results were observed for an intercellular
adhesion molecule-1 (ICAM-1), and tissue factor (TF or CD142,
a mediator of hemostasis and inflammation) targeting probes in
ATC models (72, 283). These findings can be of significant value
in the diagnosis and management of this aggressive subtype.
[124I]I-U36, an anti-CD44v6, also demonstrated high ATC tumor
accumulation independent of the iodine uptake (284).

Medullary thyroid carcinoma (MTC) is a rare subtype,
significantly expressing CEA. The first clinical trial of pretargeted
PET with TF2, a bispecific trivalent mAb of anti-CEA × anti-
HSG, in relapsing MTC patients showed high tumor uptake
(285). Moreover, the TF2 probe had superior sensitivity over
[18F]fluoro-l-dopa ([18F]FDOPA) PET/CT (148, 286) and CT
(286) in detecting metastatic lesions.

Pancreatic Cancer
Pancreatic ductal adenocarcinoma (PDAC) is the most common
pancreatic malignancy (52). There is a need to improve the
imaging modalities for the diagnosis and staging of PDAC (287,
288). Various Ab-based targets have been developed and are
majorly evaluated only in preclinical studies, which may promote
the role of immunoPET in PDAC (288).

Carbohydrate antigen 19-9 (CA 19-9), the known serum
marker for PDAC, is detected on tumor cells in the vast majority
of patients (289). Among agents targeting CA 19-9, a mAb,
5B1, demonstrated very high affinity and specificity (290), and
immunoPET with [89Zr]Zr-5B1 showed remarkable radiotracer
uptake in the CA 19-9-positive models (291). Also, a dual-
labeled tracer (89Zr- and NIRF) successfully delineated tumoral
lesions (292). It showed negligible non-specific uptake in CA
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19-9-negative tumoral cell lines (292). However, the circulating
CA 19-9 and long mAb half-life are problematic, increasing
the background activity. In this regard, preinjection of cold
5B1 improved the image quality (293). Additionally, other
pretargeting methods were assessed to overcome the drawbacks,
including the development of a new-generation tracer (which
exploits the advantages of reagents) (294) and an Ab-gold
nanoparticle conjugate (295).

In the first clinical trial, [89Zr]Zr-HuMab-5B1 PET/CT
successfully detected the primary sites of PDACs, metastases,
and small lymph nodes, overlooked by other imaging techniques
(296). The tumor uptake was high, showing an average SUV
of 19.7 ± 2.9, and the pretargeting increased TBR (296).
Interestingly, serum CA 19-9 levels did not affect the physiologic
distribution (296). Another ongoing phase I trial is assessing
the performance of [89Zr]Zr-HuMab-5B1 PET/CT in CA 19-9-
positive tumors (NCT02687230).

Imaging with mAb was first conducted in PDAC using a
murine Ab targeting MUC (297). Mucins are transmembrane
glycoproteins highly expressed on several epithelial cancers,
usually with an altered glycosylation pattern (37, 298). MUC1
or cancer antigen 15-3 (CA 15-3) may have a role in the
management of PDAC (299). Also, carbohydrate antigen 125
(CA125), an extracellular domain of MUC16, is a well-known
ovarian cancer biomarker (38). The newer generation of Abs
targeted the unshed domain of MUC16 rather than CA125 and
showed specific tracer uptake in PDAC xenografts with superior
imaging characteristics (38).

Integrin αvβ6 is a cell surface protein, overexpression of
which correlates with tumor progression (300) and seems as a
potential theranostic agent in PDAC (301). However, the αvβ6-
targeting peptides (302–304) are superior to Abs (300) and are
more investigated.

Tissue factor (TF) is a transmembrane protein that plays a
role in initiating coagulation and regulation of inflammation.
The radiolabeled anti-TF, ALT-836, localized PDAC cell lines (93,
305). Additionally, a bsAb consisting of anti-TF × anti-endoglin
improved binding affinity and localization of the xenografts (306,
307).

ECM proteins play a significant role in invasion, prognosis,
angiogenesis, and resistance to therapies in some malignancies
(59). Matrix metalloproteinases (MMPs) degrade ECM, helping
cell migration. Abs targeting an ECM (59), a MMP protein
(80), and a MMP inducer (CD147) (51) have localized PDAC in
mice models.

