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Abstract

Cancer-associated genetic alterations induce expression of tumor antigens which can activate 

CD8+ cytotoxic T cells (CTL), but the microenvironment of established tumors promotes immune 

tolerance through poorly understood mechanisms1,2. Recently developed therapeutics that 

overcome tolerogenic mechanisms activate tumor-directed CTL and are effective in some human 

cancers1. Immune mechanisms also affect treatment outcome and certain chemotherapeutic drugs 

stimulate cancer-specific immune responses by inducing immunogenic cell death (ICD) and other 

effector mechanisms3,4. Our previous studies revealed that B lymphocytes recruited by CXCL13 

into prostate cancer (PC) promote castrate-resistant PC (CRPC) by producing lymphotoxin (LT) 

which activates an IKKα-Bmi1 module in PC stem cells5,6. Since CRPC is refractory to most 

therapies, we examined B cell involvement in acquisition of chemotherapy resistance. We focused 
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this study on oxaliplatin, an immunogenic chemotherapeutic3,4 that is effective in aggressive PC7. 

We found that B cells modulate the response to low dose oxaliplatin, which by inducing ICD 

promotes tumor-directed CTL activation. Three different mouse PC models were refractory to 

oxaliplatin unless genetically or pharmacologically depleted of B cells. The critical 

immunosuppressive B cells are plasmocytes that express IgA, IL-10 and PD-L1, whose 

appearance depends on TGFβ-receptor (TGFβR) signaling. Elimination of these cells, which also 

infiltrate human therapy-resistant PC, allows CTL-dependent eradication of oxaliplatin-treated 

tumors.

Using the autochthonous TRAMP model of metastatic PC8, we examined how lymphocytes 

affect the response to low dose (LD) oxaliplatin. Although early (≤ 0.2 g) tumors responded 

to oxaliplatin regardless of B cell status (Extended Data Fig. 1a,b), upon reaching ≥ 0.7 g, 

WT tumors became largely resistant to “late” chemotherapy (Fig. 1a). However, tumors 

arising in B cell-deficient TRAMP;Jh-/- hybrid mice were oxaliplatin sensitive (Fig. 1a), 

although B cells had little effect on tumor progression and histology (Extended Data Fig. 

1c,d). CD8+cell-deficient TRAMP;Cd8a-/- mice bearing small tumors were less responsive 

to oxaliplatin, but large tumors were treatment resistant (Fig. 1a; Extended Data Fig. 1b). 

Similar results were obtained by s.c. transplantation of Myc-Cap (MC) cells9. Whereas small 

MC tumors (≤100 mm3) were chemotherapy responsive in WT mice (Extended Data Fig. 

1e,f), large MC tumors (≥350-400 mm3) shrank upon oxaliplatin treatment only in Jh-/- mice 

(Fig. 1b-d). No response was observed in Cd8a-/- mice. Oxaliplatin responsiveness was 

associated with enhanced caspase 3 activation, but the tumoral DNA damage response 

measured by histone H2AX phosphorylation was similarly activated by oxaliplatin, 

regardless of host genotype (Fig. 1e; Extended Data Fig. 1g-i). Oxaliplatin treatment 

increased tumor-infiltrating CD45+ cells in WT and Jh-/- mice, but myofibroblast activation 

and CD31 infiltration was more pronounced in WT mice (Extended Data Fig. 1j-l). LD 

oxaliplatin enhanced TRAMP mouse survival in a manner dependent on CTL and inhibitable 

by B cells (Extended Data Fig. 1m,n). B cell immunodepletion also enhanced oxaliplatin-

induced tumor regression and the effect was CTL-dependent (Fig. 1f).

Oxaliplatin stimulated CD8+ cell recruitment in TRAMP and TRAMP;Jh-/- mice, although 

more tumoral CD8+ cells were found in the latter (Fig. 2a; Extended Data Fig. 2a). B cell 

deficiency also enhanced oxaliplatin-induced CD8+ and CD4+ cell recruitment into MC 

tumors and induction of perforin, γ interferon (IFNγ) and TNF in CD8+ cells (Fig. 2b-e; 

Extended Data Fig. 2b-e). MC tumors in Jh-/- mice contained more CD8+ cells with 

activated STAT1, more proliferative CD8a+CD44hiGrzB+Ki67+ cells and fewer 

“exhausted”2 CD8+CD44+PD-1+Tim3+ and CD8+BTLAhi cells, whose presence in WT 

tumors was elevated by oxaliplatin (Fig. 2f-h; Extended Data Fig. 2f-i). B cell 

immunodepletion also enhanced tumoral CTL activation (Extended Data Fig. 2j-p).

Oxaliplatin treatment greatly increased the number of tumoral B220+CD19+ B cells (Fig. 3a, 

Extended Data Fig. 3a,b). After 3-4 treatment cycles at least 40% of tumoral B cells were 

CD20-/lowCD19+B220lowCD138+ plasma cells, 40-80% of which expressed IgA (Fig. 3b,c; 

Extended Data Fig.3c-l). IgA+ B cells became detectable 48 hrs after first treatment cycle, 

and their abundance increased to nearly 80% of B220low cells after additional cycles 
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(Extended Data Fig. 3g,l). When cultured ex vivo, tumoral IgA+ B cells released soluble IgA 

(Extended Data Fig. 4a). Oxaliplatin also increased serum IgA in both TRAMP and MC-

tumor models, but had little effect on serum IgG (Extended Data Fig. 4b-e). Plasmocytic 

IgA+ cells were found adjacent to α smooth muscle actin (αSMA)-expressing 

myofibroblasts (Fig. 3d), which produce CXCL1310. Oxaliplatin-induced IgA+ B cells from 

spleen and MC tumors expressed activation-induced cytidine deaminase (Extended Data 

Fig. 4f,g), suggesting recent class-switch recombination (CSR).

The IgA CSR is mainly induced by TGFβ together with CD40L, IL-21, IL-10 or IL-611. 

Indeed, oxaliplatin increased the proportion of tumoral B cells containing phosphorylated 

SMAD2/3, and induced Tgfb1 mRNA in tumors (Fig. 3e; Extended Data Fig.4h-j). 

Oxaliplatin also increased IL-21 expression and STAT3 phosphorylation in tumoral B cells 

(Extended Data Fig. 4k,l), as well as Il10 mRNA in tumors, tumoral IL-10 producing B cells 

and IL-10 content per B cell (Fig. 3f,g; Extended Data Fig. 4m). Nearly 50% of IgA+CD19+ 

plasmocytes contained IL-10 mRNA and protein (Fig. 3h-i; Extended Data Fig. 4n). 

Oxaliplatin induced Fas ligand (Fas-L) and PD ligand 1 (PD-L1) in about 50% of IgA+ 

plasmocytes, 40% of which expressed both PD-L1 and IL-10 (Fig, 3j,k; Extended Data Fig. 

3f-j). Most PD-L1+ cells expressed IgA and contained phosphorylated SMAD2/3 (Extended 

Data Fig. 4j). However, LTα/β-producing B cells did not express IL-10 and their abundance 

was barely increased by oxaliplatin (Extended Data Fig. 4o,p). Tumoral CD19+ cells did not 

express CD5, a B regulatory (Breg) cell marker12 (Extended Data Fig. 4q). Oxaliplatin 

induced other immunoregulatory molecules, including Nos2, Arg1, IL-12p35 and IL-12p40, 

but no differences were observed between tumor-bearing WT and Jh-/- mice, although the 

latter expressed higher amounts of IL-12 (Extended Data Fig. 5a-d). B cell deficiency or 

depletion had no significant effect on tumoral NK cells, myeloid CD11b+Gr1+ cells, 

macrophages or Treg (Extended Data Fig. 5e-i). Thus, unlike mouse skin cancer, where B 

cells modulate therapeutic responsiveness through macrophages13, B cells in murine PC 

impede immunogenic chemotherapy by suppressing CTL activation.

Human PC samples (n=110) were analyzed for CD8+ and CD20+ cells (Extended Data Fig. 

6a,b). Comparison of matched normal and tumor tissues from 87 early stage PC (E-PC) 

patients indicated higher CD8+ and CD20+ counts in tumors (Extended Data Fig. 6c,d). 

Patients with therapy-resistant PC (TR-PC) or metastatic PC (M-PC) exhibited reduced 

tumoral CD8+ cell density relative to E-PC patients, whose tumors contained fewer B cells 

than TR-PC and M-PC, in which B cells were most abundant (Extended Data Fig. 6e,f). E-

PC specimens displayed higher CD8/CD20 ratio than TR-PC and M-PC (Extended Data Fig. 

6g). Immunofluorescence (IF) and immunohistochemical (IHC) analyses of human PC 

specimens revealed IgA+ cells in a scattered formation, frequently next to αSMA+ 

myofibroblasts, especially in the high risk group (Fig. 3l; Extended Data Fig. 6h-j, and n). 

CD20+ B cells were both scattered and clustered in lymphoid follicle-like16 areas (Extended 

Data Fig. 6b,k). Human PC also contained IL-10-producing IgA+ CD138+ cells and some 

IgA+ cells were adjacent to CD8+ T cells and expressed little CD20 (Extended Data Fig. 6i-

k). 25% of IgA+ cells in fresh prostatectomy specimens expressed IL-10 and were enriched 

in the malignant tissue portion (Extended Data Fig. 6l,m). IgA+CD138+ plasmocytes 

exhibited higher density in TR-PC and M-PC than E-PC and patients with higher 
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IgA+CD138+ cell counts showed lower CD8/CD20 ratio (Extended Data Fig. 6n-p). 

