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Abstract. New foods and natural biological modulators have 
recently become of scientific interest in the investigation of 
the value of traditional medical therapeutics. Glucans have 
an important part in this renewed interest. These fungal wall 
components are claimed to be useful for various medical 
purposes and they are obtained from medicinal mushrooms 
commonly used in traditional Oriental medicine. The immu-
notherapeutic properties of fungi extracts have been reported, 
including the enhancement of anticancer immunity responses. 
These properties are principally related to the stimulation of 
cells of the innate immune system. The discovery of specific 
receptors for glucans on dendritic cells (dectin-1), as well as 
interactions with other receptors, mainly expressed by innate 
immune cells (e.g., Toll-like receptors, complement receptor-3), 
have raised new attention toward these products as suitable 
therapeutic agents. We briefly review the characteristics of the 
glucans from mycelial walls as modulators of the immunity 
and their possible use as antitumor treatments.
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1. Introduction

Renewed interest has recently arisen for both functional foods 
and the investigation of the scientific value of traditional 
medical treatments. The evaluation of mushroom derivatives 
and their medical properties are important part of these studies. 
Polysaccharides, including the glucans, have been described as 
biologically active molecules (1-4). Certain glucose polymers, 
such as (1→3), (1→6)-β-glucans, were recently proposed as potent 
immunomodulation agents (3-5). Even though glucans can be 
extracted from the cell walls of yeast, oat, barley, seaweeds, 
algae and bacteria, the foremost source of medical glucans 
turns out to be fungal cell walls which consist either of poly-
saccharides such as chitin, cellulose, (1→3)-, (1→6)-β-glucans 
and (1→3)-α-glucans, or polysaccharide-protein complexes 
(6). The β-glucans are the most studied within these polysac-
charides and are principally obtained from the fruit body of 
various types of mushrooms. Used especially in traditional 
Oriental medicine (7), they are reported to be found in fruit 
bodies, cultured mycelium and cultured broth from higher 
Basidiomycetes mushrooms (as resulted from ~700 species 
of investigated higher Hetero- and Homobasidiomycetes). 
According to traditional medicine assertions, as well as some 
scientific studies, glucans have been reported to produce anti-
tumor, immunomodulating, antioxidant, radical scavenging, 
cardiovascular, antihypercholesterolemia, antiviral, antibacte-
rial, antiparasitic, antifungal, detoxification, hepatoprotective 
and antidiabetic effects (8,9). Growing interest of Western 
science into biologically active polysaccharides can be consid-
ered to start after the publication of Pillemer and Ecker in 
1941 (10). They described a crude yeast cell wall preparation, 
later named zymosan, able to modulate non-specific immunity 
(complement) (11). It was unknown at that time which compo-
nent of this preparation was stimulating the immune response. 
Later on, β-glucan was identified by Riggi and Di Luzio as 
the immune-activating compound within the components of 
zymosan (after testing its lipid and mannan components) (7). 
Since then, a large number of studies have been performed to 
clarify the immunomodulating potential of glucans and their 
possible antitumor effects (12-18). The discovery of specific 
receptors for glucans on immune cells, the recent advances 
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in understanding host immune responses against infectious 
agents and cancer and the importance of the innate immunity 
(inflammation) in these responses have renewed the interest 
toward glucans as perspective immunotherapeutic molecules.

2. β-glucan sources and properties

The glucans are D-glucose-based polysaccharides. With 
their glucose anomeric structure, they can be α-D-glucans, 
β-D-glucans and mixed α,β-D-glucans. They present 
different types of glycosidic bonds originating either (1→3)-, 
(1→6)-β-glucans (e.g., zymosan, laminarin, lentinan, pleuran), 
or (1→3)-, (1→4)-, (1→6)-α-glucans (e.g., dextran, glycogen, 
starch). Finally, depending on their constitution, they are 
indicated as homoglucans (only glucose molecules) or hetero-
glucans (not only glucose molecules) (19,20).

