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Liquid biopsy (i.e., fluid biopsy) involves a series of clinical examination approaches.

Monitoring of cancer immunological status by the “immunosignature” of patients

presents a novel method for tumor-associated liquid biopsy. The major work content

and the core technological difficulties for the monitoring of cancer immunosignature

are the recognition of cancer-related immune-activating antigens by high-throughput

screening approaches. Currently, one key task of immunosignature-based liquid biopsy

is the qualitative and quantitative identification of typical tumor-specific antigens. In this

study, we reused two sets of peptide microarray data that detected the expression

level of potential antigenic peptides derived from tumor tissues to avoid the detection

differences induced by chip platforms. Several machine learning algorithms were applied

on these two sets. First, the Monte Carlo Feature Selection (MCFS) method was used

to analyze features in two sets. A feature list was obtained according to the MCFS

results on each set. Second, incremental feature selection method incorporating one

classification algorithm (support vector machine or random forest) followed to extract

optimal features and construct optimal classifiers. On the other hand, the repeated

incremental pruning to produce error reduction, a rule learning algorithm, was applied

on key features yielded by the MCFS method to extract quantitative rules for accurate

cancer immune monitoring and pathologic diagnosis. Finally, obtained key features and

quantitative rules were extensively analyzed.

Keywords: cancer subtype, expression rule, immunosignature, multi-class classification, feature selection

INTRODUCTION

Liquid biopsy (i.e., fluid biopsy) involves a series of clinical examination approaches, including
sampling and analysis, on non-solid suspected pathogenic tissues, such as blood (Crowley et al.,
2013), amniotic fluid (Ilas et al., 2000), and cerebrospinal fluid (Hiemcke-Jiwa et al., 2018).
At present, liquid biopsy is applied in three main fields: cancer studies (Condello et al., 2018;
Mithraprabhu and Spencer, 2018), heart attack diagnosis (Ogawa et al., 1983), and prenatal
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diagnosis (Sun et al., 2015). For heart attack diagnosis, the
circulating endothelial cells are usually the inspected targets,
reflecting the extent of damage on the integrity and permeability
of heart, and related vessels (Ogawa et al., 1983). As for prenatal
diagnosis, cell-free fetal DNA reflects the genomic characteristics
of the infant, applicable for the development of monitoring,
and diagnosis of genetic disorders (Sun et al., 2015). In cancer
studies, liquid biopsy has been used for the identification of
cancer biomarkers to monitor the progression of tumorigenesis
and predict the prognosis. In 2014, a specific study (Stafford et al.,
2014) on the evaluation of immune status of cancer presented a
novel method for tumor-associated liquid biopsy, i.e., monitoring
of cancer immunological status by the “immunosignature”
of patients.

Immunosignature describes a typical reductionist biomarker
paradigm assay that contributes to the representation of patients’
immune responses but not the direct cancer status (Reiman et al.,
2007; Stafford et al., 2014). Similar to traditional liquid biopsy
on the basis of tumor-associated biomarkers, the identification of
immunosignature in clinical examinations aims at the evaluation
of the pathogenic conditions of cancer patients and the prediction
of personalized cancer prognosis. However, such approach
focuses on the immune elimination capacity on tumor cells of
each patient so as to provide an auxiliary diagnosis rather than the
direct tumor progression, invasion, and metastasis conditions.
Thus, the major work content and the core technological
difficulties for the monitoring of cancer immunosignature would
be the recognition of cancer-related immune-activating antigens
by random sequence peptide microarray screening (Reiman
et al., 2007). Peptides in such microarray that can be bound
by patient peripheral blood-derived antibodies share the same
epitopes as endogenous antigens, which are probably derived
from tumor tissues (Stafford et al., 2014). Such high-throughput
screening approaches are efficient and accurate to identify tumor-
associated antigens.

According to Stafford et al. (2014), patients with different
tumor subtypes have different antigen spectrum responses to the
peripheral isolated antibodies, validating that immunosignature
may be a novel monitoring parameter for cancer liquid biopsy.
However, the wide clinical application of immunosignature-
based cancer liquid biopsy has three major obstacles. First, the
identified potential antigens of each patient are outnumbered.
Thus, the tumor-derived antigens, even the specific immune
evaluation biomarkers, are hard to identify. Second, screening the
whole randomized antigen assay of all the potential antibodies
for each patient is impractical because of expensive and time-
consuming burden. Third, the qualitative recognition and
analysis of antigens are not accurate and efficient enough for
personalized cancer monitoring, which requires quantitative
standards to be established. Therefore, one key task of
immunosignature-based liquid biopsy is the identification of
shared cancer immune evaluation biomarkers together with
their absolute quantity ranges. For instance, the identification
of typical tumor specific antigens should be in a qualitative and
quantitative manner.

