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Abstract 

Triple Negative Breast Cancer (TNBC) is a highly heterogeneous subtype of breast cancer that lacks the expression 

of oestrogen receptors, progesterone receptors and human epidermal growth factor receptor 2. Although TNBC is 

sensitive to chemotherapy, the overall outcomes of TNBC are worse than for other breast cancers, and TNBC is still 

one of the most fatal diseases for women. With the discovery of antigens specifically expressed in TNBC cells and the 

developing technology of monoclonal antibodies, chimeric antigen receptors and cancer vaccines, immunotherapy 

is emerging as a novel promising option for TNBC. This review is mainly focused on the tumour microenvironment 

and host immunity, Triple Negative Breast Cancer and the clinical treatment of TNBC, novel therapies for cancer and 

immunotherapy for TNBC, and the future outlook for the treatment for TNBC and the interplay between the therapies, 

including immune checkpoint inhibitors, combination of immune checkpoint inhibitors with targeted treatments in 

TNBC, adoptive cell therapy, cancer vaccines. The review also highlights recent reports on the synergistic effects of 

immunotherapy and chemotherapy, antibody–drug conjugates, and exosomes, as potential multifunctional thera-

peutic agents in TNBC.
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Background
Tumours can be controlled by the immune system. 

�is has been the subject of research for over a century, 

from the existence of tumour antigens and the cancer 

immunosurveillance hypothesis to the immunoediting 

hypothesis [1]. According to the cancer immunoediting 

hypothesis, tumour fate is shaped by the host immune 

system through three phases: the elimination, equilib-

rium and escape phases. �e immune balance is first 

tilted to anti-tumour immunity in the elimination phase, 

and an intact and competent immune system detects and 

then destroys the developing tumour during immunosur-

veillance. Sporadic tumour cells may survive this editing 

phase and progress to the equilibrium phase, where the 

balance lies between anti-tumour and tumour-promoting 

factors, resulting in a functionally suppressed state of the 

tumour. Finally, the tumour cells acquire the ability to 

circumvent immune surveillance and destruction, and 

these immunologically sculpted tumours emerge with a 

progressively outgrowing status, establishing an immu-

nosuppressive tumour microenvironment (TME) in the 

escape phase [1, 2].

It is not only infection-derived immunity, immune 

deregulation and autoimmunity preceding tumour devel-

opment but also the intrinsic inflammation triggered by 

malignancies following tumour development that pro-

motes cancer development and progression. As a result 

of these different forms of inflammation, the TME con-

tains innate immune cells [macrophages, neutrophils, 

mast cells, myeloid-derived suppressor cells (MDSC), 

dendritic cells (DCs), and natural killer (NK) cells] and 

adaptive immune cells (T and B lymphocytes), in addition 

to the cancer cells and the surrounding stroma (fibro-

blasts, endothelial cells, pericytes, and mesenchymal 

cells) [3]. At the same time, inflammation also influences 

the host immune response to tumours and can be used 

in cancer immunotherapy and chemotherapy [3]. �e 

immune response in tumours mainly relies on adaptive 
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immunity, usually focusing on T cell-mediated cellular 