Mesothelin (MSLN) is a membrane-bound glycoprotein
overexpressed in more than 80–100% of pancreatic and
ovarian cancer with an unknown specific role in tumor
progression (108). MSLN-based immunoPET was previously
used to evaluate the efficacy of MSLN-targeted antibody-
drug conjugate (ADC) in preclinical models (308). In a
clinical study on a small group of ovarian and pancreatic
cancer patients, an 89Zr-labeled anti-MSLN Ab detected the
majority of malignant lesions with minimal non-specific uptake.
Tumor tracer uptake also correlated with MSLN expression on
IHC, but no correlation was observed with progression-free
survival (309).

Indeed, many other probes have been assessed in only
animal models, targeting RTKs [IGF-1R (310) and EGFR (311,
312)], PD-L1 (120), PSCA [A11 minibody (313) and a dual-
tracer with 124I and NIRF-A2cDb-800 (229)], TROP-2 (314),
CEA (315, 316), ICAM-1 (317), and MET (318), as well
as other less-evaluated radioimmunotracer against TRA-1-60
(98), CUB domain-containing protein 1 (CDCP1)(52), receptor
for advanced glycation end products (RAGE) (319), glucose-
regulated protein 78 (GRP78) (66), and transferrin receptor
(TfR) (94).

Renal Cell Carcinoma (RCC)
CA-IX is a highly expressed membrane-bound antigen in RCC.
Girentuximab is the chimeric version of G250, a mAb targeting
CA-IX (320). Tumor uptake of radiolabeled G250 was established
in preclinical and early clinical studies (321–324).

[124I]I-girentuximab showed sensitivity and specificity of
86%, outperforming CT with 76% and 47%, respectively, in
the REDECT clinical trial. However, performance declined for
masses smaller than 2 cm (32, 33). 89Zr revealed more favorable
characteristics and substituted 124I in further studies (325–327).
[89Zr]Zr-girentuximab PET/CT altered clinical management
in various inconclusive diagnostic scenarios (328). Adding
[89Zr]Zr-girentuximab and [18F]FDG PET/CT scans to CT
improved lesion detection inmetastatic RCC (329). High baseline
SUV on [89Zr]Zr-girentuximab also correlated with longer
time to progression (330). Ongoing clinical trials will further
elaborate on the diagnostic accuracy and theranostic potential of
radiolabeled girentuximab (320, 331).

Furthermore, in preclinical studies, [89Zr]Zr-atezolizumab
localized PD-L1-positive RCC (332), and [64Cu]Cu-bevacizumab
reflected treatment response to everolimus, a mammalian target
of rapamycin (mTOR) inhibitor (333). This finding was also
observed in a clinical trial on everolimus in metastatic RCC;
however, further clinical studies are required to confirm these
findings (334).

Melanoma
The first trials of Ab-based imaging in melanoma date back to
more than 25 years ago when Abs against the melanin-associated
antigen (335) and a mouse monoclonal anti-melanoma Ab
(336) were used for imaging in patients with metastatic
malignant melanoma.

Currently, targeted therapies are themain systemic treatments
for advanced melanoma (337, 338). It is crucial to document
the presence of targets before the initiation of therapy to
achieve the best response and avoid side effects (339, 340).
Several preclinical studies showed favorable binding affinity and
imaging of melanoma cell lines using Abs and Ab fragments
targeting immune checkpoints, PD-1/PD-L1 (9, 119, 340–345)
and CTLA-4 (346). However, the uptake in the lymphoid
tissue was also high (119, 347). Moreover, radiotherapy-induced
PD-L1 upregulation was demonstrated in melanoma mouse
models, using radiolabeled anti-PD-L1 Abs (348, 349). Another
immune checkpoint, T-cell immunoglobulin andmucin domain-
containing-3 (TIM-3), was a successful target for murine
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melanoma models (97). One clinical study evaluated [89Zr]Zr-
pembrolizumab in melanoma, reporting relations between tracer
uptake and response to therapy and survival in patients with
advanced or metastatic disease (347). Also, an ongoing phase
II clinical trial is investigating the biodistribution and tumor
uptake of [89Zr]Zr-ipilimumab (anti-CTLA-4) in advanced
melanoma (NCT03313323).

In addition to immune checkpoints, the number of CD4- and
CD8-positive T-cells (121, 122) and the presence of costimulatory
signaling molecules (64), namely OX40 (member 4 of tumor
necrosis factor [TNF] family) and GITR (glucocorticoid-
induced TNF Receptor), in the tumor microenvironment
impact the response to immunotherapy. Preclinical studies
using immunoPET probes successfully detected CD4- and CD8-
positive rich tissues and upregulation of costimulatory substances
(64, 122, 174, 350, 351). These probes have the potential
to monitor immune response following different therapies.
Moreover, immunoPET targeting ICAM-1 (72), CD146 (352),
VEGF (353), and integrin-αvβ6 (75) was also successful in the
detection of melanoma cells in preclinical studies.