The β-glucans consist of linear unbranched polysaccha-
rides of β-D-glucose. The basic β-D-glucan is a repeating 
structure with the β-D-glucose units joined together in linear 
chains by β-bonds. These can extend either from carbon 1 of 
one saccharide ring to carbon 3 of the next (β1→3) (Fig. 1), or 
from carbon 1 to carbon 4 (β1→4), or from carbon 1 to carbon 6 
(β1→6) (1). The β-D-glucans can form large cylindrical mole-
cules containing up to 250,000 glucose units.

As reported above, the sources of glucans are various, 
including fungi (e.g., mushrooms), yeast and seaweed, as well as 
barley. Medical glucans (as the ones used by traditional medi-
cine) are principally obtained from edible fungi. By boiling 
and treating with enzymes from one of the cited sources, 
glucans can be extracted in crude form yielding soluble and 
insoluble products (19,21,22). There are many forms of soluble 
β-glucans evaluated for possible antitumor activity, such as 
(1→3)-β-D-glucan, SSG obtained from Sclerotina sclero-
tiorum IFO 9395 (23), SPG (also Schizophyllan, sizofiran, 
sonifilan) from Schizophyllum commune (24) and GRN (also 
Grifolan) from Grifola frondosa (25) and they often exist as 
a linear triple-helical structure in an aqueous solution (26). 
Insoluble glucans have been isolated for the first time from 
the mushroom Lentinus edodes (27). They were also isolated 
from the cell wall of yeast by using the combination of NaClO 
oxidation and dimethylsulfoxide (DMSO) extraction (28). To 
improve their solubility, derivatization by phosphorylation, 
either sulfation or amination can be used. However, insoluble 
β-glucans were found to possess higher immunostimulating 
activity than soluble ones and are administered orally. Factors 
that can greatly influence the antitumor and immunodulatory 
activities of the glucans are their structure, molecular weight, 
degree of branching and conformation (17,29-31). The molec-
ular weight of glucans is dependent upon their source and 
extraction method (32). For example, the average molecular 
weight of Krestin (PSK), Lentinan, Schizophyllan (SPG) and 
PGG-glucan are, respectively, reported as 100,000, 500,000, 
450,000 and 170,000 Da (33-35).

3. Immunostimulatory properties of glucans

As stated above, the immunostimulatory properties of fungal 
β-glucans were studied and described almost 50 years ago 
(36). Shortly afterwards, their effects against tumor develop-
ment in experimental animals were also described (37) and 

finally glucans were reported to modulate other conditions 
(e.g., cholesterol levels, glucose tolerance) (38,39).

Since these early studies, it has been demonstrated that 
β-D-glucans increase the resistance of mammalians against 
several bacterial, fungal, viral and protozoal pathogens (40-43). 
A recent study compared the effects of soluble oat glucan 
versus Pleurotan, an insoluble β-D-glucan isolated from the 
mushroom Pleurotus ostreatus. They were administered as a 
food supplement for athletes and the β-D-glucan isolated from 
the mushroom resulted in significantly reducing the incidence 
of upper respiratory tract infection. Interestingly, the Pleurotan 
administration was associated with an increased number of 
circulating natural killer cells as well as a preventive effect 
on the reduction of natural killer cell activity. These latter 
findings may explain the reduced infectivity risk in the treated 
athletes (29). Since the soluble oat glucan supplementation did 
not produce effects on the incidence of respiratory tract infec-
tions, it was suggested that solubility and structural factors 
(e.g., backbone structure and degree of branching) can deeply 
affect the immunomodulatory capacity of β-D-glucans (17). 
Many studies have reported the ability of (1→3)-β-D-glucans to 
activate innate immunity with effects also on adaptive immu-
nity, inducing humoral and cell-mediated immune responses. 
The (1→3)-β-D-glucans were found to increase the antimicro-
bial activity of mononuclear cells and neutrophils (7,44,45) 
and enhance the functional activity of macrophages (46,47). It 
has been reported that the (1-6)-branched type glucans, with 
high molecular weight and (1→3)-β-D-glucans are especially 
effective in inducing nitric oxide production by macrophages 
(21,47,48). Moreover, ex vivo experiments with macrophages 
obtained from animals treated with (1→3)-β-D-glucans showed 
enhanced esterase release and cytostatic effect on tumor cells 
when challenged with L-929 tumor cells (49). (1→3)-β-D-glucans 
were also reported to have hematopoietic activities, according 
to their conformation (single and triple helix) and to stimulate 
the proliferation of monocytes and macrophages (50-52). 
Relating to their role in triggering innate immunity responses, 
insoluble and derivatized (1→3)-β-D-glucans, according to 
their source, were also found to stimulate the production of 
proinflammatory molecules such as complement components, 
IL-1α/β, TNF-α, IL-2, IFN-γ and eicosanoids as well as 
IL-10, and IL-4 (53-59).