immunity [4].  CD8+ T cells evolve and kill tumour cells 

by excreting perforin, granzymes and IFN-γ [5]. �ere is 

evidence that some immune cells [DCs, MDSC, B cells, 

 CD8+,  CD4+ �1,  CD4+ �17,  CD4+ Tregs (regulatory 

T cells), macrophages, and neutrophils] exert both anti-

tumourigenic and pro-tumourigenic effects and that oth-

ers exert only pro-tumourigenic effects (mast cells,  CD4+ 

�2 cells) but that NK cells lack a protumourigenic effect 

[3]. DCs found in the TME play an important role in the 

induction of anti-tumour responses by cross-presenting 

antigens to  CD4+ and  CD8+ T cells [6]. While Tregs nor-

mally act against autoimmune diseases by suppressing 

self-reactive T cells, in the TME, they block anti-tumour 

responses by suppressing immune cells, such as  CD8+ T 

cells, NK cells and DCs, and even participating in metas-

tasis [7]. �e depletion of Tregs in tumours by intratu-

moural NK cells, macrophages and neutrophils swings 

the immune balance towards a  CD8+ T cell effector 

function, resulting in tumour suppression and regression 

[8]. �erefore, augmenting the anti-tumourigenic effect 

of  CD8+ T cells, DCs and NK cells and minimizing the 

protumourigenic effect from Tregs may serve as poten-

tial immunotherapies similar to adoptive cell therapy 

(ACT). Moreover, the contents of the extracellular matrix 

(ECM), such as MMPs, prevalently change their activ-

ity and show an association with cancer progression and 

thus serve as potential immunotherapeutic targets [9]. 

Tumour antigens comprise tumour-associated antigens 

(TAA) and tumour-specific antigens (TSA), which can 

be used to specifically detect neoplasms [4]. �ese anti-

gens, especially TSA, can be harnessed as candidates for 

tumour-specific antibody treatments, chimeric antigen 

receptor cell therapies or antibody–drug conjugates to 

accurately target tumours. Still, there are many sophisti-

cated mechanisms that regulate this process, such as the 

autocrine effect of T cells, and we should concentrate on 

the aspect that is helpful to tumours by way of immuno-

therapy. Initial theories suggested that breast cancer (BC) 

is a non-immunogenic disease with fewer immunogenic 

tumour antigens [10], so BC has not been considered a 

cancer amenable to immunotherapeutic approaches for a 

long time; however, recent studies have shown evidence 

of significant immune cell infiltration of tumour-infiltrat-

ing lymphocytes (TILs) in a subset of patient tumours 

and a consolidated understanding that Triple Negative 

Breast Cancer (TNBC) is a highly heterogeneous breast 

cancer subtype, with higher expression levels of PD-L1 

and more TILs. �e TIL score can be a prognostic and 

predictive marker in standard therapies. High numbers 

of TILs correlate with increased pathological complete 

responses to neoadjuvant chemotherapy in TNBC, which 

demonstrates that the immune system plays an active 

role in the subgroup of breast cancer [11].

Triple Negative Breast Cancer and clinical 
treatment for TNBC
Breast cancer is categorized into two types: non-invasive 

and invasive. Clinically, BC is also divided into three 

types: hormone receptor positive BC, human epidermal 

growth factor receptor 2 (HER2) positive BC and TNBC. 

As an invasive breast carcinoma, TNBC is defined by 

the absence of the three main breast cancer biomarkers, 

namely, the lack of the expression of oestrogen receptors 

(ERs), progesterone receptors (PRs) and HER2. Accord-

ing to its molecular heterogeneity, TNBC is divided 

into six subclasses, including basal-like (BL1 and BL2 of 

basal or myoepithelial origin), mesenchymal-like (M), 

mesenchymal stem-like (MSL), luminal androgen recep-

tor expression (LAR), immunomodulatory (IM) and an 

unstable type [12]. Representing 10–20% of breast carci-

nomas, TNBC has a greater heterogeneity, for which spe-

cific therapies have not long been available, and it has a 

worse survival rate compared to other subtypes [13].