To solve such problem from clinics, in this study, we reused
the peptide microarray data that detected the expression level

of potential antigenic peptides derived from the tumor tissues.
To remove the detection differences induced by chip platforms,
we independently analyzed the potential antigen distribution
data from two datasets obtained from different chip platforms.
Several machine learning algorithms were used in this study.
The Monte Carlo Feature Selection (MCFS) (Draminski et al.,
2008) was adopted to evaluate the importance of features in two
datasets, respectively, resulting in a feature list. The incremental
feature selection (IFS) (Liu and Setiono, 1998) was applied on
the feature list to extract optimal features and build an optimal
classifier based on a given classification algorithm. In addition,
the repeated incremental pruning to produce error reduction
(RIPPER) algorithm (Cohen, 1995) was performed on essential
features that were produced by the MCFS method to construct
quantitative classification rules. Altogether, we not only identified
the common distributed cancer-associated antigen patterns but
also established a series of quantitative rules for accurate cancer
immunemonitoring and pathologic diagnosis. Obtained patterns
and rules were analyzed in the end of this paper.

METHODS AND MATERIALS

Datasets
We downloaded the peptide microarray data from Gene
Expression Omnibus under Accession Number GSE52582
(Stafford et al., 2014). It included two datasets. Dataset-1
(from GSE52580) was measured with 10K immunosignaturing
peptide microarray version 2 and included 240 samples from six
groups (Brain cancer, Breast cancer, Esophageal cancer, Multiple
myeloma, Pancreatic cancer, and Healthy control). Each group
had 40 samples. Dataset-2 (from GSE52581) was measured
with ASU_random-sequence peptide microarray and included
1,516 samples from 15 groups of various diseases. Additional
information of the samples can be found in Stafford et al. (2014).
Dataset-1 contained 9,786 peptides, whereas dataset-2 contained
10,371. However, dataset-2 had missing values. To infer the
missing values, we adopted the K-Nearest Neighbor (K = 10)
method from R package.

Feature Selection
The purpose of feature selection is to distinguish important
features from unimportant ones in datasets for a certain
machine learning task. In this study, we used MCFS (Draminski
et al., 2008) to capture key genes (features) for classifying
samples from different diseases and to determine interpretable
rules. We obtained the optimal genes with strong distinctions
between different types of diseases through IFS method
(Liu and Setiono, 1998).

Monte Carlo Feature Selection
In this study, MCFS (Draminski et al., 2008) was applied to
select important genes. MCFS is a random sampling multivariate
feature selection method based on original features. Assuming
there are M original features, we randomly select some feature
subsets, each of which includes randomly selected m features
(m<<M) in original M ones. Then, multiple decision trees are
generated and evaluated in the bootstrapping datasets from the
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original dataset, where the number of generated decision trees is
p. After repeating the above process t times, t feature subsets and
p× t decision trees are obtained.

The relative importance (RI) provides a score of each feature
for its performance in the above decision trees. The RI score of a
feature g is calculated by

RIg =
p×t∑

τ=1

(wAcc)uIG(ng(τ ))(
no.in ng(τ )

no.in τ

)
v

,

where wAcc is the weighted accuracy, and ng(τ ) is a node of
feature g in decision tree τ . The information gain of ng(τ ) is
expressed as IG(ng(τ )), and no.in ng(τ ) is the number of training
samples in ng(τ ), where u and v are different weighting factors
with a default value of 1.

Rule Learning
In this study, we adopt the MCFS method to analyze two
peptide microarray data from GEO. Each feature is assigned
a RI value. Some informative features are further extracted
by the MCFS method with a permutation test on class labels
and one-sided student’s t-test. These informative features are
used to construct interpretable rules, which can clearly display
the classification procedures for a given sample. In detail,
these features are first reduced by Johnson Reducer algorithm
(Johnson, 1974; Ohrn, 1999), such that remaining features have
similar classification ability to all informative features. Then,
remaining features are fed into the RIPPER algorithm (Cohen,
1995), which is a set-based rule learning algorithm, to determine
simple, and interpretable rules for classifying samples from
different disease types. The procedures of RIPPER algorithm
for constructing rules can be found in our one previous study
(Wang et al., 2018). Each rule describes the relationship between
conditions and outcomes. Here, the rules are expressed as IF-
THEN relationships based on detailed expression values. For
example, IF Peptide 1<=0.7 AND Peptide 2>=1.02, THEN type
= “Brain cancer.”

Incremental Feature Selection
IFS (Liu and Setiono, 1998) is an ideal feature ranking method
with a supervised classifier. It filters the input and result in
a set of optimal features for distinguishing different sample
sets/classes with the best performance. Features in the feature list
are ranked in descending order according to their RI values, and
IFS is performed on such feature list. The combination of high-
ranked features should help the classification model perform well
because high-ranked features are important for classification.
Here, we perform IFS in two steps.

First, we constructed a series of feature subsets with a large
step size 10 to create feature subsets with high performance.
In feature subsets F = [F11 , F

1
2 , . . . , F

1
m], the i-th feature subset

contains 10 × i features, that is, F1i = [f1, f2, . . . , fi×10]. A
classifier with a certain prediction engine is built to evaluate
samples composed of each feature subset by 10-fold cross-
validation (Kohavi, 1995). After all feature subsets have been
tested, we can obtain a feature interval [min, max], which helps
the classifier provide a good prediction performance. Based on

the interval [min, max] from the first stage, a series of feature
subsets [F2min+1, F

2
min+2, . . . , F

2
max] is built to further accurately

extract the optimal features. The final optimal feature subset with
the optimal performance can be obtained finally. The classifier
with such optimal feature subset is called optimal classifier.