Protective effects of glucans were observed in mouse and 
rat models of sepsis (60-62). Neutrophils obtained from 
glucan-treated mice showed enhanced phagocytosis of 
E. coli in ex vivo experiments (63). In vivo administration 
of poly-[1‑6]-β-D-glucopyranosyl-[1-3]-β-D-glucopyranose 
(PGG-glucan) in rats before bacterial challenge increased 
the number of leukocytes and also protected against lethal 
peritonitis (64). Similarly, in a mouse model of dental infec-
tion, PGG-glucan reduced infection-stimulated periapical 
bone resorption (65). The immunomodulatory properties of 
PGG-glucan studied also in many in vitro models evidenced 
that phagocytic cells (polymorphonuclear lymphocytes) 
increase their bactericidal capabilities when incubated in 
the presence of PGG-glucans. In purified human neutro-
phils, PGG-glucan was shown to induce the activation of an 
NFκB-like nuclear transcription factor. This activation was 
dependent on the binding of PGG-glucan to glycosphingolipid 
lactosylceramide expressed on the cell surface of neutrophyls 
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(45). Berovic et al reported that one polysaccharide frac-
tion isolated from Ganoderma lucidum, a mushroom rich in 
β-D-glucans, can induce TNF-α synthesis in primary cultures 
of human peripheral blood mononuclear cells (66). However, 
the protective effect of β-glucan against oxidative stress was 
also described using (1→3)-, (1→6)-β-D-glucan prepared from 
Saccharomyces cerevisiae yeast (62). These data support the 
observations of the ability of glucans to prevent and decrease 
infectious complications (53,67). Nevertheless, the various 
effects reported here indicate the necessity of a clear charac-
terization of glucans by their origin, their structure and their 
fractions to better define the type of immune modulation 
elicited by each compound.

4. Glucan receptors on immune cells

The innate immunity cells are provided of a complex network 
of germ line-encoded pattern-recognition receptors (PRRs). 
They can identify pathogens by binding to carbohydrates, 
lipids and proteins expressed by the microorganism, including 
fungi (68-71). As reported above, in vivo administration of 
pure glucans induces the activation a wide range of responses 
by innate immunity (70,72). In particular, glucans have been 
found to react with one or multiple of the following cell surface 
receptors: complement receptor-3 (CR3), lactosylceramides, 
scavenger receptors and dectin-1 (73-76). Dectin-1 is consid-
ered the main β-D-glucan receptor. The β-D-glucan binding 
to myeloid cell receptors triggers, according to the bound 
receptor, a series of signaling events that modulate innate and 
subsequently adaptive immune responses, mainly through 
release of pro-inflammatory cytokines (IL-1α/β, IL-6, IL-8, 
IL-12, TNF-α) as well as cytotoxic molecules working also 
as inflammatory mediators [nitric oxide (NO) and hydrogen 
peroxide (H2O2)], as cited in the previous paragraph. The 
activation of macrophages performed by (1→3)-β-D-glucans is 
thought to be consequent to binding of the polymer to CR3 
(CD11/CD18) receptors (42). The receptor-glucan interac-
tion triggers phagocytosis, respiratory burst and secretion 
of cytokines such as TNF-α in addition to IL-10 (77,78). 
For an adequate use of glucans as immune enhancers, it is 
necessary to point out that glucan polymers derived from 
various sources can largely differ in binding affinity with 
specific receptors (from 24 µM to 11 nM). Consequently, 
different biological effects can be promoted according to 
the source of the chosen molecule (68). Human monocytes 
(but also fibroblasts) express many glucan receptors which 