Ovarian Cancer
Ovarian cancer comprises multiple subtypes and a diverse profile
of overexpressed molecules (354). Moreover, the lack of effective
specific treatment makes such molecules valuable for targeted
therapies guided by immunoPET (108).

With the wide use of anti-HER2 mAbs, several studies
evaluated 89Zr/64Cu-labeled anti-HER2 mAbs and their
engineered fragments in preclinical models and compared
different chelators and labeling strategies, or their optimal
performance in vivo (138, 140, 355–361). Radiolabeled-
trastuzumab has been used to monitor response not only
to anti-HER2 mAbs but also to HSP90 inhibitors, which
downregulate HER2 (361, 362). Using dual labeled mAbs
combines pre-operative PET imaging and intra-operative optical
imaging data. It can improve precise tumor and metastasis
excision, especially in metastasis-prone tumors, such as ovarian
cancer. Dual-labeled pertuzumab with 89Zr and NIRF was used
successfully for image-guided tumor resection in ovarian cancer
xenografts (363).

Furthermore, VEGF imaging can be a response prediction
biomarker to anti-angiogenesis therapies (150). [89Zr]Zr-
bevacizumab was a sensitive marker of early response to
HSP90, mTOR, and VEGF inhibitors in ovarian cancer
models (364–366).

CA125, an extracellular domain of MUC16, is a serological
biomarker for treatment monitoring and recurrence of ovarian
cancer (298). Preclinical studies on the 89Zr/64Cu-labeled
oregovomab, an anti-CA125 mAb, reported high uptake in
ovarian cancer xenografts (367, 368). Furthermore, [89Zr]Zr-
oregovomab detected histologically-confirmed lymph node
involvement (368). The newer generation of Abs targeting
MUC16 showed superior imaging characteristics (38, 369).
Additionally, an 89Zr-labeled anti-MUC1 or CA 15-3 also showed
proper performance in vivo (37). The first clinical study on a Fab
targeting carbonic anhydrase 6 (CA6) epitope of MUC1 reported
the safety of this probe in an ovarian cancer patient, and the probe

correctly reflected the low tumor expression of CA6 observed in
IHC (370).

REGN4018, a T-cell engaging bsAb targeting MUC16 ×

CD3, is currently being investigated in a clinical trial for
ovarian cancer (NCT03564340). It had high specific uptake
in tumors and lymphoid organs in preclinical studies (371).
[89Zr]Zr-ERY974, a bsAb targeting CD3ε on T-cells × GPC3,
showed high specific uptake in GPC3-positive ovarian cancer
xenografts ingrafted with immune cells compared to xenografts
in immunodeficient mice, highlighting the potential value of such
probes in immunotherapy response monitoring (372).

Finally, as mentioned in the pancreatic cancer section, MSLN
expression may be non-invasively evaluated in ovarian cancer,
using 89Zr-labeled anti-MSLN Ab (309), which may help patient
selection for therapy.

Central Nervous System (CNS)
Precision imaging and targeted therapy in the central nervous
system (CNS) is challenging due to the limited distribution
of radiopharmaceuticals beyond the blood-brain barrier
(BBB), especially for high molecular weight compounds
such as Abs. However, disruption of BBB by tumors can
lead to the appropriate probe uptake (373). Nanobodies are
attractive probes for CNS malignancies given their small
size, easy BBB penetration, and faster blood clearance (374).
ImmunoPET has also been helpful to monitor brain drug
delivery alteration in response to different methods of increasing
BBB permeability (375–378) and predict response to intrathecal
radioimmunotherapy (379).

Several studies, mainly preclinical, investigated
radioimmunotracers targeting molecules involved in
angiogenesis, such as VEGF (380, 381), CD146 (382, 383),
and PDGFRβ (384) in the setting of brain tumors. On clinical
studies of the mentioned targets, [89Zr]Zr-bevacizumab
imaging was feasible and safe in children with diffuse intrinsic
pontine glioma; however, significant uptake heterogeneity was
observed (385). Interestingly, high expression of PSMA by
neovascular endothelium has been reported in a number of
highly vascularized tumors, including gliomas and some brain
metastases (386). This phenomenon makes PSMA a potential
target to monitor response to anti-angiogenesis treatments
in brain malignancies. Matsuda et al. showed high PSMA
expression in histological specimens for a wide range of brain
malignancies, including gliomas and metastatic brain lesions.
Next, they successfully imaged three patients with recurrent
glioma or brain metastasis with [89Zr]Zr-IAB2M (387).