Oncomine analysis of human IgA (IGHA1) mRNA revealed elevated IGHA1 mRNA in 

malignant versus healthy prostates in 11 of 15 datasets. Of these, 5 showed a significant 

increase (p < 0.05) and 3 showed a > 2-fold change. Results of one analysis14 are presented 

(Extended Data Fig. 6q) and fit earlier findings in mice5,6,15, suggesting that tumor 

infiltrating lymphocytes also control malignant progression and response to therapy in 

human PC.

Consistent with prior knowledge11 and SMAD2/3 activation in PD-L1+ cells, TGFβR2 

ablation in B cells (Tgfbr2∆B) enhanced oxaliplatin-induced tumor regression, mildly 

decreased tumor-infiltrating, but not splenic, B cells and inhibited oxaliplatin-induced IgA+ 

plasmocyte generation without affecting IgG1+ or IgG2a+ cells (Fig. 4a-c; Extended Data 

Fig.7a-e). IgA ablation also potentiated oxaliplatin responsiveness without reducing tumoral 

B cells (Fig. 4a,b). Both TGFβR2 and IgA ablations, prevented induction of tumoral PD-L1+ 

or IgA+IL-10+ B cells by oxaliplatin, but barely affected IL-10 in B220hiIgA- B cells 

(Extended Data Fig. 7f,g). TGFβR2 ablation or IgA deficiency also increased tumoral CTL 

density, IFNγ-production and surface CD107 a expression by CD8+ T cells of oxaliplatin-

treated mice (Fig. 4e,f). Suppressor B cells may attenuate T cell activation via PD-L116. 

Treatment of mice bearing MC tumors with oxaliplatin plus anti-PD-L1, but not anti-PD-L1 

alone, inhibited tumor growth, increased GrzB expression by effector T cells, downregulated 

PD-L1 expressionon IgA+ cells, and reduced serum IgA, but not IgG (Extended Data Fig. 

7h-m). Reconstitution of tumor-bearing Jh-/- hosts with B cells lacking either PD-L1 or 

IL-10 failed to inhibit oxaliplatin-induced tumor regression (Fig. 4g; Extended Data Fig. 7n-

p). PD-L1 ablation did not affect IL-10 expression and IL-10 ablation had no effect on PD-

L1 (Extended Data Fig. 10m,n), indicating that both molecules are needed for plasmocyte-

mediated immunosuppression.

We used oxaliplatin because of its well-described immunogenic properties, which are not 

exhibited by the related compound cisplatin3,4. Both oxaliplatin and cisplatin induced 

apoptotic cell death but oxaliplatin was better in stimulating autophagy (Extended Data Fig. 

8a,b). Importantly, only LD oxaliplatin induced regression of MC tumors in Jh-/- mice, 

whereas LD cisplatin was ineffective, and only oxaliplatin increased the abundance of 

tumoral CD8+ and CD4+ cells (Extended Data Fig. 8c-e). LD oxaliplatin did not increase 

intestinal permeability and had no effect on IgA production and other immune parameters in 

tumor-free WT or Tgfbr2∆B mice (Extended Data Fig. 8f-k).

Immunogenic chemotherapy also potentiates the effectiveness of adoptively transferred T 

cells (ATCT). Immunogenic TRAMP-C2 cells17 were inoculated into B cell-containing 

Tcrβ-/- mice followed by oxaliplatin treatment and ATCT (Extended Data Fig. 9a). Bigger 

tumors in Tcrβ-/- relative to WT mice confirmed TRAMP-C2 immunogenicity (Extended 

Data Fig. 9b). However, despite successful T cell take and elevated CD8+ count after 

oxaliplatin treatment, tumors were not rejected (Extended Data Fig. 9c-e). TRAMP-C2 

tumors were also raised in Rag1-/-;OT-1 mice, which lack B cells and polyclonal T cells but 

harbor CD8+ cells directed against chicken ovalbumin (Ova)18. Adoptively transferred 

CD8+ cells expanded and expressed GrzB in Rag1-/-;OT-1 hosts, especially after oxaliplatin 

treatment (Extended Data Fig. 9f-h). Consequently, tumor growth was inhibited by ATCT 
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combined with oxaliplatin (Extended Data Fig. 9i,j). More dramatic results were obtained in 

TRAMP;Rag1-/- mice transplanted with CFSE-labeled splenocytes from either naïve WT (B 

and T cell transfer) or Jh-/- (T cell transfer) mice (Extended Data Fig. 9k). CD8+ cell 

proliferation in BM, spleens and prostates of transplanted mice indicated successful T cell 

take (Extended Data Fig. 9l,m). Thirty days after lymphocyte transfer, prostate tumors were 

analyzed. Oxaliplatin caused modest tumor shrinkage in mice receiving T and B cells, but in 

mice receiving only T cells it induced complete regression (Fig. 5a,b). Transplantation with 

T and B cells combined with oxaliplatin restored CD19+ cells in spleen and prostate and 

serum IgA and IgG, including IgA and IgG directed against SV40 T antigen, the TRAMP 

oncogene (Fig. 5c-e), indicating a tumor-specific humoral response. Transferred B cells 

expressed TIM-1 (Extended Data Fig. 9o), a molecule involved in regulation of IL-10 

expression and tolerance induction19. B and T cell co-transplantation led to appearance of 

CD4+ and CD8+ cells in lymphoid organs, but T cell number was considerably lower in 

prostate tumors (Fig. 5f; Extended Data Fig. 9p-r). However, transplantation with B cell-

deficient splenocytes caused robust T cell infiltration into prostate tumors (Fig. 5f; Extended 

Data Fig. 9r). To confirm that IgA+ B cells attenuate the response to immunogenic 

chemotherapy by inhibiting T cell activation, we raised MC tumors in Rag1-/- mice and 

transplanted them with T cells from WT mice immunized with MC cell lysate, with or 

without naïve B cells from WT or Tgfbr2∆B spleens. In this case, oxaliplatin induced tumor 

regression and CTL activation only in mice receiving T cells, or T cells + TGFβR2-deficient 

B cells, which produced little IgA (Fig. 5g-i; Extended Data Fig. 10a-c). Hence, only B cells 

that have undergone TGFβR signaling and IgA CSR suppress CTL activation.

Our results show that successful eradication of large prostate tumors by immunogenic 

chemotherapy requires removal of immunosuppressive IgA+ plasmocytes that are present 

both in mouse and human PC. Spontaneous and transplantable PC models contain IgA+ 

plasmocytes that strongly suppress CTL activation after treatment with oxaliplatin, an ICD 

inducer4. Although oxaliplatin causes regression of small tumors, it does not activate CTL 

or shrinks large prostate tumors, despite inducing DNA damage, unless tumor-infiltrating 

immunosuppressive B cells are removed. These B cells are IgA-producing plasmocytes that 

express PD-L1, IL-10 and Fas-L. Genetic analysis confirms that much of the 

immunosuppressive activity derives from IgA+PD-L1+IL-10+ cells. Development of these 

cells, which differ from the LT-producing CD20+ B cells that infiltrate androgen-deprived 

prostate tumors and stimulate CRPC emergence through the IKKα-Bmi1 module5,6, 

depends on TGFβR signaling. Nonetheless, CD20+LT+ B cells that are exposed to high 

TGFβ concentrations and antigen in the PC microenvironment after oxaliplatin treatment 

may eventually become IgA+ plasmocytes. A likely source of TGFβ are αSMA+ 

myofibroblasts that reside next to IgA+ cells in oxaliplatin-treated mouse tumors and human 

PC samples10. Alternatively, LT-producing B cells may stimulate the IgA CSR, as signaling 

via LTβ receptor on gut stromal cells is required for IgA production20. Although the anti-

inflammatory and regulatory activities of intestinal IgA-producing cells21, as well as other 

plasmocytes22, are well known, this is the first time IgA+ plasmocytes were found to 

suppress anti-tumor immunity.
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IgA+ plasmocytes within prostate tumors induce CD8+ cell exhaustion2 and suppress anti-

tumor CTL responses through PD-L1 and IL-10, either of which can induce anergy or 

exhaustion2,23. Yet, B cells may regulate anti-tumor immunity by other mechanisms24,25, 

including indirect control of T cell infiltration via macrophages13 and IL-10 production by 

Breg cells26, although the latter only affect CD4+ T helper cells24,25. Notably, IL-10-

expressing IgA+ cells are most abundant in therapy-resistant and metastatic human PC and 

circulating IgA is a well-established adverse prognostic indicator in PC27. We therefore 

suggest that elimination or inhibition of tumor infiltrating IgA+ plasmocytes may be the key 

to successful immunotherapy of PC, as long as an immunogenic chemotherapeutic, such as 

oxaliplatin, is also used. Immunogenic chemotherapy may also enhance response rates to 

PD-1 or PD-L1 blockade in other malignancies, including bladder cancer and cutaneous 

melanoma where only 35% of the patients exhibit a response28.

Methods

Animal models

C57BL/6 and FVB control mice were from Charles River Laboratories and CD45.1 mice29 

were from the Jackson Laboratory, and all were bred at the University of California San 

Diego (UCSD) animal facility. C57BL/6-Tg(TRAMP)8247Ng/J (TRAMP mice)30_were 

backcrossed to the FVB strain for more than 10 generations. The median survival of 

TRAMP-FVB mice was 23 weeks compared to 52 weeks for TRAMP-C57BL/6 mice. 