can differentiate between the polymers of (1→3)-β-D-glucan 
(68,79). Neutrophils exhibit lactosylceramide that mediates 
the response to PGG-glucan and CR3 mediates cytotoxicity 
for iC3b-opsonized target cells (35,80). CR3 receptor is also 
represented on natural killer cells (NK). Consequently, the 
triggering of complement alternative activation pathway by 
β-D-glucans with the availability of iC3b fragment elicits a 
high-avidity link of iC3b-opsonized cells (tumor cells or 
pathogens) to the receptors for iC3b and stimulates phagocy-
tosis by monocytes and cytotoxic degranulation by NK cells 
(81). Macrophage/monocytes present on their surface scav-
enger receptors and dectin-1 recognizing (1→3)-β-D-glucans 
and non-opsonic zymosan. Dectin-1 is also represented on 
dendritic cells (see below) (82,83).

Some studies have suggested the complement receptor 
type 3 (CR3, also CD11b/CD18) is a prime candidate for 
β-D-glucan receptor on human monocytes, neutrophils 
and NK cells (80). More recently, dectin-1 was definitively 
identified as the most important β-D-glucan receptor (84). 
Human and murin dectin-1 mostly show a similar structure 
and function (85). Dectin-1 is a small type II transmembrane 
glycoprotein receptor containing one lectin-like carbohydrate 
recognition domain which is able to recognize (1→3)-β- and/or 
(1→6) β-D-glucans as well as fungi particles (86). This receptor 
is highly expressed on macrophages and granulocytes, but 
also on dendritic cells with effects on T and B cell responses 
(75,87,88). Dectin-1 presents two ligand-binding sites, one 
able to recognize the endogenous ligand on T cells and the 
other for exogenous carbohydrate (89). It has been shown that 
dectin-1 is able to mediate inflammatory cellular responses 
to β-D-glucans. The release of TNF-α, after interaction of 
β-D-glucans with the superficial part of the receptor, needs the 
cytoplasmic tail and immunoreceptor tyrosine activation motif 
of Dectin-1 as well as Toll-like receptor (TLR)-2 and Myd88 
(71,73,90,91). The role of dectin-1 is important on dendritic 
cells (DCs) (73,75). Recent studies have shown the capability 
of DCs to stimulate antigen specific CD8+ T cell responses 
after dectin-1 is bound by the anti-dectin-1 antibody. The 
receptor-Ab interaction triggers a Syk-dependent pathway with 
upregulation of costimulatory molecules, secretion of cyto-
kines and chemokines. This induces enhancement of antigen 
presentation, priming and expansion of antigen specific CD8+ 
T cells. A similar effect can be hypothesized after dectin-1 
bounding to β-glucans (92).

Moreover, glucan-dependent dectin-1 signaling in macro-
phages and bone marrow-derived dendritic cells has been 

Figure 1. Example of (1→3)-β-D-glucan.
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found to trigger the formation of LC3II, a central component 
in autophagy, as well as recruitment of LC3II to phagosomes. 
Here also Syk is involved. This promoted presentation of 
fungal-derived antigens to CD4 T cells occurs by facilitation 
of MHC class II molecule recruitment to phagosomes (93,94).