Random Forest
A random forest is a meta-classifier that contains a large number
of tree classifiers (Breiman, 2001). For classification, its output
categories are determined by aggregating votes from different
decision trees. The main idea of building a random forest, which
is widely used in computational biology, is to ensemble a large
number of decision trees (Pan et al., 2010; Zhao et al., 2018;
Zhao R. et al., 2019; Zhao X. et al., 2019). Some differences
always exist between each decision tree and other decision trees
in the decision tree set. To avoid over-fitting, the random forest
averages the prediction results of all decision trees to reduce the
prediction variance. Although causing a small increase in bias
and some loss of interpretability, the ensemble model usually has
improved performance.

Support Vector Machine
Support vector machine (SVM) (Cortes and Vapnik, 1995) is a
supervised learning algorithm based on statistical learning theory
and is suitable for dealing with many biological problems (Pan
and Shen, 2009; Mirza et al., 2015; Chen et al., 2017b, 2018a; Cai
et al., 2018; Cui and Chen, 2019; Zhou et al., 2019). It can build
models for linear and non-linear classification problems. The
SVM model represents the samples as points in data space such
that the samples of the individual categories can be separated
after data mapping, and then the categories can be determined
based on which side of the interval samples fall. The basic
principle is to infer the hyperplane with the maximum margin
between two types/classes of samples. In addition, SVM can be
extended to multi-class problems based on its basic binary-class
problem. For multi-class problems, SVM generally adopts the
strategy of “One vs. the Rest.” In this study, we use the sequence
minimum optimization algorithm (Platt, 1998), which is widely
adopted for SVM learning.

Performance Measurement
This study employed the Matthew’s correlation coefficient
(MCC) (Matthews, 1975; Gorodkin, 2004) as the key
measurement for evaluating the performance of classifiers
because it is deemed as a balanced measurement even if sizes of
classes are of great differences. The original MCC was proposed
by Matthews (1975), which was designed for binary classification
and has wide applications (Chen et al., 2017a, 2018b; Li et al.,
2019). Here, two datasets (Dataset-1 and Dataset-2) contain
more than two classes. Thus, the multi-class version of MCC was
used, which was proposed by Gorodkin (2004). To calculate such
MCC, two matrices are first constructed, say X and Y, where X is
a 0-1 matrix representing the predicted class of each sample and
Y is also a 0-1 matrix indicating the true classes of all samples.
Then, such MCC is defined as

MCC =
cov(X,Y)

√
cov(X,X) cov(Y ,Y)

,
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FIGURE 1 | Entire procedures to investigate the peptide microarray data from

Gene Expression Omnibus with advanced machine learning algorithms.

where cov(·, ·) stands for the covariance of two matrices. To date,
such MCC has been applied to evaluate performance of different
multi-class classifiers (Salari et al., 2014; Schmuker et al., 2014;
Zhang et al., 2019). For convenience, such MCC is also called
MCC in the following text.

RESULTS

In this study, we applied machine learning methods to classify
samples from different types of diseases, which mainly cover
two datasets. One consists of five cancers and heath control
(called Dataset-1), and the other one consists of 15 diseases
(called Dataset-2). We use the same computational pipeline for
analyzing these two datasets separately. Entire procedures are
shown in Figure 1.

Results on Dataset-1
We first run the feature selection method to detect potential
antigenic peptides associated with six classes. The RI scores for
all peptides are given in Table S1. In general, using all available
features may not yield the best performance. To identify the
optimum number of features with the best performance for
classifying samples from the six classes in this dataset, we run
the IFS with an integrated RF classifier. We first run the RF on
the series of feature subsets with a step 10. The performance
of RF corresponding to different numbers of features is given
in Table S2. For an easy observation, the MCCs on different

feature subsets is illustrated in Figure 2A, from which we can
see that the highest MCC is obtained when top 50 features are
used. Thus, we determine an interval range [40, 60] for further
investigation. Then, on a series of feature subsets with a step
1 between the range [40, 60]. The performance of RF on these
feature subsets is shown in Figure 2B. We obtain the best MCC
value of 0.985 when top 46 features are used (Table 1). These
46 features are deemed to be optimal features for RF and a
RF classifier with these features are called optimal RF classifier.
The detailed performance, including accuracies on six classes
and overall accuracy, is illustrated in Figure 3. Such classifier
gives perfect performance on four classes and overall accuracy
is 0.988, suggesting the high performance of the optimal RF
classifier. Of note, we also have an in-house assessment that RF
can outperform SVM on Dataset-1.

The MCFS method can output some informative features
for any input dataset. For Dataset-1, 517 informative features
are extracted, which are the first 517 features in Table S1. It is
interesting to investigate the performance of RF on these features.
By 10-fold cross-validation, we obtain theMCC of 0.975, which is
lower than that yielded by above-mentioned optimal RF classifier.
Its detailed performance is displayed in Figure 3. The overall
accuracy is 0.979. On individual accuracies of six classes, none of
them can exceed corresponding accuracy yielded by the optimal
RF classifier. Thus, the IFSmethod can actual find out the optimal
feature subspace for RF, thereby providing higher performance.