TRAMP mice were crossed with B cell-deficient (Jh-/-) mice31, CTL-deficient (Cd8a-/-) 

mice32 or Rag1-/- mice, which lack both B and T cells33, all in the FVB-background. OT-I 

mice were obtained from Taconic18. Tgfbr2F/F (FVB-background) mice were obtained from 

Dr. Hal Moses at Vanderbilt University34. Tcrb-/-, Cd19-Cre, Il10-/- and CD45.1 mice were 

purchased from the Jackson Laboratory. IgA gene-deficient (Iga-/-) mice35 were obtained 

from Baylor College of Medicine. Pdl1/2-/- mice were obtained from Genentech (San 

Francisco, CA). Cd19-Cre and Iga-/- mice were backcrossed to the FVB strain for more than 

10 generations. All mice were maintained in filter-topped cages on autoclaved food and 

water at the UCSD animal facility and all experiments were performed in accordance with 

UCSD and NIH guidelines and regulations.

Mouse treatment studies were “matched design control trials.” Accordingly, mice were 

randomly chosen and paired based on sex (male), age (Extended Data Fig. 1a) and tumor 

size. For transplanted tumor models, tumor size was defined by the median tumor volume 

(e.g. 400 mm3, for late treatments, Extended Data Fig. 1a,e). For TRAMP transgenic tumor 

models, treatment decisions were made based on age and mice were randomly chosen 

including a control littermate. An identification code was assigned to each tumor-bearing 

mouse both in the transplanted and transgenic models, and the investigators were blinded to 

treatment allocation at the time of tumor volume measurement, autopsy and analysis.

The number of mice used in each experiment and the number of experiments are shown in 

Supplementary Table 1.

Shalapour et al. Page 6

Nature. Author manuscript; available in PMC 2015 November 07.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Flow cytometry and lymphocyte isolation

For lymphocytes isolated from spleen and lymph nodes, standard protocols using filters have 

been used. Lymphocytes were isolated from human blood using Ficoll-Paque PLUS (GE 

Healthcare Life Science) according to manufacturer's recommendations. For lymphocyte 

isolation from tumors (mouse and human), tumors were cut into small pieces and incubated 

in dissociation solution (RPMI medium supplemented with 5% FBS, collagenase type I (200 

U/ml), collagenase type IV (200 U/ml), and DNase I (100 μg/ml) for 30 min at 37° C. After 

incubation, cell suspensions were passed through a 50 μm cell strainer and washed twice. 

For large tumors (≥ 0.7 g), hematopoietic cells were pre-enriched using density gradient 

centrifugation (Percoll or Ficoll), and red blood cells were lysed (RBC Lysis buffer, multi-

species; eBioscience). For blocking of Fc-mediated interactions, mouse cells were pre-

incubated with 0.5-1 μg of purified anti-mouse CD16/CD32 (93) per 100 μl and human cells 

were incubated with FcR blocking reagent (Miltenyi Biotec). Isolated cells were stained 

with labeled antibodies in PBS with 2% FCS and 2 mM EDTA or cell staining buffer 

(Biolegend). Dead cells were excluded based on staining with Live/Dead fixable dye 

(eBioscience). For intracellular cytokine staining, cells were restimulated (Myc-Cap cell 

lysate, PMA/ionomycin or PMA/ionomycin/LPS, as indicated) in the presence of a protein 

transport inhibitor cocktail containing Brefeldin A and Monensin (eBioscience), as 

indicated. For CD107, a staining antibody was added to the culture during the stimulation. 

After 5 hrs, cells were fixed and permeabilized with BD™ Cytofix/Cytoperm reagent for 

cytokine staining. BD™ transcription factor buffer was used for Foxp3 and T-bet staining 

and BD™ Phosflow was used for p-SMAD2/3 and p-STAT staining (BD Biosciences) 

according to manufacturer's recommendations. After fixation/permeabilization, cells were 

stained with labeled antibodies of interest. Moreover, Il10 and β-actin mRNA expression 

were analyzed on single cell level by flow cytometry in combination with CD45, IgA and 

IL-10 protein staining, using FlowRNA II Assay kit (Affymetrix eBioscience) according to 

manufacturer's protocols36. Cells were analyzed on a Beckman Coulter Cyan ADP flow 

cytometer. Data were analyzed using FlowJo software (Treestar). Immune cell analysis of 

tumor-free mice of different genetic backgrounds (C57BL/6 and FVB) and different genetic 

ablations are shown in Extended Data Fig. 10d-p. The gating strategies and isotype controls 

for p-STAT1 and IL-10 staining are shown in Extended Data Fig. 10q-u.

Adoptive lymphocyte transfer

For adoptive T cell transfer (ATCT) CD8+ T cells were isolated from single cell 

suspensions, prepared from spleens and lymph nodes as described above, using CD8α-

specific microbeads and MACS-columns (both Miltenyi Biotec GmbH, Bergisch Gladbach, 

Germany), and 5 × 106 CD8+ T cells were transferred intraperitoneally (i.p.; Extended Data 

Fig. 9a-j). For adoptive B cell transfer (ABCT), B cells (B220+/CD19+) were isolated from 

single cell suspensions prepared from spleens using CD19- and B220-specific microbeads 

and MACS-columns, and 5 × 106 B cells were transferred i.p. (Fig. 4g, Extended Data Fig. 

7n-p). For adoptive splenocytes transfer (ACT), single cell suspensions prepared from 

spleens were transferred i.p., with one total spleen injected per mouse. Labelling with 5- 

(and 6-) carboxyfluorescein diacetate succinimidyl ester (CFSE; Molecular Probes, Eugene, 

OR) was done according to manufacturer's protocol. 5 × 106 CD8+ T cells or 7 × 106 B cells 
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were transferred (equal to one spleen per mouse; Fig. 5a-f and Extended Data Fig. 9k-r). For 

combined adoptive B and T cell transfer (Fig. 5jg-i, Extended Data Fig. 10a-c), T cells were 

isolated from WT-FVB mice immunized with a Myc-Cap cell lysate as previously 

described37. Specifically, Myc-Cap cells were incubated with oxaliplatin (40 μM) for 48 hrs. 

The extent of cell death was determined by flow cytometry, showing that more than 90% of 

cells were positive for Annexin V and PI. The dead cells were injected subcutaneously (s.c.) 

into WT-FVB mice. Seven days later, T cells were isolated from single cell suspensions of 

spleen and LN using a Pan T cell isolation Kit (Miltenyi Biotec). B cells were isolated from 

spleens of naïve FVB-WT or FVB-Tgfbr2∆B mice using a Pan B cell isolation kit (Miltenyi 

Biotec). MC-tumor bearing Rag1-/- mice received 5 × 106 T cells with or without 5 × 106 B 

cells (98% pure) from WT or Tgfbr2∆B mice. Purity was analyzed on a Beckman Coulter 

Cyan ADP flow cytometer and was always > 98%. Absolute numbers of particular immune 

cells in spleen were calculated by multiplying the CD45+ cell number from one spleen by 

the percentages of the particular cell type amongst CD45+ cells. Absolute numbers of 

particular immune cells (e.g. CD8+ cells) in tumors were calculated by multiplying the cell 

number in one tumor portion by the percentages of the corresponding cell type in vital tumor 

cells divided by the weight of the analyzed tumor fragment.

Subcutaneous tumor models

2 × 106 Myc-Cap5 or 3 × 106 TRAMP-C217 cells (purchased from ATCC) were s.c. injected 

into the right flank. Tumors were measured every 2-3 days using a caliper. Tumor volumes 

were calculated as width2 × length/2.

Immune-mediated B cell depletion

B cells were depleted as previously described38. Mice were weekly injected (i.p.) with a 

mixture of monoclonal antibodies, each at 150 μg/mouse: rat anti–mouse CD19 (clone 1D3), 

rat anti–mouse B220 (clone RA36B2), and mouse anti–mouse CD22 (clone CY34). After 48 

hrs, the mice were injected with a secondary antibody (mouse anti–rat kappa chain; 

GeneTex) at 150 μg/mouse. In addition, mice were injected weekly, but not on the same day, 

with 250 μg/mouse rat anti-mouse CD20 (Genentech). Rat anti-mouse IgG2a and IgG1 were 

used as isotype controls. Mice were treated for 3 weeks in total (Fig. 1f; Extended Data Fig. 

2j-p).

Oncomine data analysis

In silico analysis of human IgA (IGHA1) mRNA expression was performed using 15 PC 

microarray gene datasets14,39-52 from the Oncomine database (Compendia Biosciences; Ann 

Arbor, MI, USA; www.oncomine.org)53 comparing a combined 126 carcinoma/

adenocarcinoma specimens to 30 normal (either benign, disease-free normal and/or normal 

adjacent) tissue specimens. Evaluation criteria were set as p < 0.05, fold change > 2.0, and 

gene rank in the top 10%.

Analysis of human specimens

Paraffin-embedded specimens from a total of 110 PC patients were integrated into a tissue 

microarray system (TMA) constructed at the Clinical Institute of Pathology at the Medical 
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University of Vienna (MUV). All of the human specimens used for TMA construction were 

approved by the MUV Research Ethics Committee (1753/2014). The cohort included 87 

patients with early PC (E-PC), 9 patients with therapy-resistant PC (TR-PC), and 15 patients 

with metastatic PC (M-PC). Patients' demographic and histopathological features are shown 

in Supplementary Table 2.

TMA were designed to provide two cores of normal prostate tissue and four cores of PC 

tissue from each E-PC patient, and 3-6 cores of tumor tissue for each TR-PC and M-PC 

patient. Stained TMA slides were digitalized by virtual microscopy at 20 × magnification 

with a fixed light intensity and resolution into a bright-field image using the Nanozoomer 

(Hamamatsu) scanner. Computer-assisted image analysis of individual TMA core images 

was used to quantify the percentage of CD8+ and CD20+ immune reactive area (IRA%) as a 

proportion of the total digitized haematoxylin-stained region, as previously described54. For 

each PC patient, the mean continuous values of CD8+ and CD20+ IRA% in TMA cores 

without technical artifact for normal and tumor prostate tissue were calculated and used for 

subsequent statistical analysis. The presence of CD138+ and IgA+ double immunoreactivity 

for plasma cells in the stromal compartment or directly contacting a cancer cell was semi-

quantitatively scored in TMA cores for each patient by an investigator who was blinded to 

the patients tumor features. A value of 0 was assigned to tissue cores without evidence of 

stromal CD138+/IgA+ double immunoreactive cells and a value of 1 was recorded when 

CD138+/IgA+ double immunoreactive cells were present in the stromal compartment. 