�e lack of the identification of driver alterations that 

can be targeted, such as for traditional anti-Her2 therapy 

and endocrine therapy, leads to TNBC having a poorer 

prognosis than other invasive breast cancers [14]. Treat-

ment options for TNBC are at the forefront of clinical 

research on breast cancer. Currently, TNBC patients 

undergo combination therapies, consisting of surgery, 

radiation, chemotherapy, newly developed targeted ther-

apy and immunotherapy. �e locoregional treatment of 

TNBC includes lumpectomy, breast-conserving surgery, 

total mastectomy and radiation therapy to the whole 

breast with or without a boost [15]. While some scien-

tists maintain that TNBC requires an aggressive locore-

gional surgical option, necessarily removing all the breast 

tissue, emerging studies show that conservation therapy 

might improve locoregional outcome [16, 17]. Adjuvant/

neoadjuvant chemotherapy is the mainstay of treatment 

for TNBC; the regimens include administering anthracy-

clines, taxanes, and/or platinum compounds, dose-dense 

AC (doxorubicin/cyclophosphamide) and TC (docetaxel/

cyclophosphamide). Although TNBC is sensitive to 

chemotherapy, conventional chemotherapy options are 

far from satisfactory. However, the addition of platinum 

to standard chemotherapy could increase the proportion 

of patients achieving a pathologic complete response [18, 

19]. Radiation therapy should follow chemotherapy when 

indicated; this is composed of whole breast radiation, 

chest wall radiation, regional nodal radiation and acceler-

ated partial breast irradiation [20]. For years, TNBC was 

not typically considered as a cancer amenable for immu-

notherapy, until recent studies demonstrated several 
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promising immunotherapeutic agents and the immune 

signature [21, 22]. TNBC is divided into five immune 

subtypes based on four distinct expression signatures, 

including T/B cell, interferon gamma (IFN-γ), trans-

forming growth factor beta (TGF-β), and core-serum 

response, DCs, and/or macrophages (CSR), namely, T/B-

cell/IFN high, IFN/CSR high, CSR high, TGFβ high, and 

immune low [22], which are the specific molecular sig-

natures for the immune heterogeneity of TNBC and put 

immunotherapeutic interventions on the table for TNBC.

Novel therapies for cancer and immunotherapy 
for TNBC
Currently, immunotherapy is emerging as an exciting 

treatment option for TNBC patients. In general, cancer 

immunotherapy encompasses immune checkpoint inhib-

itors and cytokines, adoptive cell therapy, and cancer 

vaccines.

Immune checkpoint inhibitors
Anti-PD-1 antibodies (Pembrolizumab, JS001, PDR001, 

and Nivolumab) and anti-PD-L1 antibodies (Atezolizumab 

and Durvalumab)

Programmed cell death protein 1 (PD-1) is an inhibitory 

immune checkpoint inhibitor that limits T-cell effector 

function within tissues, and it is expressed on the sur-

faces of immune effector cells, such as T-cells, B cells, 

NK cells, DCs, and many TILs [23], and has two known 

ligands, namely, PD-L1 and PD-L2 [24, 25]. PD-1 expres-

sion can be induced by tumour-derived IL-18 on immu-

nosuppressive CD56 (dim) CD16 (dim)/-NK cells, and 

tumour-derived IL-18 is associated with a bad prognosis 

in patients with TNBC [26]. PD-1 can be activated mainly 

by PD-L1 (programmed cell death protein 1 ligand), 

which is expressed on T cells, B cells, NK cells, mac-

rophages, DCs, epithelial cells, and vascular endothelial 

cells upon IFN-γ stimulation [27]. As critical inhibitory 

regulators, the PD-1/PD-L1 interactions in normal tis-

sues can protect against tissue damage and limit inflam-

matory reactions mediated by T cells and other immune 

system components during infections [28]. Tumour cells 

also express PD-L1 and inhibit T cell responses by upreg-

ulating and binding PD-L1 to PD-1 on activated T cells, 

leading to immune exhaustion and downregulation of the 

local immune response [29]. Increased PD-L1 expression 

is seen on the surface of TNBC cells and has functional 

consequences on T cells, including decreasing their pro-

liferation and increasing apoptosis, which provides the 

rationale for implementing therapeutic strategies target-

ing the PD-1/PD-L1 axis to unleash the effective killing of 

the TNBC cells [30–32].

Phase I studies evaluating antibodies targeting either 

PD-1 or PD-L1 show that these agents elicit durable, 

objective responses in patients with melanoma, NSCLC 

and renal-cell carcinoma [33, 34]. �e first regulatory 

approved PD-1 inhibitor, Nivolumab, was launched for 

the treatment of unresectable melanoma in July 2014 

[35]. With respect to TNBC, the Pembrolizumab, JS001, 

PDR001, and Nivolumab humanized anti-PD-1 mono-

clonal antibodies are currently being tested in multiple 

clinical trials. �e anti-PD-L1 monoclonal antibodies 

Atezolizumab and Durvalumab are also yielding promis-

ing results [36]. �e glycosylation of PD-L1 was recently 

found to be essential for the interaction of PD-L1/PD-1, 

and a newly developed antibody, STM108, which targets 

glycosylated PD-L1 (gPD-L1), can induce PD-L1 inter-

nalization to the lysosomes and degradation [37].