Additionally, the TGF-β is a known cytokine involved in the
development of various malignancies (95). A radioimmunotracer
targeting TGF-β, [89Zr]Zr-fresolimumab, was successfully
produced (388). In a clinical trial on high-grade glioma patients
undergoing anti-TGF-β treatment, [89Zr]Zr-fresolimumab
accumulated in most tumors, except for some lesions smaller
than 10mm or those with radionecrosis (95).

Another group of glioma tracers evaluates immune system
components in the tumor microenvironment by targeting
immune cell infiltration and activation markers, such as CD8+
lymphocytes (389), its co-stimulatory molecule, OX40 (390), a
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marker of tumor-associated myeloid cells, CD11b (391, 392), a
phagocytosis checkpoint molecule, CD47 (393), and lymphocyte
checkpoint molecule/ligand, PD-1/PD-L1 (378, 394).

Finally, immunoPET targeting other overexpressed
biomarkers responsible for tumor development or progression
are also under investigation in gliomas, including RTKs [ephrin
receptor A2 (EphA2) (395) and EGFR (396–400)], stem cell
marker, CD133 (401), fibroblast activation factor-alpha (FAP-α)
(402), Delta-like ligand 4 (Dll4, which is a ligand for a membrane
receptor in different signaling pathways) (58), HGF (244), and
MMP (403).

Others
ImmunoPET studies on other malignancies are still in the
preclinical setting. For instance, early murine studies targeting
EGFR and CA 19-9 were promising in bladder cancer models
(404, 405). An anti-CD3 probe also detected T-cell infiltration in
bladder cancer-bearing mice, reflecting the potential for future
studies on immunotherapy response prediction in urothelial
cancers (406).

Evaluating mesothelioma, an anti-MSLN Ab, [89Zr]Zr-
amatuximab, detected MSLN-expressing xenografts (308, 407),
which can play a part in the patient selection for anti-MSLN
targeted therapy. EGFR is also overexpressed in mesotheliomas
(408). In this regard, receptor-specific uptake of [86Y]Y-
cetuximab and [86Y]Y-panitumumab were documented, showing
more favorable tumor-targeting characteristics with the latter
(158). Also, a radiolabeled anti-EGFR Ab that selectively targets
an epitope of EGFR detected EGFR-expressing xenografts (408).
In cholangiocarcinoma cell lines, L1CAM overexpression, a
cell adhesion molecule, was depicted using [64Cu]Cu-cA10-A3
probe (76, 409, 410). Recently, the role of receptor activator
of nuclear factor-kappa B/ligand (RANK/RANKL) is recognized
in resistance to immunotherapy. Its expression was non-
invasively assessed by [89Zr]Zr-denosumab in cervical and
HNSCC xenografts (90). Finally, CD44v6 overexpression was
documented in vulva cancer cell lines using an anti-CD44v6
minibody, using [124I]I-AbD19384 (271).

CONCLUSION

In the era of precision medicine and molecular targeted therapy,
the need for accurate targeted imaging is inevitable. Given
the inherent favorable characteristics, immunoPET seems very
promising in this regard. A broad spectrum of both tumor-
specific and common general molecules in different malignancies
has already become targets for radioimmunoimaging of cancer.
However, only a few have been introduced in clinical studies
(Supplementary Table 1). Some common obstacles to the wide

implementation of immunoPET include the high costs, advanced
technology to commercially produce pure mAbs, difficulties
in conjugation and in vivo tracer stability, as well as high
circulation time and physiologic uptake after administration.
Recent developments are answering these needs (97, 411) and
will continue to evolve. Although immunoPET can become a
diagnostic tool in specific conditions, its primary role seems to
be a complementary imaging tool for therapy guidance.

Almost all studies mention the heterogeneous uptake of
probes in different tumors. That is where the immunoPET
strength lies, i.e., non-invasively depicting the heterogeneity
of tumoral lesions. ImmunoPET tracks target expression and
pharmacokinetics of mAbs in vivo before and after certain
treatments, pointing out its potential value for patient recruiting
and response monitoring of targeted therapies. Noteworthy,
smaller Ab fragments provide more favorable imaging properties
that can help increase the detection rate and accuracy of the
imaging. However, the implementation of whole Abs is crucial
since these structures are used for treatment, and the goal is to
demonstrate their in vivo distribution.

Another advantage of developing new radioimmunoimaging
probes is the theranostic application. The probes can be
labeled with positron-emitting imaging and beta/alpha-emitting
therapeutic radiometals, providing another possible treatment
option for different malignancies.