Furthermore, after approval from the UCSD institutional review board (IRB), whole tissue 

slides were subjected to immunohistochemical (IHC) analysis of αSMA+/IgA, CD8+/IgA 

and IL-10+/IgA double staining from a cohort of formalin-fixed, paraffin-embedded (FFPE) 

radical prostatectomy specimens. As previously described55, this cohort included up to 50 

patients, which were selected based on known clinical outcome according to risk categories 

of low-, intermediate- and high-risk groups based on the D'Amico risk classification56.

Anonymized fresh prostatectomy and blood samples from consented human subjects, and 

de-identified clinical information were provided under the UCSD Moores Cancer Center 

Biorepository and Tissue Technology IRB approved protocol and provided to investigators 

(M.K., C.J.K., C.A.M.J., D.E.H.) with Cancer Sample Banking Committee approval. Fresh, 

de-identified samples of human prostate tissue and blood in 10 ml EDTA-coated tubes were 

collected from patients undergoing radical prostatectomy for clinically localized, 

intermediate or high risk PC, Gleason grade 3+4 or higher. A board-certified genitourinary 

pathologist (D.E.H.) collected samples of fresh prostate tumor and adjacent benign tissue, 

within 1 hr of radical prostatectomy, that were 5-10 mm in diameter.

Immunostaining

Tissues were embedded in Tissue Tek OCT (Sakura Finetek, Torrance, CA, USA) 

compound and snap-frozen. Tissue sections were fixed in cold acetone/methanol or 3% PFA 

for 3-10 min and washed with PBS. Slides were blocked with 1× PBS/1% normal donkey or 

goat serum for surface staining or 0.2% gelatin (from cold water fish skin; Sigma-

Aldrich)/PBS/1% normal donkey or goat serum for intracellular staining for 30 min. 

Sections were incubated with primary antibodies for 1 or 12 hrs at RT or 4° C, respectively. 
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After washing with PBS, secondary antibodies were added for 1 hr at RT. As negative 

controls, samples were incubated with isotype-matched control antibodies or secondary 

antibodies only. After staining with DAPI, sections were covered with Vectashield 

Mounting Medium (Vector Laboratories, Burlingame, CA USA). TMA tissue slides from 

formalin-processed and paraffin-embedded tumor sections were processed for 

immunohistochemistry. After de-paraffinization and rehydration, sections were immersed in 

a pre-heated antigen retrieval water bath with a pH 6.1 citrate buffer, or Dako Target 

Retrieval Solution for 20 minutes at 95-96°C. ImmPRESS™ Polymer System 

Diaminobenzidine tetrahydrochloride (DAB) peroxidase substrate-based chromogens were 

used for single staining of CD8, CD20 and for IgA staining when combined with CD138 

and for αSMA staining when combined with IgA for IHC of human samples. ImmPACT™ 

Vector® NovaRED™ peroxidase substrate-based chromogens were used for CD138 

staining when combined with IgA for IHC of human samples. ImmPACT™ Vector® Red 

Alkanine Phosphatase substrate-based chromogens were used for IgA staining when 

combined with αSMA for IHC of human samples. All stainings were done according to the 

manufacturer's protocols (Vector Laboratories). Nuclei were lightly counterstained with a 

freshly made haematoxylin solution then further washed in water and mounted. Sections 

were examined using an Axioplan 200 microscope with AxioVision Release 4.5 software 

(Zeiss, Jena, Germany) or TCS SPE Leica confocal microscope (Leica, Germany).

Antibodies

Antibodies specific for the following antigens were used: mAb rabbit to cleaved Caspase 3 

(# 9661) or p-γH2AX (Ser139; 20E3) (Cell Signaling Technology, Danvers, USA); pAb 

rabbit to: CD3 (Dako, IS503); αSMA (Dako); Tim-3 (B8.2C12); Tim-1 (RMT1-4); p-

SMAD2/3 (D27F4); LC3B (D11) and CD138 (Syndecan-1) (anti-mouse Biolegend,; anti-

human Dako Ml15); IgA (mA-6E1, m11-44-2, mRMA-1, anti-mouse eBioscience/

Biolegend; anti-human for IHC: Dako, A0262; for FACS: Miltenyi); AID (MAID-2); CD8a 

(m53-6.7, human DAKO, C8/144B); CD45 (hOKT4); CD20 (AISB12, hL26); CD44 (IM7); 

CD4(RM4-5); B220 (RA3-6B2); CD19 (m1D3, hHIB19); IgM (II/41); IgD (11-26c); TNF 

(MP6-XT22); IFNγ (XMG1.2); GrzB (NGZB); CD107a (eBio1D48); PD-1 (J43); PD-L1 

(MIH5); FAS-L1 (MFL3); Ki67 (SolA15); IgG2a (m2a-15F8); IgG1 (M1-14D12); IL-10 

(mJES5-16E3; hJES3-9D7: IHC: hIL-10: AF-217-NA); CD69 (H1.2F3); FoxP3 (FJK/16s); 

CD11c (N418); CD11b (M1/70); MHCII (M5/114.15.2); Gr-1 (1A8-l66g); F4/80 (BM8) 

and NK1.1 (NKR.P1C) (all from eBioscience); CD31 (PECAM-1, MEC 13.3); CD45 (m30-

F11); p-STAT1 (pY701) and p-STAT3 (pY705) (BD Bioscience): and αSMA (anti-mouse 

ab5694; anti-human: DAKO, 1A4). The following Alexa 594-, Alexa 647-, Alexa 488-

conjugated secondary antibodies were used: donkey anti-rat IgG, donkey anti-rabbit IgG, 

donkey anti-goat IgG and goat anti-rat IgG (Molecular Probes, Invitrogen).

ELISA

Anti-SV40 Tag immunoglobulin ELISA was performed as described57. IgA and IgG ELISA 

kits were purchased from eBioscience, and used according to manufacturer's protocols. 

Tumoral single cell suspension has been prepared as described above in the flow cytometry 

section, and was washed 2-3 times with 1×PBS/2mM EDTA/2% FCS, to remove soluble 

IgA. Thereafter, about 3 × 106 cells/24-well were plated in either 10% FCS/DMEM or 
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Hybridoma medium (Life Technology). After 24 hrs, the supernatants were analysed for IgA 

content. Media without cells were used as controls.

Treatment with chemotherapy or antibodies

Oxaliplatin was diluted in 5% dextrose and i.p. injected weekly at 6 mg/kg as indicated. 

Anti-PD-L1 antibody was i.v. injected at 10 mg/kg once, followed by 5 mg/kg bi-weekly. 

Mice were treated for three weeks for a total of 7 doses/animal.

Q-RT-PCR analysis

Total RNA was extracted using an RNeasy Plus kit (Qiagen). RNA was reverse transcribed 

using an IScript kit (Biorad). Q-RT-PCR was performed using Ssofast EvaGreens upermix 

(Biorad) on a Biorad CFX96 machine. Primer sequences are listed below and generally were 

obtained from the NIH qPrimerDepot (http://mouseprimerdepot.nci.nih.gov). The relative 

expression levels of target genes were measured in triplicates and normalized against the 

level of RPL32 expression. Fold-difference (as relative mRNA expression) was calculated 

by the comparative CT method (2(Ct(RPL32–gene of interest))).

Name primer 1 primer 2

IFNγ TGAACGCTACACACTGCATCT GACTCCTTTTCCGCTTCCTGA

TNF GGTCTGGGCCATAGAACTGA CAGCCTCTTCTCATTCCTGC

IL-10 GGTTGCCAAGCCTTATCGGA ACCTGCTCCACTGCCTTGCT

Perforin TGGAGGTTTTTGTACCAGGC TAGCCAATTTTGCAGCTGAG

TGFβ1 AAGTTGGCATGGTAGCCCTT GGAGAGCCCTGGATACCAAC

NOS2 TCCAGGGATTCTGGAACATT GAAGAAAACCCCTTGTGCTG

Arginase 1 TTTTTCCAGCAGACCAGCTT CATGAGCTCCAAGCCAAAGT

Granzyme B CTCTCGAATAAGGAAGCCCC CTGACCTTGTCTCTGGCCTC

RPL32 TTGTGAGCAATCTCAGCACA GGGAGCAACAAGAAAACCAA

IL-21 CCC TTG TCT GTC TGG TAG TCA TCT T GGA GGC GAT CTG GCC C

IL-12p35 GAGGACTTGAAGATGTACCAG CTATCTGTGTGAGGAGGGC

IL-12p40 GAC CCT GCC CAT TGA ACT GGC CAA CGT TGC ATC CTA GGA TCG

PD-L1 TGC TGC ATA ATC AGC TAC GG CCA CGG AAA TTC TCT GGT TG

Statistical analysis

Data are presented either averages ± S.E.M or median of continuous values and were 

analyzed by Students' t-test or Mann-Whitney-U, respectively, for comparison of two 

groups. Kruskal-Wallis test was used to compare three or more groups. Long-rank (Mantel-

Cox) tests were used to compare survival curves. Fisher's exact Chi-square P values were 

used to calculate statistical significance of categorical values between groups. Two tailed p-

values of ≤ 0.05 were considered significant. Unpaired t test-independent studies were used 

to determine the minimum sample sizes (StatsDirect Version 2.8.0). GraphPad PRISM 

software was used for statistical analyses.
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Extended Data