Although the anti-PD-1 and anti-PD-L1 mAbs have 

emerged as being of noteworthy significance in BC treat-

ment, both were recently described as unsatisfactory 

as single therapeutic agents [38]. Tumour expression of 

PD-L1 may serve as a potential biomarker for clinical 

benefit. It was reported that high expression of either 

PD-1 or PD-L1 correlated with increased  Foxp3+ Treg 

infiltration, and PD-1/PD-L1 and Tregs may work syner-

gistically in immune evasion [39, 40]. Pembrolizumab did 

not affect the levels of  Foxp3+ Tregs or change their phe-

notype or function but did block signalling via the PD1/

PD-L1 axis in activated T cells [41]. Whether anti-PD-L1 

mAb could affect Treg function remains unknown, but it 

might be a better choice than PD-1 blockade since PD-L1 

is expressed on tumour cells while PD-1 is expressed 

on immune cells. However, not all PD-L1-expressing 

tumours respond to anti-PD-1/PD-L1 mAbs and it is 

noteworthy that some PD-L1-negative tumours such as 

PD-L1-negative lung cancer can respond to these agents 

[42]. To validate whether targeting PD-1 or PD-L1 is 

an option for treating TNBC, Pembrolizumab/Atezoli-

zumab, used in neoadjuvant/adjuvant/metastatic settings 

in TNBC treatment, will be evaluated in ongoing clinical 

trials in Phase III studies (Table  1). �erefore, targeting 

PD-1 or PD-L1 may be an option for TNBC, and the effi-

cacy of these immune checkpoint inhibitors remains to 

be improved.

Anti-CTLA-4 antibodies (Ipilimumab and Tremelimumab)

Cytotoxic T lymphocyte-associated protein 4 (CTLA-4) 

is a T-cell inhibitory receptor that is expressed on acti-

vated  CD8+ T cells and  CD4+ regulatory T cells that 

express CD25 and Foxp3. CTLA-4, as a homologue of 

CD28, attenuates the T-cell immune response by bind-

ing to both CD80 (B7-1) and CD86 (B7-2) on DCs with 

affinities much greater than CD28, but the mechanism 

is unclear [43]. �erefore, CTLA-4 blockade probably 

removes inhibitory signals in the costimulatory path-

way, resulting in the enhanced rejection of the tumour 
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Table 1 Ongoing clinical trials of immunotherapeutic interventions of TNBC

Targets/types Drug Patient population Recruitment Phase ClinicalTrials. gov ID

Clinical trials in the neoadjuvant setting

 PD-1 Pembrolizumab TNBC Recruiting II NCT03145961

III NCT03036488

Active, not recruiting Ib NCT02622074

Not yet recruiting II NCT03289819

PDR001 TNBC Recruiting II NCT02938442

 PD-L1 Atezolizumab TNBC Not yet recruiting III NCT03197935

Recruiting III NCT03281954

III NCT02620280

II NCT02530489

Durvalumab TNBC Recruiting II NCT02685059

I/II NCT02489448

 PD-L1, PARP Atezolizumab, Veliparib TNBC, BRCA1/2 mutated, other BCs Recruiting II NCT02849496