Furthermore, we also employ the Johnson Reducer and
RIPPER algorithms to construct interpretable rules based on 517
informative features. To test the performance of rules yielded
by these two algorithms, 10-fold cross-validation is performed
thrice.We yield theMCC of 0.837. The confusionmap (Figure 4)
shows the misclassification among six classes. Accordingly, the
accuracies on six classes are counted and illustrated in Figure 3.
They are all much lower than those of the optimal RF classifier.
Although the rule classifier provided much lower performance,
they can provide a clear classification procedure and indicate the
differences between different classes, thereby giving more biology
insights. Accordingly, we further applied Johnson Reducer and
RIPPER algorithms on all samples in Dataset-1, obtaining seven
classification rules, which are listed in Table 2.

Results on Dataset-2
We performed the same analysis as above on Dataset-2. We
first use MCFS to rank the input features, whose RI scores are
given in Table S3. Then, we run IFS with an integrated SVM
on the samples consisting of features from the generated feature
subsets with a step 10. The performance of SVM corresponding to
different numbers of features is provided in Table S4. Figure 5A
shows the performance of SVM, evaluated by MCC, on above-
constructed feature subsets. The highest MCC is 0.951 when top
2,860 features are adopted. Then, we obtain an interval [2,800,
2,900] for further investigation. To further extract the optimum
number of features, we run the SVM on the samples consisting
of the features from a series of feature subsets generated from the
interval with a step 1. The performance of SVM on these feature
subsets is shown in Figure 5B. We obtain the best MCC value of
0.952 when the top 2,846 features are used (Table 1). Thus, these
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FIGURE 2 | Performance of random forest (RF) on different feature subsets. (A) Performance of RF on feature subsets with step 10; (B) Performance of RF on feature

subsets with top 40–60 features.

TABLE 1 | The classification performance on two datasets.

Dataset Classifier Optimum number of features MCC

Dataset 1 RF 46 0.985

Dataset 2 SVM 2,846 0.952

top 2,846 features are termed as optimal features for SVM and
the SVM classifier with these features are called optimal SVM
classifier. The individual accuracies on 15 classes and overall
accuracy are illustrated in Figure 6. The overall accuracy is 0.956,
two classes receive the highest accuracy of 1.000, other 10 classes
receive the accuracy higher than 0.900. All these suggest the
high performance of the optimal SVM classifier. Of note, we
also have an in-house assessment that SVM can outperform RF
on Dataset-2.

Similar to Dataset-1, the MCFS method extracts 3,264
informative features. With these 3,264 features, an SVM classifier
on Dataset-2 is built and evaluated by 10-fold cross-validation.
the MCC is 0.949, which is slightly lower than that of the optimal
SVM classifier. Figure 6 shows the accuracies on 15 groups and
overall accuracy. The overall accuracy is 0.954. For 15 individual

accuracies, such classifier generated higher accuracies on two
classes than the optimal SVM classifier, while on four classes, it
yields lower accuracies. Altogether, the optimal SVM classifier
gives higher performance.

In addition, we also adopt Johnson Reducer and RIPPER
algorithms to construct classification rules based on 3,264
informative features. Ten-fold cross-validation is used to evaluate
the performance of rules yielded by these two algorithms
and such procedures are executed thrice, producing the MCC
of 0.801, which is much lower than that of the optimal
SVM classifier. The corresponding confusion map is shown in
Figure 7. The accuracies of 15 classes and overall accuracy are
illustrated in Figure 6. The rule classifier yields lower accuracies
on all 15 classes compared with those of optimal SVM classifier.
Likewise, 42 classification rules are constructed by applying
Johnson Reducer and RIPPER algorithms on all samples in
Dataset-2, which are listed in Table 3.

DISCUSSION

As described above, we screened and identified the core potential
antigens that can be recognized by the free antibodies in the
peripheral blood of patients with different diseases. All the
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FIGURE 3 | Performance of three classifiers on six groups in dataset-1 and overall accuracy.

identified peptides have been further mapped to their respective
original proteins and corresponding encoding genes. Tumor-
specific or tumor subtype-specific biomarkers shall be derived
from tumor-associated genes or variations. Recent publications
have confirmed that all the genes, which such peptides can be
mapped to, are functionally related to tumorigenesis, validating
the efficacy and accuracy of our prediction. Further, based
on the abundance of each identified peptide, we set up a
quantitative recognition standard for the accurate identification,
accomplishing the quantitative analysis. The detailed analysis on
each identified peptide and settled up rules is provided below.

Immunosignature-Associated Genes
As mentioned in Section Results, some key features were
extracted for each dataset. Their related genes are extracted and
analyzed in this section.

Immunosignature-Associated Genes Derived From

Dataset-1
In the first dataset, we screened and identified the candidate
immunosignature antigens for six groups of samples: brain
cancer, breast cancer, esophageal cancer, multiple myeloma,
pancreatic cancer, and healthy controls.

The first identified peptide in dataset-1 is
CSGHPFWHMKHESIYHIYYT, aligning to be a part of
proteins (Altschul et al., 1990; Mount, 2007; Pruitt et al., 2014)
prickle-like protein 1 and prickle-like protein 2 (Altschul et al.,
1997). Encoded by functional genes PRICKLE1 and PRICKLE2,
such two proteins participate in the regulation of the Wnt/beta-
catenin signaling pathway (Daulat et al., 2012; Mermejo et al.,
2014). As for its differential expression pattern in multiple tumor
subtypes, the two proteins have been identified in multiple
tumor subtypes, including brain cancer (Katoh and Katoh,
2003), breast cancer (Jaeger and Delacretaz, 1953), esophageal
cancer (Shimo et al., 2004), and pancreatic cancer (Katoh and
Katoh, 2003), but are rarely detected in multiple myeloma and
normal controls, validating the distinctive capacity of such

FIGURE 4 | The confusion map of seven classification rules on dataset-1.