Extended Data Figure 1. Treatment schemes and characterization of tumors and mouse survival 
before and after treatment
a, Early and late treatment schemes for TRAMP mice. b, TRAMP mice (n= 3-6/group) were 

subjected to early oxaliplatin treatment as described in (a) and prostate weights were 

determined at 14 weeks, one week after completion of 4 treatment cycles. Dashed red line 

indicates prostate weight of tumor-free controls (n=33 in total). c-d, Histopathology of 

TRAMP tumors. c, Representative images of H&E stained prostate sections from TRAMP 

mice are shown. Magnification bars: 100 μm. PIN, prostatic intraepithelial neoplasia; WD, 

well differentiated adenocarcinoma; PD, poorly differentiated adenocarcinoma. d, 
Histopathological assessment of early and late treated TRAMP tumors in WT and Jh-/- mice 

without or with oxaliplatin treatment. The percentages of the different histotypes shown in 

(c) are depicted (n=3-7/group). Fisher chi-square analysis was used to calculate statistical 

significance. e, Early and late treatment schemes for mice bearing s.c. MC tumors. f, MC 

cells were s.c. transplanted into WT and Jh-/- mice (n= 3-7/group) that were subjected to 

early oxaliplatin treatment when tumor volume was 100 mm3. 48 hrs after completion of 3 

treatment cycles, mice were sacrificed and tumor volumes (mm3) were measured (n=19 in 

total). Prostate weight in (f) is shown in a Log 2 scale. g, MC tumors from indicated mice 
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were stained for CD45 (green) and cleaved caspase 3 (CC3; red) (n=4-6/group). h,i, MC 

tumors (n=3-5/group) grown in WT, Jh-/- and Cd8a-/- mice were stained for CD45 (green) 

and p-γH2AX (red), and the p-γH2AX+ foci in CD45- cells were enumerated (i). 

Magnification bars: 100 μm. All results are means ± s.e.m. j, Representative images of s.c. 

MC tumors (n=5-6/group) from WT and Jh-/- mice, with or without oxaliplatin treatment 

stained for αSMA (green) and CD31 (red). k, l, Frequency of αSMA (k) and CD31 (l) 
positive cells within tumors from (j). Shown are median values ± s.e.m. Mann-Whitney and 

t tests were used to calculate statistical significance indicated by *P, 0.05; **P, 0.01; ***P, 

0.001. m, TRAMP mice (WT, Cd8a-/- or Jh-/-; n=6-14/group) were treated weekly with low-

dose oxaliplatin. Moribund mice were sacrificed, and survival was compared by Kaplan-

Meyer analysis and significance was determined (WT: n.s.; Cd8a-/-: n.s.; Jh-/-; p<0.002;**). 

n, Survival curves for the different TRAMP groups before and after oxaliplatin treatment. 

Significant differences in survival times are indicated on the right. No statistically 

significant differences in survival were found between WT and Jh-/- or Jh-/- and Cd8a-/- 

mice without treatment. Significant differences in survival times were observed between all 

three oxaliplatin-treated groups (WT, Cd8a-/- or Jh-/-; indicated on the right).

Extended Data Figure 2. B cells attenuate oxaliplatin-triggered CTL activation
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a, Flow cytometry of CD8+ T lymphocytes in prostates of 20 weeks old TRAMP mice after 4 

cycles of oxaliplatin treatment (n=5-7/group) normalized to prostate weights. b, Late s.c. 

MC tumors from WT and Jh-/- mice were stained for CD8 and analyzed by 

immunofluorescent microscopy. In the upper left areas (white square), single CD8 staining 

(green) without DAPI counterstain is shown. Tumoral CD8+ cells were counted in 3-4 HMF 

(200×)/tumor (n=4-5 tumors/group). Magnification bars: 100 μm. c,d, Late s.c. MC tumors 

were analyzed by flow cytometry for CD4+ lymphocytes in spleens (c) and tumors (d) after 

3 oxaliplatin treatment cycles (n=4-7/group). The results show percentages of CD4+ cells in 

the CD45+ population. e, Flow cytometric analysis of TNF and IFNγ expression by CD8+ 

cells in MC tumors from WT and Jh-/- mice treated as above (n=6-8) and re-stimulated in 

vitro with tumor cell lysate. f, Flow cytometry of STAT1 phosphorylation in CD8+ cells 

from MC tumors of treated and untreated WT, and Jh-/- mice (for isotype controls, see E.D. 

Fig. 10u). The results are summarized in the right panel (n=3 mice/group). g, Expression of 

GrzBand Ki-67in CD8+ T effector cells (CD8+CD44+) from spleens of MC inoculated mice 

after oxaliplatin treatment. h,i, Flow cytometry of PD-1 and Tim-3 expression by CD8+ 

effector cells (CD8+CD44+ cells) in spleen (h) and MC tumors (i) as indicated with or 

without oxaliplatin treatment. Shown are percentages of the corresponding CD8+ T cells in 

the CD8+CD44+ population (n=3-5/group). j, The experimental scheme for B cell 

immunodepletion in tumor-bearing mice. MC tumors were raised in WT or Cd8a-/- mice, 16 

days after s.c. tumor cell inoculation. B cells were depleted by twice weekly administration 

of antibodies directed against CD19, CD20, CD22 and B220. Four days after first antibody 

treatment, mice were treated with oxaliplatin (n=4-7 mice/group, total: 44). After 3 weekly 

chemotherapy cycles, mice were sacrificed. k, Flow cytometry analysis of tumor-infiltrating 

CD45+CD8+ T cells stained for IFNγ (left) or IFNγ and TNF (right) after in vitro 

restimulation with PMA/ionomycin (n=4-6 mice/group). l-n, Flow cytometry analysis of 

CD19+ (l,m) and IgA+ (n) cells in spleens and tumors isolated from the WT mice described 

above, confirming depletion of CD19+ B cells and oxaliplatin-induced IgA+ cells in spleen 

and tumors. o, Serum IgA concentrations in the mice described in i (n=3-5/group). p, Flow 

cytometry analyses of CD19+ B cells in tumors isolated from Cd8a-/- mice subjected to B 

cell depletion or not, confirmed the efficient depletion of tumoral CD19+ B cells. All results 

are means ± s.e.m. Mann-Whitney and t tests were used to calculate statistical significance 

indicated by *P, 0.05; **P, 0.01; ***P, 0.001.
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Extended Data Figure 3. Immunogenic chemotherapy induces tumor infiltration by 
immunosuppressive CD19+CD20lowB220lowIgA+ B cells
a,b, MC tumors (n=4-9/group) raised in WT mice without or with oxaliplatin treatment were 

stained for B220 (a), and tumor-infiltrating B220+ cells per HMF were enumerated (b). In 

panel a, single B220 staining (above) and combined staining B220/DAPI (below) are 

shown. Magnification bars: 100 μm. c,d, The flow cytometry plots and gating strategy for 

analysis of splenic B cell populations using CD19, IgA, B220, CD138 and CD20 antibodies. 

Results from WT mice bearing MC tumors are shown in panel (c) and from oxaliplatin-

treated mice in panel (d) (n=8 mice/group). Oxaliplatin treatment modestly increased the 

amount of splenic IgA+ cells. Splenic IgA+ cells expressed CD138 as expected and showed 

lower levels of B220 and CD20, in either control or oxaliplatin-treated mice. e, The gating 

strategies for analysis of tumoral B cells using CD19, IgA, B220 and CD138 antibodies. 

Results from MC tumors in two representative oxaliplatin-treated WT mice are shown (n=8 

mice/group), demonstrating the presence of IgA+ cells in oxaliplatin-treated tumors with a 

typical CD138+B220low phenotype. f-i, Flow cytometry plots and gating strategies for 

analysis of tumoral B cell populations using CD19, B220, CD138, IgA and PD-L1 

antibodies. Results from WT mice bearing MC tumors without (f) or with oxaliplatin 

treatment (g) (n=6 mice/group) and Iga-/- mice bearing MC tumors without (h) or with 

oxaliplatin treatment (i) (n=6 mice/group) are shown. Oxaliplatin treatment increased the 
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amount of tumoral IgA+CD138+B220lowPD-L1+cells in WT mice. j, Flow cytometric 

analysis of PD-L1 and IL-10 expression in IgA+B220- and B220+IgA- B cells from 

oxaliplatin-treated TRAMP tumors (n=4). k, Flow cytometric analysis of IgA and CD138 

expression by TRAMP tumor-infiltrating B cells. Shown are percentages of IgA+ cells 

amongst all tumor-infiltrating CD19+CD138+ cells. l, WT mice bearing MC tumors were 

treated with oxaliplatin as above. Two days after the first or last oxaliplatin cycle, mice were 

sacrificed, tumors were isolated and analyzed by flow cytometry as indicated (n=6/group). 

After dead cell exclusion, tumor-infiltrating B cells were stained with CD19, CD20, B220, 

IgA and IgM antibodies. Shown are the results for control (left panels), one cycle (middle 

panels), and 3 cycles (right panels) of oxaliplatin treatment, demonstrating the presence of 

tumoral IgA+ cells with a CD19+CD20lowB220low IgA+ cell phenotype within 48 hrs after 

oxaliplatin treatment.