 VEGF-A Bevacizumab TNBC Recruiting II NCT02456857

 EGFR Panitumumab TNBC Recruiting II NCT02593175

TN-IBC Recruiting II NCT02876107

 ACT DC BC Recruiting I/II NCT03450044

γδ T cells BC Recruiting I/II NCT03183206

DC-CIK BC Active, not recruiting II NCT02491697

ROR1 + CAR-T cells TNBC, BCs, Leukemia, Lymphoma Recruiting I NCT02706392

 Vaccine DC vaccine TNBC and other BCs Recruiting I/II NCT02018458

Neoantigen DNA TNBC Recruiting I NCT03199040

PVX-410 TNBC Recruiting I NCT02826434

Clinical trials in the adjuvant setting

 PD-1 Pembrolizumab TNBC Recruiting III NCT03036488

TNBC and other BCs Recruiting III NCT02954874

 PD-1, PARP Pembrolizumab, Niraparib TNBC, OC Recruiting I/II NCT02657889

 ACT NK cells BC Recruiting I/II NCT02844335

DC-CIK TNBC, HCC, RCC, UBC, CRC, NSCLC Recruiting I/II NCT02886897

 Vaccine PVX-410 TNBC Recruiting I NCT02826434

Clinical trials in the metastatic setting

 PD-1 Pembrolizumab TNBC Active, not recruiting III NCT02555657

II NCT02447003

Recruiting III NCT02819518

II NCT02768701

II NCT02755272

I/II NCT02734290

Ib/II NCT01676753

Not yet recruiting II NCT03121352

TNBC, IBC Not yet recruiting II NCT03184558

Nivolumab TNBC Recruiting II NCT03316586

II NCT02499367

JS001 TNBC Not yet recruiting I NCT03251313

Recruiting I NCT03151447

PDR001 TNBC, NSCLC, TC, Melanoma Recruiting Ib/II NCT02404441

TNBC, CRC, NSCLC Recruiting I NCT02890069
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cells. �e U.S. FDA approved Bristol-Myers Squibb’s 

anti-CTLA-4 treatment, called ipilimumab, for meta-

static melanoma in 2011; ipilimumab showed a durable 

and potentially curative efficacy in potentiating tumour 

regression, with a higher complete response rate than in 

previous reports [44, 45].

High infiltration of Tregs in a tumour is usually asso-

ciated with poor prognosis. Removal of  Foxp3+ Tregs 

can evoke and enhance the anti-tumour immune 

response because they not only suppress aberrant 

immune responses but also inhibit anti-tumour immune 

responses [46]. �e CTLA-4 antibody mediates anti-

tumour immunity through Akt phosphorylation and the 

blockade of  Foxp3+ Treg cells in the TME, which allows 

for potent T-cell expansion [47, 48]. A systematic review 

demonstrated that TNBC encompasses the highest inci-

dence of TILs (20%; range, 4–37%) and the highest lev-

els of  Foxp3+ Tregs cells (70%; range, 65–76%) among 

breast cancer subtypes [49]. �e elevated numbers of 

 Foxp3+ Tregs (~ 66% of  CD4+ T cells) may be therapeutic 

targets of CTLA-4 blockade antibodies in TNBC treat-

ment [47]. While the disappearance of  FoxP3+ Tregs is 

associated with pCR to neoadjuvant chemotherapy; how 

this could affect the response to anti-CTLA-4 treatment 

in TNBC remains controversial, with few investigations 

involved [50]. Limited preclinical data showed that anti-

CTLA-4 did not significantly alter tumour growth except 

when Tregs were depleted [51]. While the anti-CTLA-4 

antibodies Ipilimumab and Tremelimumab are cur-

rently undergoing clinical trials of TNBC (Table 1), more 

investigations are warranted to confirm the relationship 

between Treg infiltration and treatment response in 

TNBC.

Combination of immune checkpoint inhibitors 
with targeted treatments in TNBC
Despite the remarkable benefits from the use of check-

point inhibitors, clinical trials evaluating the use of 

combinations of checkpoint inhibitors to improve the 

response rate are now demonstrating that dual appli-

cation of immune checkpoints inhibitors (blockade of 

CTLA-4 and PD-1/PD-L1 pathways) is a promising 

approach in TNBC. Additionally, combination therapy 

of checkpoint inhibitors with targeted treatments has 

shown the ability to increase the efficacy of immunother-

apy and to slow down primary tumour outgrowth and 

metastasis, especially in the neoadjuvant background, 

and may simultaneously improve the tumour-specific T 

Table 1 (continued)