Besides developing new targeting probes, future studies
should also focus on the predictive and prognostic value of the
radioimmunotracers after targeted therapies to further elaborate
on their impact on treatment selection.
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GLOSSARY

[18F]FDG, [18F]FluoroDeoxyGlucose; [18F]FDOPA,
[18F]Fluoro-L-Dopa; ACKR3, Atypical Chemokine Receptor
3; ADC, Antibody-Drug Conjugate; ATC, Anaplastic Thyroid
Carcinoma; BBB, Blood-Brain Barrier; bsAb, bispecific Antibody;
CA 15-3, Cancer Antigen 15-3; CA 19-9, Carbohydrate Antigen
19-9; CA125, Carbohydrate Antigen 125; CA6, Carbonic
Anhydrase 6; CA-IX, Carbonic Anhydrase-IX; CD, Clusters of
Differentiation; CDCP1, CUB domain-containing protein 1;
CEA, Carcinoembryonic Antigen; CH, Constant Heavy Chain;
CNS, Central Nervous System; CT, Computed Tomography;
CTLA-4, Cytotoxic T-lymphocyte Associated Protein; CXCR,
C-X-C Chemokine Receptor; Df, Desferrioxamine; Dll4,
Delta-like ligand 4; dsFv, disulfide Fragment variable; ECM,
Extracellular Matrix; EGFR, Epidermal Growth Factor Receptor;
EphA2, Ephrin Receptor A2; Fab, antigen-binding Fragment;
FAP-α, Fibroblast Activation Factor-Alpha; Fc, crystallizable
Fragment; Gal-3, β-galactoside-binding protein galectin-
3; GITR, Glucocorticoid-Induced Tumor Necrosis Factor
Receptor; GPC3, Glypican 3; GRP78, Glucose-regulated
protein 78; HCC, Hepatocellular Carcinoma; HER, Human
Epithelial Growth Factor Receptor ; HGF, Hepatocyte Growth
Factor; HNSCC, Head and Neck Squamous Carcinoma; HSG,
Histamine-Succinyl-Glycine; HSP90, Heat Shock Protein 90;
ICAM-1, Intercellular Adhesion Molecule-1; ICI, Immune
Checkpoint Inhibitor; ICOS, Inducible T-Cell Costimulatory
Receptor; IGF-1R, Insulin-like Growth Factor-1 Receptor;

IgG, Immunoglobulin G; IHC, Immunohistochemistry; KRAS,
Kirsten Rat Sarcoma Virus; LGR5, Leucine-rich repeat-
containing G-protein coupled Receptor 5; mAb, monoclonal
Antibody; MMP, Matrix metalloproteinase; MRI, Magnetic
Resonance Imaging; MSLN, Mesothelin; MTC, Medullary
Thyroid Carcinoma; mTOR, Mammalian Target of Rapamycin;
MUC, Mucin; NIRF, Near-Infrared Fluorophore; NSCLC, Non-
Small Cell Lung Cancer; OX40, Tumor Necrosis Factor (Ligand)
Superfamily, Member 4; PD-1/PD-L1, Programmed Cell Death
Protein-1/Ligand; PDAC, Pancreatic Ductal AdenoCarcinoma;
PDGF/PDGFR, Platelet-Derived Growth Factor/Receptor; PET,
Positron Emission Tomography; PSCA, Prostate Stem Cell
Antigen; PSMA, Prostate Specific Membrane Antigen; PTC,
Papillary Thyroid Carcinoma; RAGE, Receptor for advanced
glycation end products; RANK/RANKL, Receptor Activator of
Nuclear Factor-Kappa B/Ligand; RCC, Renal Cell Carcinoma;
RTK, Receptor Tyrosine Kinase; scdsFv, single-chain disulfide
Fragment variable; scFv, single-chain Fragment variable; sdAb,
single-domain Antibody; SUV, Standardized Uptake Value;
TAG-72, Tumor-Associated Glycoprotein-72; TAM, Tumor-
Associated Macrophage; TBR, Target-to-Background Ratio;
TF, Tissue factor; TF, Tissue Factor (CD142); TfR, Transferrin
receptor; TGF, Transforming Growth Factor; TIL, Tumor
Infiltrating Lymphocyte; TIM-3, T-Cell Immunoglobulin and
Mucin Domain-Containing-3; TNF, Tumor Necrosis Factor;
TROP-2, Trophoblast cell-surface antigen-2, known as tumor-
associated calcium signal transducer 2; VEGF/VEGFR, Vascular
Endothelial-Derived Growth Factor/Receptor.
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