5. Antitumor activities of glucans

Polysaccharides from fruiting bodies, cultured mycelia and 
cultured filtrates of basidiomycetes have been reported to 
present antitumor activity. These antitumor polysaccharides 
are different in their chemical composition depending on their 
molecular weight, purity and degree of branches (3,82). As 
quoted by Bulmer et al (95), the first reports on the antitumor 
properties of extracts from fungi were published by Ringler  
in 1955 (a PhD thesis) and Lukas et al (96). Since then, many 
antitumor polysaccharides were isolated from fungi and exten-
sively studied, especially in Japan (12,17,97‑99). As has been 
emphasized, the therapeutic efficacy of these polysaccharides 
can greatly differ according to their chemical composi-
tion, configuration and physical properties. A wide range of 
glucans extending from homopolymers to highly complex 
heteropolymers were found to exhibit antitumor activity and 
most of the antitumor polysaccharides presented the same 
basic β-D-glucan structure with different types of glycosidic 
bounds. Glucans with high molecular weight appear to be 
more effective than those with low molecular weight (3,99). 
Differences in the effectiveness of mushroom glucan prepara-
tions are related to the type of polymer (according to the type 
of β-backbone) but also to the presence and proportion of 
various products in the same preparation. The simultaneous 
presence of different products may elicit multiple stimulatory 
activities with possible enhancement of the immunomodula-
tory effects. A clear example of this possible collaboration, 
related to products obtained from Agaricus blazei, is reported 
by Borchers et al in their review on mushrooms as anticancer 
immune modulators (100). They assert that the mush-
room Agaricus  blazei contains more compounds [an 
antitumor glucan with a (1→6)-β-backbone, an (1→6)-α- and 
(1→4)-α-D-glucan complex and a glucomannan with a main 
chain of (1→2) β-linked D-mannopyranosyl residues] that were 
found to inhibit tumorigenesis (101-103). The preparation by 
aqueous extraction from powdered, dry fruiting body was less 
efficient than the direct administration of the complete dry 
powdered form. In rats fed with either aqueous extract or dry 
powdered preparation, the complete dry powder developed a 
better antimutagenic activity (104). Similar results were found 
also for diets containing powdered Lentinula edodes (shiitake) 
(105,106). The interpretation of Borchers et al is that different 
polysaccharides can cooperate by targeting different cell 
subsets by different receptors. Consequently, a more complex 
and effective stimulation would be more easily elicited when 
whole-mushroom extracts are used (100,102,107-109).

Polysaccharides or polysaccharide-protein complexes 
obtained from natural sources are generally reported to not 
produce direct cytotoxic action on tumor cells, but to induce 
host-mediated antitumor immune responses. However, the 
complete absence of direct effects on tumor cells cannot be 
totally excluded according to some recent studies (110-112). 
Pioneering studies of Di Luzio et al, using intravenous injec-

tion of soluble or particulate glucan, documented significant 
regressions of a syngeneic anaplastic mammary carcinoma 
and B16F10 melanoma in A/J and C57BL/6 mice, respectively 
(113). It has also been demonstrated that orally administrated 
yeast-derived as well as mushroom-derived β-(1-3) glucan 
had significant inhibitory effects on the growth of metastatic 
cancer cells using in vivo models of cancer (114,115). Animals 
that received treatment with PSK, β-(1→4)-D-glucans with 
(1→6)-β-glycopyranosidic side chains showed an increased 
number of neutrophils and a significant decrease in the size 
and number of lung metastasis (116). Therefore, the effects may 
not be limited only for use in the early stages of carcinogenesis 
or tumor development as suggested by the enhancement of 
immune responses (IL-1β, IFN-γ, TNF-α and IL-12 produc-
tion, NK cell increase, macrophages activation), an increase of 
the host's antioxidant capacity and upregulation of phase I and 
phase II enzymes involved in the metabolic transformation 
as well as detoxification of mutagenic compounds (117,118). 
Finally, the efficacy of some types of fungal derivatives like 
lentinan, pachymaran, scleroglucan, curdland, grifolan and 
Agaricus blazei (1→3)-β-D-glucan resulted particularly high 
in various in vivo models of cancer. According to the reports, 
the tumor inhibition ratio in animal models range from 90.4 
(scleroglucan) to 99.6% (lentinan) (119-122).