Extended Data Figure 4. Immunogenic chemotherapy induces tumoral and systemic IgA 
production through class switch recombination
a, Ex vivo analysis of IgA released by tumor single cell suspension isolated from oxaliplatin-

treated TRAMP tumors. Single cell suspension from non-treated tumors and culture medium 

without cells were used as controls. b,c, Serum IgA (b) and IgG (c) in treated and untreated 

TRAMP mice and age-matched naïve FVB controls (n=7-14/group). d, Serum IgA amounts 
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in control or oxaliplatin-treated mice bearing MC tumors (n=5-7/group) were determined 

and compared to age-matched naïve FVB controls (n=7). e. Serum IgG amounts in control 

or oxaliplatin-treated mice bearing MC tumors (n=5-7 mice/group) were determined and 

compared to age-matched naïve FVB controls. a-e, Results are means ± s.e.m. Mann-

Whitney and t tests were used to calculate statistical significance. f,g, Immunofluorescence 

analysis of activation-induced cytidine deaminase (AID, green) and IgA (red) expression in 

spleen (f, used as a positive control) and MC tumors from oxaliplatin-treated WT mice (g). 

Magnification bars: 10 μm except in panel f (right) where it is 100 μm. Arrows point to 

IgA+AID+ cells. Shown are representative results of spleens and tumors isolated from 4 

mice/group. h, Q-RT-PCR analysis of Tgfb1 mRNA in MC tumors raised in WT or Jh-/- 

mice without or with oxaliplatin treatment (n=3-7 mice/group). Results are means ± s.e.m. i, 
Flow cytometry of SMAD2/3 phosphorylation in MC tumor-infiltrating B cells from WT 

mice before and after oxaliplatin treatment (n=4/group). Shown are the mean fluorescence 

intensities (MFI) and percentages (see Fig. 3e). j, Flow cytometry of SMAD2/3 

phosphorylation and PD-L1 in MC tumor-infiltrating B cells from WT mice before and after 

oxaliplatin treatment (n=4/group). Shown are the percentages of PD-L1+p-SMAD2/3+ cells 

within CD45+CD19+ cells. k, Q-RT-PCR analysis of Il21 mRNA in MC tumors raised in 

WT or Jh-/- mice without or with oxaliplatin treatment (n=4-7 mice/group). Chemotherapy-

induced Il21 mRNA mainly in WT mice. l,m, Flow cytometry of tumor-infiltrating B cells 

stained for phospho-STAT3 and IL-10 (n=5-6/group) before and after oxaliplatin treatment. 

n, Flow cytometry analysis of β-actin mRNA, IL-10 protein and Il10 mRNA in MC tumor-

infiltrating IgA+ cells using PrimeFlow™ RNA technology (pooled data of 4 mice/group, 

after oxaliplatin treatment). Left panel: β-actin mRNA gated on CD45+ cells; middle panel: 

Il10 mRNA and IL-10 protein expression after 1 hr stimulation with PMA/ion/LPS gated on 

IgA+ cells, right panel: Il10 mRNA and IL-10 protein expression after 5 hrs stimulation with 

PMA/ion/LPS, gated on IgA+ cells. o,p, Flow cytometric analysis of tumor-infiltrating B 

cells in TRAMP mice (n=4-5/group) stained for CD19, B220, IL-10 and LTαβ (o). The 

percentage of tumor-infiltrating LTαβ+ cells amongst all tumor-infiltrating B cells was 

determined (p). q, Flow cytometric analyses of CD5 expression by B cells from spleen and 

MC-tumor of WT mice after oxaliplatin treatment (n=4-5/group). Shown are means ± s.e.m. 

Mann-Whitney and t tests were used to calculate statistical significance indicated by *P, 

0.05; **P, 0.01; ***P, 0.001.
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Extended Data Figure 5. Immunogenic chemotherapy or B cell deficiency has marginal effects 
on Tregs, NK and myeloid cells
a,b, Q-RT-PCR analyses of Nos2 (a) and Arg1 (b) mRNAcontent of MC tumors (n=4-7 

mice/group). Chemotherapy induced Nos2 and Arg1 expression in WT and Jh-/- mice and no 

significant and consistent differences were found between both groups. c,d, Q-RT-PCR 

analyses of Il12p40 (c), Il12p35 (d) mRNAin MC tumors grown in WT and Jh-/- mice 

(n=4-6 mice/group). e-i, Flow cytometry analyses of tumor-infiltrating or splenic 

lymphocytes and monocytes: tumoral Nk1.1+ cells (e), tumoral CD11b+CD11c+ MHCII+ 

cells (f), tumoral CD11b+GR-1+ cells (g), CD4+FoxP3+ cells (splenic, h; tumoral, i). Cells 

in panels e-i are from tumor-bearing mice subjected to oxaliplatin treatment and/or B cell 

depletion as indicated (B cell depletion + oxaliplatin; n=4-6 mice/group). Results are means 

± s.e.m. Mann-Whitney and t tests were used to calculate statistical significance.
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Extended Data Figure 6. Analyses of B and T cells in human prostate cancer specimens
a-h, Tissue microarrays of tumor and non-tumor tissue from 110 PC patients were stained 

for CD8 and CD20 (5-6 spots/patient = 3-4 tumor tissue + 2 non-tumor tissue). a,b, 
Representative examples of CD8 (a) and CD20 (b) IHC of PC tissue microarrays (left). 

Magnification bar: 200 μm. Right, computer assisted image analysis with ad hoc developed 

image software. Tumor tissue is represented in yellow and CD8+ and CD20+ cells are 

represented in red. The percentages of immune reactive area (IRA) occupied by CD8+ or 

CD20+ cells are shown. Magnification bars: 200 μ. c,d, comparison of CD8 and CD20 IRAs 

in matched non-tumor and tumor tissues from each early stage PC (E-PC) patient (n=87). e-
h, Patients were divided into three subgroups: E-PC (n=86); therapy-resistant-PC (TR-PC; 

n=9), and metastatic-PC (M-PC; n=15). e, CD8+ cell infiltration into tumor tissues of the 

different groups. f, CD20+ cell infiltration into tumor tissues of the different groups. g, The 

CD8+/CD20+ ratio for the different groups. Each dot represents one patient. Line indicates 

the median value. Mann-Whitney test was used to calculate statistical significance between 

the two groups. Kruskal-Wallis test was used to calculate statistical significance between the 

three groups. h, IHC analysis of low risk (n=5) and high risk (n=5) human PC specimens 

using IgA (red) and αSMA (black). Nuclei were counterstained with hematoxylin. 

Magnification bar: 100 μm i, IF analysis of human PC showing IL-10 (red) –expressing 
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IgA+ (green) CD138+ (turquoise) plasma cells (n=6). Representative images are shown. 

White arrow indicates IL-10-expressing IgA+ cells. Magnification bars: 50 μm. j, Human 

normal prostate (n=3-5), and human PC (n=5), were stained for IgA and CD8. Typical 

images are shown. Red and green arrows indicate IgA+ and CD8+ cells, respectively. 

Magnification bar: 100 μm. k, Human normal prostate (n=3), and human PC (n=5), were 

stained for IgA (red arrow) and CD20 (green arrow). Magnification bar: 100 μm. l, Flow 

cytometric analysis of human prostate tumor-infiltrating CD19+ B cells and IgA+ cells. The 

percentages of IL-10-expressing B cells in CD19+IgA+ (2 different samples) and 

CD19+IgA- B cells are shown. m, Summary of results obtained from human blood samples 

taken from healthy donors (n=3) and PC patients (n=5) and prostate tissue specimens 

(benign, malignant; n=4) analyzed by flow cytometry for IL-10 expression in CD19+IgA- 

and CD19+IgA+ B cells. n,o, Tissue microarrays from 110 PC patients (described above) 

were stained for IgA and CD138. Patients were divided into three subgroups: E-PC (n=86); 

TR-PC (n=9), and M-PC (n=15). (n) Representative images of IgA (immunoperoxidase) and 

CD138 (alkaline phosphatase) double staining of tumor tissues from each group. CD138+ 

and IgA+ double positive cells in the PC stroma are indicated by the white arrows 

(hematoxylin counterstain). Magnification bar: 100 μm. o, Frequencies of IgA+ and CD138+ 

double positive cells in the tumor stroma of the different PC patient groups. p, PC patient 

specimens were divided into two groups: IgA-/low (n=64) and IgA+/hi (n=46). Shown is the 

CD8+/CD20+ ratio for each group. Each dot represents one patient. Line indicates the 

median value. q, IgA mRNA expression (IGHA1) is significantly elevated in human PC 

tissue relative to healthy or benign prostate tissue in 5 out of 15 studies evaluated via 

Oncomine. Results from one significant study14 are presented. Chi square test and Fischer 

exact test were used to calculate statistical significance shown by *P, 0.05; **P, 0.01; ***P, 

0.001.
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Extended Data Figure 7. Effects of TGFβR2, IgA, PD-L1 and IL-10 ablations on tumor-
infiltrating lymphocytes
MC tumors were raised in WT, Tgfbr2∆B or Iga-/- mice (n= 5-11/group). Mice were 

subjected to 3 cycles of late oxaliplatin treatment after which splenic (Spl) and tumoral (Tu) 

B cells were analyzed. After dead cell exclusion, splenic (a,b) and tumoral (c,d) B cells 

were stained with CD19, B220, IgA, IgG2a and IgG1 antibodies and analyzed by flow 

cytometry. e, Serum IgG concentrations in control or oxaliplatin-treated WT, Tgfbr2∆B or 

Iga-/- mice bearing MC tumors (n=5-9/group). f, Flow cytometry of tumor-infiltrating 

CD19+ B cells from WT, Tgfbr2∆B or Iga-/- MC tumor-bearing mice (n=4-7/group) analyzed 

for PD-L1 expression, revealing lower PD-L1 surface expression on Tgfbr2∆ and Iga-/- B 

cells after oxaliplatin treatment. g, Flow cytometry of tumor-infiltrating B220hi B cells (left) 

and IgA+B220low B cells (right) from WT, Tgfbr2∆B or Iga-/- MC tumor-bearing mice 