PRICKLE1- or PRICKLE2-derived antigen on distinguishing
different tumor subtypes.

The second peptide CSGSAIKVMIEIFVMHPYIK can also be
aligned to multiple reference proteins, such as protein orai-2
isoform b, angiopoietin-2 isoform a precursor, and zinc finger
protein 462 isoform 2 (Altschul et al., 1990; Mount, 2007; Pruitt
et al., 2014), indicating that such peptide may have multiple
releasing sources (Altschul et al., 1997). The three mentioned
sources of our identified peptides have all been confirmed to
contribute to the clustering and recognition of each effective
disease subtype. Take angiopoietin-2 isoform a precursor as an
example. As a precursor of effective angiopoietin-2, such protein
is a potential biomarker in brain cancer (Seifert et al., 2015),
breast cancer (Han et al., 2016), multiple myeloma (Nowicki
et al., 2017), and pancreatic cancer (Chou et al., 2016), but not
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esophageal cancer and normal controls, together with ANGPT2.
Therefore, such protein-derived peptide may also contribute to
the detailed distinction of multiple cancer subtypes.

The third identified peptide CSGTMNSEFQNTTRHVYIMS
can be aligned to alstrom syndrome protein 1 (Altschul et al.,
1990; Mount, 2007; Pruitt et al., 2014) with individual amino
acid mismatches induced by tumor-derived genomic instability
(Altschul et al., 1997). Encoded by gene ALMS1, such peptide

TABLE 2 | Seven detected rules for classifying different diseases in dataset-1.

Rules Criteria Subtype

Rule1 CSGAGFEGTGLRCSLLCLDR <= 0.795 Esophageal

cancer

Rule2 CSGFQPMRYPFQDPYHGYGW <= 1.056

CSGADFVTYATRRVQFMMHK <= 1.611

Pancreatic cancer

Rule3 CSGFLMEHQNLLERSEDAKA <= 0.569

CSGGEGIQATYHKVGGNFLG >= 1.238

Healthy control

Rule4 CSGTYEPHLVYLATFTDGIP <= 0.870 Healthy control

Rule5 CSGEKIGMEQHYNQWIELMR >= 1.036 Multiple myeloma

Rule6 CSGADFVTYATRRVQFMMHK >= 1.282 Brain cancer

Rule7 Others Breast cancer

loading protein has been only identified in multiple myeloma
but not in other tumor subtypes and normal controls (Rajasagi
et al., 2014; Braune et al., 2017). Therefore, such peptide may
also be potential biomarkers for immunosignature recognition-
based cancer diagnosis and prognosis in real-time because of
its potential relationship with ALMS1, distinguishing unique
cancer subtypes.

The following peptide CSGKSPRFHKGGIQYKVDWY
can also be traced back to two effective tumor-associated
proteins, namely, E3 ubiquitin-protein ligase NHLRC1 and
gamma-tubulin complex component6, which participate in
tumorigenesis (Altschul et al., 1997; Orlic et al., 2006; Martin
et al., 2014) and contribute to the distinction of different tumor
subtypes in our candidate tumor subgroups (Orlic et al., 2006;
Martin et al., 2014). Therefore, based on dataset-1, all the
identified qualitative immunosignature-associated peptides can
be traced back to cancer immune antigens, validating the efficacy
and accuracy of our prediction.

Immunosignature-Associated Genes Derived From

Dataset-2
Apart from such analyzed optimal peptides identified
on the first platform, we also tried to identify the core

FIGURE 5 | Performance of support vector machine (SVM) on different feature subsets. (A) Performance of SVM on feature subsets with step 10; (B) Performance of

SVM on feature subsets with top 2,800–2,900 features.
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FIGURE 6 | Performance of three classifiers on 15 groups in dataset-2 and overall accuracy.

FIGURE 7 | The confusion map of 42 classification rules on dataset-2.

distinctive peptides derived from other platforms by the
same computational approach, hoping to represent the
comprehensive distinction capacity of immunosignature. In such
dataset of samples (dataset-2), we screened out the candidate

immunosignature antigens for 15 types of diseases, also including
the normal controls.

The first identified peptide is FKETAMPVLNYPVGVNEGSC,
aligning to three effective proteins succinate-semialdehyde
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TABLE 3 | Forty-two detected rules for classifying different diseases in dataset-2.