Glucans have also been proposed as an adjuvant. Some 
examples in animal models suggest an increasing of chemo- or 
immunotherapy efficacy when they are associated to polysac-
charides, mainly glucans. The combination of an anti-MUC1 
mAb with β-glucans significantly increased 20% the rate 
of RMA-S-MUC1 tumor regression in C57BL/6 mice (14). 
Ganoderma lucidum polysaccharides were also able to prolong 
the survival of Lewis carcinoma bearing C57BL/6 mice and 
to enhance antitumor activities of cytotoxic drugs and immu-
nomodulators (123). Of particular interest is the possibility of 
using glucans for triggering complement-dependent antitumor 
cytotoxicity.

As previously cited, complement is a relevant mediator of 
antitumor β-D-glucan effects even after oral administration. 
Complement is an important part of the innate immunity 
against microorganisms that exhibit β-D-glucans as a surface 
component. These molecules are not expressed by tumor cells 
and, consequently, tumor cells cannot trigger CR3-dependent 
cellular cytotoxicity (CR3-DCC) (124). Oral administration of 
β-D-glucans may modify this condition. Glucan, in insoluble 
form, can be processed by gastrointestinal macrophages to 
soluble form. Once the soluble form is delivered, it can reach 
CR3 of bone marrow granulocytes and tissue macrophages 
making iC3b fragments available. In this way, the promo-
tion of cytotoxity against tumor cells could be the result of 
contemporary presence of iC3b fragments and antitumor 
antibodies (125). Complement activation and deposition of 
iCR3 on tumor cells needs the presence of antitumor anti-
bodies to produce a synergistic effect. Such an effect, leading 
to tumor regression, was evidenced by various authors using 
administration of β-D-glucans together with monoclonal anti-
bodies against GD2 ganglioside, G250 protein, CD20 protein, 
respectively in experimental neuroblastoma, carcinoma and 
CD20+ lymphoma (126-128). Evidence of the dependence of 
this approach from complement involvement was given by 
failures of therapy in mice deficient in CR3 (CD11b-/-) or C3 
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(C3-/-) (129-131). This approach, since the progressively larger 
use of monoclonal antibodies in anticancer therapies, results 
in a particularly appealing and prospective application of 
β-D-glucans as effective enhancers of antitumor responses, as 
also demonstrated by recent literature (18,132).

6. Conclusion and potential

A substantial amount of literature has been accumulated in 
past decades on the medical potential of polysaccharides, 
particularly the β-D-glucans, from medical mushrooms used 
by the traditional medicine. Especially in recent years, the 
interest in these molecules or compounds has arisen together 
with the understanding of innate immunity implications 
during carcinogenesis and cancer development. Unfortunately, 
many clinical reports lack a specific rationale or simply 
describe effects according to traditional medicine application. 
However, some recent studies on gastric and colorectal cancer 
patients indicate the possible efficacy of these saccharides 
(133-135). Experimental studies have in large part clarified 
the basic mechanisms involved in the immune stimulation 
produced by β-D-glucans, especially with the knowledge on 
dectin-1 and C3-iCR3 involvement. A clear definition of the 
biologically active molecules and a more detailed chemical 
and biological characterization of the glucans from different 
sources appear necessary to better define the rationale of their 
application in anticancer therapies as well as other suitable 
pathologies. For example, it was suggested by Hamuro and 
Chihara that only extracts able to deactivate protein helices (as 
tested on bovine serum albumin) were active against tumors 
(136). Furthermore, β-D-glucans also appear suitable for use 
in nanomedicine for preparation of natural nanocarriers for 
drug or biological molecule delivery (137-139). The creation of 
gels or lattices based on β-D-glucans has also been proposed 
for various utilizations (e.g., in wound healing by stimulating 
macrophage activation and collagen deposition) (140,141). The 
addition of new areas of application, apart from the immu-
nological use in oncology, opens new interesting perspectives 
and makes the study of β-D-glucan chemical and biological 
properties a prospective field of research.
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