(n=4-7/group) analyzed for IL-10 expression, revealing no difference in IL-10 expression by 

B220hiIgA- B cells in the corresponding groups, and lower IL-10 expression by Tgfbr2∆ B 

cells after oxaliplatin treatment compared to WT mice. Results are means ± s.e.m. Mann-

Whitney and t tests were used to calculate statistical significance. h, The experimental 

scheme. WT mice bearing MC tumors were divided into four treatment groups (n=7-8/

group): 1) isotype control (IgG2a); 2) oxaliplatin (weekly); 3) anti-PD-L1 (twice weekly); 4) 

oxaliplatin plus anti-PD-L1 (weekly and twice weekly, respectively). After 3 treatment 
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cycles, mice were sacrificed and analyzed. i, Tumor growth curves of tumor-bearing mice 

and gross appearance of untreated and treated mice. Significance was determined by Mann-

Whitney and t tests. j, Flow cytometric analysis for GrzB expression by tumor-infiltrating 

CD8+ T effector cells (CD8+CD44+) from MC tumor-bearing mice treated as described 

above. Results are shown either as percentages of GrzB+ cells amongst CD8+ T cells 

(black), or percentages of GrzB+CD8+CD44+ T cells amongst tumoral CD45+ cells (red). k, 
Flow cytometry of PD-L1 expression on tumor-infiltrating IgA+ CD19+ B cells in the 

different treatment groups. l,m, Serum IgA (l), and IgG (m) concentrations in the different 

treatment groups described in panel h. n, The experimental scheme for the experiment 

whose results are shown in Fig. 4g,h. B cells were isolated from WT, Pdl1/2-/- and Il10-/- 

mice and 5 × 106 cells (purity 98%) were i.p. transferred into MC tumor-bearing Jh-/- mice 

(16 days after MC cell inoculation). After 2 days (day 18), the mice were given 3 oxaliplatin 

treatment cycles and analyzed. o, Flow cytometric analysis of splenocytes after staining with 

CD45 and CD19 antibodies, confirming presence of B cells in the ABCT groups. Shown are 

percentages and absolute B cell numbers in spleen. p, Tumor infiltrating CD8+ cells from 

MC tumor-bearing Jh-/- mice transplanted with B cells and treated as above were re-

stimulated for 4 hrs with PMA/ionomycin before flow cytometry (n=4-6 mice/group). 

Results are means ± s.e.m. Mann-Whitney and t tests were used to calculate statistical 

significance.
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Extended Data Figure 8. Low dose cisplatin treatment is devoid of immunogenic activity and low 
dose oxaliplatin does not affect gut barrier function
a, Flow cytometry of MC cells stained with Annexin V and propidium iodide 24 hrs after 

treatment with either oxaliplatin or cisplatin (both at 20 μM). b, Flow cytometry analysis of 

MC cells treated as above and stained with antibody to the autophagy marker LC3A. c-e, 
MC tumors were raised in WT and Jh-/- mice until 400 mm3 in size, after which the mice 

were treated with either cisplatin or oxaliplatin at 6 mg/kg (n=4-5/group). After 3 weekly 

chemotherapy cycles, mice were sacrificed. c, Tumor weights; left panel: WT mice; right 

panel: Jh-/- mice. d, e, Flow cytometry of tumor-infiltrating CD8 (d) and CD4 (e) cells. Left 

panel: WT mice, right panel: Jh-/- mice. f, Gut permeability was measured in WT mice 

before and after low (LD) and high (HD) dose oxaliplatin treatment using orally 

administered fluorescein isothiocyanate (FITC)–dextran. Shown are FITC-dextran 

concentrations in serum (μg/ml) (n=5 mice/group). g, Serum IgA concentrations in naïve 

WT (FVB) and Tgfbr2∆B mice before and after oxaliplatin treatment. h, IgA staining of 

colon sections of untreated or LD oxaliplatin-treated WT mice. Magnification bars: 100 μm. 

i-k, Flow cytometry of CD8+ (i), CD4+ (j) and Nk1.1+ (k) cells in spleens of naïve WT and 

Tgfbr2∆ mice without or with oxaliplatin treatment. All results are means ± s.e.m. Mann-

Whitney and t tests were used to calculate statistical significance shown as *P, 0.05; **P, 

0.01; ***P, 0.001.
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Extended Data Figure 9. Immunogenic chemotherapy supports adoptive T cell transfer only in 
the absence of B cells
a, The experimental scheme. Immunogenic TRAMP-C2 cells were s.c. inoculated into WT 

or Tcrβ-/- mice. After 30 days, the mice were divided into 4 groups (n=4-5/group): 1) 

control, 2) oxaliplatin (weekly), 3) ATCT, 4) ATCT plus oxaliplatin (weekly). The first 

oxaliplatin cycle was given at day 31. Two days after the second cycle, CD8+ T cells from 

CD45.1×CD45.2 WT mice (3 × 106 cells) were transferred into tumor-bearing mice and this 

was followed by two more oxaliplatin cycles after which mice were sacrificed for analysis 

on day 59. b, Tumor volumes (mm3) c,d, Flow cytometric analysis of spleen (c) and tumor 

(d) cells after staining with CD45.1, CD45.2, CD8 and TCRαβ antibodies, confirming 

expansion of adoptively transferred T cells. e, tumor growth curves. f, The experimental 

scheme. Immunogenic TRAMP-C2 cells were s.c. inoculated into WT or Rag1-/- × OT-1 

mice (no B cells), that harbor CD8+ T cells specific for chicken ovalbumin which is not 

expressed by TRAMP-C2 cells. After 30 days, tumor-bearing Rag1-/- × OT-1 mice were 

divided into 4 groups (n=3-4 mice per group): 1) control, 2) oxaliplatin treatment, 3) ATCT, 

4) oxaliplatin treatment plus ATCT. The first oxaliplatin cycle was given at day 31. Two 

days after the second oxaliplatin cycle, CD8+ T cells (3 × 106) from CD45.1×CD45.2 mice 

were adoptively transferred into tumor-bearing mice, which were sacrificed on day 59 and 

analyzed. g, Flow cytometric analysisof tumor-infiltrating cells stained with CD45.1, 

Shalapour et al. Page 24

Nature. Author manuscript; available in PMC 2015 November 07.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



CD45.2, CD8 and TCRαβ antibodies, confirming infiltration of adoptively transferred T 

cells. h, Flow cytometric analysis of GrzB expression in adoptively transferred, tumor-

infiltrating, CD8+ effector cells (CD45.1+CD8+CD44+) from tumor-bearing mice treated as 

above. i, Tumor volumes (mm3). j, tumor growth curves. k, The experimental scheme for 

Fig. 5a-f. Sixteen weeks old TRAMP;Rag1-/- mice (no B and T cells) were treated with 

oxaliplatin (weekly). One day after the 1st treatment cycle, CFSE-labeled splenocytes from 

either WT (B and T cells, SP-WT) or Jh-/- (T but no B cells, SP-Jh-/-) mice were transferred 

into the tumor-bearing mice (5 × 106 T cells per mouse; 4-5 mice per group). l, m, After 6 

days, one mouse from each group was sacrificed, and the proliferation of CD8+ (l) and 

CD4+ (m) T cells in bone marrow (BM), spleen and prostates was analyzed by CFSE 

staining and flow cytometry. n-r, After 3 more oxaliplatin cycles (4 weeks in total), the mice 

were sacrificed and analyzed. n, Frequency of adoptively transferred CD19+ cells amongst 

CD45+ cells in spleens and prostates 30 days after ACT. o, Flow cytometric analyses of 

CD19+ B lymphocytes for TIM-1 expression in spleens (left) and prostates (right) of 

abovemice. p-r, Flow cytometric analyses of T lymphocytes. Percentages of CD8+ and 

CD4+ T cells in LN (p); spleens (q); prostates (r) of above TRAMP;Rag1-/- mice. 

Red:splenocytes from WT mice (T and B cell transfer), blue: splenocytes from Jh-/- mice (T 

cell transfer). Results are means ± s.e.m. Mann-Whitney and t tests were used to calculate 

statistical significance.

Shalapour et al. Page 25

Nature. Author manuscript; available in PMC 2015 November 07.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Extended Data Figure 10. Immunogenic chemotherapy supports adoptive T cell transfer only in 
the absence of B cells and analysis of lymphocytes and monocytes in tumor-free mice
a, The experimental scheme for Fig. 5g. MC tumor-bearing Rag1-/- mice (no B and T cells) 

were treated with oxaliplatin (weekly). One day after 1st oxaliplatin treatment, 5 × 106 T 

cells (negative selection) from WT mice immunized with MC cell lysate10 were adoptively 

transferred into tumor-bearing mice (4-5 mice/group), alone or in combination with 5 × 106 

B cells from WT or Tgfbr2∆B mice (purity 98%). After 2 more oxaliplatin cycles (3 weeks 

total), the mice were sacrificed and analyzed. b, Serum IgG analysis of above mice. c, Flow 

cytometric analysis of splenocytes after staining with CD45 and CD19 antibodies. All 

results are means ± s.e.m. Mann-Whitney and t tests were used to calculate statistical 

significance. Statistical significance is given by *P, 0.05; **P, 0.01; ***P, 0.001. d-p, WT, 