Rules Criteria Subtype

Rule1 HQKNDSANTVITTWLTRGSC>= 5.265 Sarcoma

Rule2 MNVHYAAQDVINFGAHQGSC>= 1.497

RENQHEIGVALARSHKMGSC<= 0.427

Glioblastoma

multiformae

Rule3 ELIAFRDFNWRGGVVAGGSC>= 2.837

KWKQDYINNHFVKVNRTGSC>= 1.622

Glioblastoma

multiformae

Rule4 VWGKGGMYEAHYRRNGEGSC>= 2.360

DEPKQYASWYTHWTNWAGSC>= 3.931

Glioblastoma

multiformae

Rule5 HDWNVAWELRRWKALIYGSC>= 1.791

GTQPMVAWKDVYGIVVYGSC>= 1.510

AAVAKRIAEQHMWMQVGGSC>= 0.683

Breast cancer

stage IVa

Rule6 KFPNEFRYRYNWRMQNPGSC>= 7.729

AAVPKYINAMWKGYAPDGSC<= 0.609

Breast cancer

stage IVa

Rule7 FHWNMYKNSESLFEEKQGSC>= 2.110 Oligodendroglioma

Rule8 PGLTHNTLQYMATVLSVGSC>= 1.876

AAKFRTQWMHWMIWHHTGSC>= 0.752

Oligodendroglioma

Rule9 PGLTHNTLQYMATVLSVGSC>= 1.876

AAKFRTQWMHWMIWHHTGSC>= 0.752

Oligodendroglioma

Rule10 QVNKAVSWYLVWHLWHQGSC>= 1.183

AGLLWQWKGWDYIHEWNGSC<= 0.466

LWFGTMPWHSIRAHDVHGSC<= 0.616

Recurrent breast

cancer

Rule11 HYNRYMVIIGNWGKQPIGSC<= 0.509

GNSVRAFITVLMQIFFTGSC>= 1.727

MKPLISYGPAWFGPLLWGSC>= 0.538

Recurrent breast

cancer

Rule12 GDQHQLEPPYKKNQYMIGSC>= 1.857

RTGAGHTWDSTGHIQKVGSC>= 0.968

Recurrent breast

cancer

Rule13 RQNTIRSRQKINLGGGDGSC>= 1.853

AADTGGFDLIWNEVKGHGSC>= 1.130

Recurrent breast

cancer

Rule14 PVGEVSSDYNRGPWRGTGSC>= 1.977 Recurrent breast

cancer

Rule15 SWIHGWLTITIYGFKERGSC>= 1.631

AAVAKRIAEQHMWMQVGGSC<= 0.331

Recurrent breast

cancer

Rule16 DLVMPTNHESLSQLTGDGSC>= 1.004

PFPNYPIYPMWMMHEREGSC>= 2.888

Pancreatitis

Rule17 LERGHRADMAYRDTFPMGSC>= 2.128

DQYELTQDLHVVKSYFAGSC<= 0.512

Pancreatitis

Rule18 IKSRTGAEEIQIQMLLRGSC>= 2.858 Pancreatitis

Rule19 LSERWAMGAHRDTASQTGSC>= 1.540

ADDHEQWTEKMYKNQNMGSC>= 0.523

Ovarian cancer

Rule20 ADVKMLWEWNDVKVLIIGSC>= 4.318 Ovarian cancer

Rule21 VNFESFREPTFGSDGYSGSC>= 2.353

EWYYDPRGGTGSFYMRTGSC>= 0.972

Mixed

Oligo/Astrocytoma

Rule22 LIVFTKGHRMYNDIPTNGSC<= 0.434

APYTPQFFEAQTWWINGGSC>= 1.146

Mixed

Oligo/Astrocytoma

Rule23 YLSTSMEQEQEQVHGNWGSC>= 2.247

ILDRRETAWNEHFSKFRGSC>= 1.236

Mixed

Oligo/Astrocytoma

Rule24 TVKKMYNGGLASKNALYGSC<= 0.171

GHAVQGGLKRAHRVYKQGSC>= 1.766

Mixed

Oligo/Astrocytoma

Rule25 TQGVAHFGQTHYPYQLEGSC>= 1.942

PHEEYMRQFHSAGQPTFGSC>= 1.416

HHAFFNGEYMKMMSLSIGSC>= 0.051

Lung cancer

Rule26 YVQEHAQWKNMWELANGGSC>= 2.325

AADTGGFDLIWNEVKGHGSC<= 0.806

Lung cancer

Rule27 FLKFMQKMSTVHIIWLNGSC<= 0.118

ANQTHYDPTSSDMVWPKGSC>= 1.071

Lung cancer

Rule28 TAKWYGIRNSQDEKVEAGSC>= 1.756

AAKFRTQWMHWMIWHHTGSC>= 0.750

Lung cancer

(Continued)

TABLE 3 | Continued

Rules Criteria Subtype

Rule29 YINSYPIAKPHGEEMQMGSC<= 0.461

ETDKTINVREAAAHGMKGSC<= 0.390

Multiple myeloma

Rule30 ERIYRDHFIHEHKANIIGSC <= 0.545

NLFRWLWNRRHVWDQDRGSC>= 1.092

Multiple myeloma

Rule31 TAHGKARDFDPAKNRYLGSC<= 0.398 Multiple myeloma

Rule32 HFGIVISVMNEKEGALRGSC>= 7.715 Multiple myeloma

Rule33 YFMWPFWWYSHVWGRDWGSC>= 1.001

IITIWLDGGLMHDFEKPGSC>= 1.028

AEMGFTSPERDQGASQEGSC<= 1.493

Pancreatic cancer

Rule34 WWWFHSLGLLAHIKIALGSC>= 1.122

FGFDFGDLWIIPDAIAMGSC>= 1.068

Pancreatic cancer

Rule35 IISNTTMAVLWMLQSSRGSC>= 1.429

ANQTHYDPTSSDMVWPKGSC>= 0.758

Pancreatic cancer

Rule36 TYQRRMGGVRGQQPYNKGSC>= 2.089

DGDPTAITNWWWETGNWGSC<= 0.728

Breast cancer

Rule37 PKQHGRQQNQGIFKPMLGSC>= 2.538

AGGNHLAIAFNAIFLNMGSC<= 0.717

Breast cancer

Rule38 FKETAMPVLNYPVGVNEGSC>= 1.959 Healthy normal

donor

Rule39 GEASDNYKWWWDHVVYPGSC>= 1.854 Astrocytoma

Rule40 FFYKKDFTPRHTFQNRRGSC<= 0.529

AEMGFTSPERDQGASQEGSC<= 0.586

Astrocytoma

Rule41 APMKNIVSAKTKDFAYMGSC<= 0.324 Astrocytoma

Rule42 Others Healthy normal

donor

dehydrogenase, mitochondrial isoform 1; succinate-
semialdehyde dehydrogenase, mitochondrial isoform 2; and
exosome complex component MTR3 (Altschul et al., 1990;
Mount, 2007; Pruitt et al., 2014). These proteins have differential
expression patterns in 15 sample subgroups. Considering the
length limitation, we chose exosome complex component
MTR3 as an example for detailed discussion. Mediating mRNA
degradation (Houseley et al., 2007; Sandler et al., 2013),
such protein participates in the pathogenesis of some disease
subtypes, including some candidate subgroups such as breast
cancer (Rosedale and Fu, 2010), but not other subtypes such
as astrocytoma, glioblastoma multiforme, and lung cancer.
Therefore, with specific expression pattern on proteomic level,
the identified antigen may be differentially expressed in distinct
diseases subtypes, validating the efficacy, and accuracy of
our prediction.

The second identified peptide is SESTLAKIGVLGNLY
DIGSC, derived from caspase-8, glutamate receptor ionotropic,
and Kv channel interacting protein. Three proteins have been
functionally connected to tumorigenesis. Taking Kv channel-
interacting proteins (KCNIPs) as an example, members of
the KCNIP family contribute to the inactivation of A-type
potassium channels (Pruunsild and Timmusk, 2005; Moreau
et al., 2016). Comparing with our candidate diseases list, such
peptide can distinguish neural system-associated diseases from
others because of the specific regulatory role of the KCNIP family
in the nervous system (Néant et al., 2015; Moreau et al., 2016),
validating the efficacy and accuracy of our approach.
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The third identified peptide has a specific sequence of
AQNADELEEYSASKHDGGSC, which can be realigned to
multiple tumor-associated proteins, such as mediator of RNA
polymerase II transcription subunit 1, protein FAM45A, and
protein SETSIP (Altschul et al., 1990; Mount, 2007; Pruitt et al.,
2014). All three proteins have differential expression patterns
on the proteomic level in our 15 candidate disease subtypes
(including health control). As a chromatin binding protein
SETSIP, such gene participates in somatic cell reprogramming
and cell differentiation (Margariti et al., 2012). Such protein is
not expressed nor functioning in multiple tissue subtypes. Such
identified protein only acts as a reprogramming regulator in
vascular fibroblasts (Margariti et al., 2012) and human gastric
epithelial cells (Fazeli et al., 2017). This finding reflects its
specific tissue-restricted expression pattern and confirms that
such protein is effective in distinguishing candidate 15 diseases
by its specific tissue-restricted expression pattern.

As analyzed above, all identified peptides are derived
from disease-associated genes/proteins, reflecting the abnormal
expression pattern of certain genes/proteins under certain
pathogenic conditions. Due to the limitation of the article
length, all optimal peptides cannot be analyzed one by
one. Peptides such as PMDEGFAQIAHQALINAGSC and
VNHKPLLSGHSGVEWPSGSC also present their distinctive
capacity for the candidate disease subgroups, validating the
efficacy and accuracy of our prediction. Therefore, from one sight
of qualitative analysis, immunosignature-based cancer liquid
biopsy may be effective.

Immunosignature-Associated Rules
In addition to the above analysis, we also applied two groups
of quantitative analysis, recognizing a group of effective rules
for the detailed distinction of each disease subtype. Due to the
limitation of page length, we only focus the top-ranked three
optimal rules of each datasets for following detailed data mining
and discussion.

Immunosignature-Associated Rules From Dataset-1
The first rule of dataset-1 contributes to the recognition
of samples derived from esophageal cancer by only one
quantitative parameter, the low expression level of peptide
CSGAGFEGTGLRCSLLCLDR. Recent publications have
reported that such peptide is aligned to a group of specific
proteins named phosphoinositide 3-kinase regulatory subunit 5
isoform 1/2 and sortilin-related receptor preproprotein (Altschul
et al., 1990; Mount, 2007; Pruitt et al., 2014). Not all such
identified proteins are lowly expressed in esophageal cancer,
except for protein phosphoinositide 3-kinase regulatory subunit
5 (Zhang et al., 2018), validating the efficacy, and accuracy of
our prediction. On the basis of the detailed expression level of
such protein in serum provided by the Proteomics Database
(Wilhelm et al., 2014; Schmidt et al., 2018) and the Cancer
Proteomic Database (Arntzen et al., 2015), such protein has
relatively high expression patterns in multiple tissue subtypes.
As for its expression level in the serum of esophageal cancer
patients, recent publications (Zhu et al., 2015; Peng et al., 2017)

have also confirmed its low expression pattern, validating the
prediction tendency of our quantitative rules.