Jh-/-, Iga-/- and Tgfbr2∆B mice in the FVB background and WT, Pdl1/2-/-, Il10-/- and Iga-/- in 

the C57BL/6 background were analyzed for the distribution of immune markers. d, Spleen 

weights of WT, Jh-/- and Tgfbr2∆B mice in the FVB background. e, Flow cytometry of 

splenocytes for the following markers: CD3 (left), CD8 (middle), CD4 (right), gated on the 

splenic CD45+ population. f, Absolute cell numbers of splenic CD3+ (left), CD8+ (middle), 

and CD4+ (right) cells are shown (percentage × cell count of whole spleen). g,h Flow 

cytometry for TNF and IFNγ in CD8+ cells from tumor-free WT, Jh-/-, Tgfbr2∆B and Iga-/- 

mice (n=6-8) that were re-stimulated in vitro with PMA/ionomycin and the representative 
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flow cytometry panels (e). i,j, Flow cytometry of splenocytes from WT and Tgfbr2∆B for: 

CD19+IgM+ cells (i) and IgA (j) gated on the splenic CD45+ population. k-n, Flow 

cytometry of splenocytes from WT, Pdl1/2-/- and Il10-/- mice for: CD45+CD19+IgM+ cells 

(k), CD45+IgA+ cells (l), PD-L1 expression by CD19+IgM+ cells (m), and IL-10 expression 

by CD19+ cells (n). o,p, Serum IgA and IgG concentrations were analyzed in WT, Pdl1/2-/- 

and Il10-/- mice (n=4-5 mice/group). All results are means ± s.e.m. Mann-Whitney and t 

tests were used to calculate statistical significance shown as *P, 0.05; **P, 0.01; ***P, 

0.001. The different gating strategies and staining controls are shown. q, Gating strategies 

for tumor-infiltrating lymphocytes: lymphocyte gate, dead cell exclusion, doublets 

exclusion, and gating on the CD45+ population. r, Flow cytometric analysis of IL-10 and 

IgA expression, gated on the CD45+ population: 1) isotype control (no staining), 2) non-

stimulated splenocytes: showing IgA staining, but not IL-10. 3) stimulated splenocytes from 

Il10-/- mice showing IgA staining, but not IL-10. 4) stimulated splenocytes from WT mice 

showing IgA and IL-10 staining. s, Flow cytometric analysis of IL-10 and CD19 expression, 

gated on the CD19+B220+ population. left: stimulated cells from Il10-/- mice, showing B 

cell staining, but not IL-10; right: stimulated cells from WT mice showing B cell staining 

and IL-10 staining. t, Flow cytometric analysis of IL-10 and IgA expression, gated on the 

IgA+ population: left: stimulated cells from Il10-/- mice, showing IgA cell staining, but not 

IL-10; right: stimulated cells from WT mice showing IgA and IL-10 staining. These results 

confirm IL-10 production by IgA+ cells. u, Flow cytometric analysis of p-STAT1 staining 

with corresponding isotype control.
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Figure 1. B cells inhibit oxaliplatin-induced tumor regression
a, TRAMP (FVB) mice (TR-WT, TR-Jh-/-, and TR-Cd8a-/-; n=7-15/group) received weekly 

oxaliplatin (6 mg/kg), starting at week 16. After 4 weeks, prostate weights measured. 

Dashed red line = prostate weight of naïve controls. b, Tumor growth in mice transplanted 

with MC cells and treated with oxaliplatin as in Extended Data Fig. 1f (late treatment) or 5% 

dextrose (n=7-11/group). c, Weights of MC tumors after oxaliplatin or vehicle treatment 

(n=5-7/group). d, Mice of indicated genotypes bearing MC tumors (n=7-11/group) were 

treated as above. After 3 cycles, tumor volumes (mm3) were determined. e, Numbers of 

cleaved caspase 3 (CC3) CD45- cells per high magnification field (HMF; 200×) in tumors 

from Extended Data Fig. 1g. f, MC tumors were inoculated into WT (left) or Cd8a-/- (right) 

mice. After 16 days, B cells were depleted with antibodies against CD19, CD20, CD22 and 

B220. Four days after first twice-weekly antibody treatment, mice received weekly 

oxaliplatin (n=4-7/group, total: 42), and sacrificed 3 weeks later. Tumor volumes were 

analyzed by Kruskal-Wallis test: P=0.007**. Results are means ± s.e.m. Mann-Whitney and 

t tests were used to determine significance indicated as *P, 0.05; **P, 0.01; ***P, 0.001.
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Figure 2. B cells inhibit oxaliplatin-induced T cell activation
a, CD8+ cells in TRAMP prostates (WT, Jh-/-; n=4-6/group) from mice treated as in 1a, 
enumerated by flow cytometry and normalized to CD45+ cells. b, Mice (n=6-8/group) 

bearing MC tumors were analyzed as above for CD8+ cells in spleens and tumors after 3 

chemotherapy cycles. c, d, Q-RT-PCR analysis of Perforin and Ifnγ mRNA in MC tumors 

collected as in (b) (n=4-7). e, IFNγ expression by CD8+ cells from tumors (n=6-8) from (b) 

after in vitro re-stimulation with tumor cell lysate. f-h, Expression of GrzB and Ki-67 (f), 
PD-1and Tim-3 (g) and BTLA (h) in CD8+ T effector cells (CD8+CD44+; f,g) or total CD8+ 

cells (h) from tumors of MC inoculated mice (b). Results are percentages of positive cells in 

tumoral CD8+ cells or mean fluorescence intensities (MFI) and are means ± s.e.m of 3 

independent experiments (n=6-8 mice/group). Mann-Whitney and t tests were used to 

determine significance shown as above.
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Figure 3. Oxaliplatin induces tumor infiltration with IgA+PD-L1+IL-10-producing plasmocytes
a, B220+CD19+ B lymphocytes in 20 weeks old TRAMP prostates after 4 oxaliplatin cycles 

(n=5-7/group) normalized to prostate weights. b,c, B220, CD19, CD138 and IgA expression 

in tumoral B cells from (a). Values are % of tumoral CD45+ (b) or CD19+ (c) cells. d, MC 

tumors (n=4-5/group) stained for αSMA (green) and IgA (red). Arrows: IgA+ cells whose 

number per HMF is displayed on the bottom. e, p-SMAD2/3 in tumor-infiltrating B cells 

(n=3-4/group). f, Il10 mRNAin MC tumors (n=5-6/group). g, Tumor-infiltrating 

IL-10+CD19+B cells in MC-WT mice, as percentages of CD45+ cells. h, Percentages of 

IL-10-producing cells in tumoral (MC-WT) CD19+IgA+ and CD19+IgA- cells i, IL-10 

expression by tumoral (MC-WT) IgA+ and IgA- B cells (n=4-6/group). j, PD-L1 and FAS-L 

expression in B cells from TRAMP tumors. k, Pdl1 mRNA in MC tumors (n=5-6/group). l, 
Low (n=5) and high (n=5) risk human PC specimens stained with IgA (red) and αSMA 

(green) antibodies. Arrows: IgA+ cells. All results are means ± s.e.m of at least three 

independent experiments. Magnification bars: 100 μm. Mann-Whitney and t tests were used 

to calculate statistical significance shown as above.
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Figure 4. TGFβR signaling and IgA CSR are required for immunosuppressive plasmocyte 
development
a, WT, Tgfbr2∆B or Iga-/- mice bearing late MC tumors were given 3 weekly oxaliplatin 

cycles (n=5-11/group, total: 48), and tumor volumes at treatment end were analyzed 

(Kruskal-Wallis test: P=0.0004***). b, c, Tumoral CD19+ (b) and IgA+ (c) cells, depicted as 

percentages of tumoral CD45+ cells (b) or total vital cells (c) (n=4-7/group). d, Serum IgA 

in MC-WT and MC-Tgfbr2∆B mice (n=5-8/group). Tumor-free WT and Tgfbr2∆B mice 

served as controls. e, Frequency of tumoral CD8+ cells in mice from (a). f, CD8+ cells (5 × 

106/well) from (a) were re-stimulated with either MC lysate (left) or PMA/ionomycin (right) 

and analyzed for indicated markers. Percentages of marker positive cells within tumoral 

CD8+ cells are shown (n=4-7 mice/group). g, B cells (5 × 106; 98% pure) from WT, 

Pdl1/2-/- and Il10-/- mice were transferred into MC tumor-bearing Jh-/- mice (16 days after 

inoculation) that received oxaliplatin 2 days later. Tumor volumes were determined on day 

30 (n=4-6 mice/group). Results are means ± s.e.m. Mann-Whitney and t tests were used to 

calculate statistical significance.
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Figure 5. Adoptively transferred B cells inhibit T cell-dependent tumor eradication
a,b TRAMP;Rag1-/- mice (16 weeks old) received weekly oxaliplatin. One day after 1st 

treatment, CFSE-labeled splenocytes from WT or Jh-/- mice were adoptively transferred 

(ACT) into tumor-bearing mice (4-5/group). After 3 more oxaliplatin cyclesthe prostates 

were photographed (a) and tumor weight measured (b). c, Serum IgA in both ACT groups 

and FVB-WT mice. d,e Serum anti-SV40-Tag IgA and IgG concentrations in indicated 

strains with or without ACT and/or oxaliplatin treatment. f, Frequency of CD8+ cells 

amongst CD45+ cells in TRAMP;Rag1-/- prostates after ACT and oxaliplatin treatment. g, 
MC tumor-bearing Rag1-/- mice were oxaliplatin treated. One day later, mice (4-5/group) 

received activated T cells from WT mice immunized with MC cell extract without or with B 

cells from WT or Tgfbr2∆B mice. After 2 more treatments, mice were sacrificed and tumor 

volumes determined. h, IFNγ in tumoral CD8+ cells of above mice. Cells were re-stimulated 

with PMA/ionomycin before determining percentages of IFNγ-expressing cells in total 

CD8+ cells (n=5-8/group). j, Serum IgA in above mice. Results are means ± s.e.m. Mann-

Whitney and t tests were used to determine significance. n.d. not detectable.
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