As for the second rule, candidate peptides CSGFQPMRYP
FQDPYHGYGW and CSGADFVTYATRRVQFMMHK derived
from uracil-DNA glycosylase isoform UNG2, T-cell surface
glycoprotein CD5 isoform 2, and transmembrane protein 33,
N-acetylgalactosamine kinase isoform X10 contribute to the
identification of pancreatic cancer. We chose T-cell surface
glycoprotein CD5 isoform 2 and transmembrane protein 33 as
two major peptide sources for detailed quantitative discussion.
According to recent publications (Chu et al., 2003; Wörmann
et al., 2014; Lu et al., 2015), these two proteins are lowly expressed
in pancreatic cancer. Considering the detailed expression level
in the Proteomics Database (Wilhelm et al., 2014; Schmidt et al.,
2018) and the Cancer Proteomic Database (Arntzen et al., 2015),
we further validated the low expression patterns of these genes.

As for the third quantitative rules, parameters CSGFL
MEHQNLLERSEDAKA and CSGGEGIQATYHKVGGNFLG
have been selected for the identification of healthy controls.
By realigning to the Refseq protein database (Altschul et al.,
1990; Mount, 2007; Pruitt et al., 2014), the two peptides have
been confirmed to be derived from proteins 6-phosphofructo-
2-kinase/fructose-2,6-bisphosphatase 3 (Clem et al., 2013) and
zinc finger protein 296 (Fischedick et al., 2012), respectively.
These identified proteins participate in specific pathogenesis
with abnormal expression patterns (Fischedick et al., 2012; Clem
et al., 2013). On the basis of the Proteomics Database (Wilhelm
et al., 2014; Schmidt et al., 2018), the expression level of such two
genes in blood is corresponding with our predicted threshold,
validating our method’s efficacy and accuracy.

Immunosignature-Associated Rules From Dataset-2
The first rule of our identified quantitative rule based on dataset-
2 involves a unique peptide, HQKNDSANTVITTWLTRGSC,
which can be further realigned to the protein interleukin-1
receptor type 2 with acceptable mismatches that contribute to
the identification of sarcoma (Altschul et al., 1990; Mount,
2007; Pruitt et al., 2014). Different from other cancer
subtypes, the overexpression of our identified peptide-
derived protein interleukin-1 receptor type 2 promotes
the initiation and progression of sarcoma (Boddul et al.,
2014; Liu et al., 2015). As for the expression parameter
we screened, such detailed expression level has also been
confirmed based on the Cancer Proteomic Database
(Arntzen et al., 2015).

In the second rule, MNVHYAAQDVINFGAHQGSC
and RENQHEIGVALARSHKMGSC have been picked up as
quantitative parameters for the identification of samples from
glioblastoma multiforme patients. Re-aligning (Altschul et al.,
1990; Mount, 2007; Pruitt et al., 2014) to effective proteins
hydrocephalus-inducing protein and laminin subunit gamma-3
precursor, such rule corresponds to recent publications and
related databases. On the basis of our quantitative rules,
hydrocephalus-inducing protein has a relatively high expression
level (>1.47) and laminin subunit gamma-3 precursor has
a relatively low expression level (<0.42) at the proteomic
level. Such two expression tendencies have already been
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confirmed by recent publications (Peles et al., 2004; Lathia
et al., 2012). Considering that few reports focused on the
expression in serum in multiple patient conditions, we
referred to the Cancer Proteomic Database (Arntzen et al.,
2015) for proper blood expression pattern under specific
pathogenic conditions, which is also correspondent with
our prediction.

The third rule derived from dataset-2 also involves two
parameters ELIAFRDFNWRGGVVAGGSC and KWKQD
YINNHFVKVNRTGSC with their respective expression
tendencies in patient samples. Based on BLAST, such two
peptides have be accurately realigned to two specific proteins,
namely, transmembrane protein 39B (Altschul et al., 1990;
Mount, 2007; Kim et al., 2013; Pruitt et al., 2014) and
fructosamine-3-kinase, contributing to the identification of
glioblastoma multiforme patients. According to such rules,
both identified proteins are upregulated during tumorigenesis.
Recent publications (Delplanque et al., 2004; Kim et al., 2013;
Nass et al., 2014) have validated that the specific expression
patterns of such two proteins during the initiation and
progression of glioblastoma multiforme turn out to be up-
regulation, corresponding with our prediction rules. Due
to the lack of serum-based proteomic studies for multiple
diseases subtypes, the unique expression patterns of such two
genes in blood/serum have been partially verified by referring
to the data released from the Cancer Proteomic Database
(Arntzen et al., 2015).

All the identified genes in this work are the source of
identified immunogenic antigens and are functionally related
to tumorigenesis. All the quantitative rules have been validated
by recent proteomic analysis, confirming the efficacy and
accuracy of our prediction. Therefore, our study settles up
a systematic computational workflow for the identification of
potential immunosignature in multiple cancer subtypes at the

proteomics level, providing new insights into the immunogenic
characteristics of tumorigenesis.
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