Targets/types Drug Patient population Recruitment Phase ClinicalTrials. gov ID

 PD-L1 Atezolizumab TNBC Not yet recruiting II NCT03164993

Active, not recruiting III NCT02425891

Recruiting III NCT03125902

Ib/II NCT02708680

IIb NCT01898117

Durvalumab TNBC Recruiting I/II NCT02628132

Avelumab TNBC, SCCHN, SCLC, NSCLC, Melanoma, Recruiting Ib/II NCT02554812

 CTLA-4 Tremelimumab TNBC, UBC, PDAC Active, not recruiting II NCT02527434

 PD-L1, CTLA-4 Durvalumab, Tremelimumab TNBC, SCCHN, SCLC, GEJ, PDAC, ESCC Recruiting Ib NCT02658214

 PD-1, PARP Pembrolizumab, Niraparib TNBC, OC Recruiting I/II NCT02657889

 PD-L1, PARP Durvalumab, Olaparib TNBC Recruiting II NCT03167619

Durvalumab, Olaparib/Cediranib TNBC, OC, CRC, NSCLC, SCLC, CRPC Recruiting I/II NCT02484404

Atezolizumab, Veliparib TNBC, BRCA1/2 mutated, other BCs Recruiting II NCT02849496

 VEGF-A Bevacizumab TNBC and other BCs Active, not recruiting II NCT00733408

 ACT NK cells BC Recruiting I/II NCT02843126

Anti-MUC1 CAR-T cells TNBC, HCC, NSCLC, PC Recruiting I/II NCT02587689

NKG2D CAR-T cells TNBC, CRC, OC, UC, PC, MM Recruiting I/II NCT03018405

 Vaccine haNK cell TNBC Not yet recruiting Ib/II NCT03387085

Ib/II NCT03175666

 ADC IMMU-132 TNBC Recruiting III NCT02574455

Not yet recruiting II NCT02161679

CDX-011 TNBC Active, not recruiting II NCT01997333

SGN-LIV1A TNBC Recruiting I NCT01969643

 ADC, PD-1 SGN-LIV1A, Pembrolizumab TNBC Recruiting Ib/II NCT03310957
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lymphocyte response, which is observed in multiple syn-

geneic TNBC models [38].

Dual application of immune checkpoint inhibitors 

(anti-PD-1 and anti-CTLA-4) in TNBC

Although a number of trials with PD-1 inhibitors are 

encouraging for TNBC, only a fraction of treated patients 

detectably respond to this therapy. PD-1 and CTLA-4 

exert their effects through distinct mechanisms [52], and 

people have gradually realized that simultaneously tar-

geting both pathways may result in a synergistic effect 

on anti-tumour immunity, and the combination of the 

blockade of PD-1 and CTLA-4 possess more than twice 

the efficacy of either alone in melanoma and lung can-

cer [53–55]. Moreover, the blockade of both PD-1 and 

CTLA-4 restores T lymphocyte rejection function in 

tumours, especially when combined with GVAX vac-

cination (consisting of GM-CSF-expressing irradiated 

tumour cells) [56].

However, only few investigations involving BC were 

carried out. A combination of these two antibodies over 

comes tumour immunosuppression and effectively treats 

TNBC, with a regression of ~ 80% of tumours [47], allow-

ing inactivated tumour-specific T lymphocytes to con-

tinue to expand and carry out effector functions, and this 

shifts the TME from suppressive to inflammatory [54]. 

�erefore, understanding of pharmacodynamic effects of 

the combination of these two antibodies in patients will 

definitely prompt the rational development of immune-

based combinations against TNBC. Moreover, dual anti-

PD-1 and anti-CTLA-4 combined with Cisplatin therapy 

not only led to an avid cytotoxic, rather than suppres-

sive, immune response, characterized by enhanced DC 

activation, decreased  FOXP3+ Tregs and concomitantly 

increased activation of  CD8+CD4+ T cells (p < 0.05), but 

also more efficiently curtailed BRCA-1 deficient tumour 

growth (p = 0.008) [57].

Anti-PD-1/PD-L1 mAbs combined with targeted therapies

Anti‑PD‑1/PD‑L1 mAbs with EGFR inhibitors

As a member of the family of transmembrane recep-

tors, EGFR (epidermal growth factor receptor) pro-

motes cell proliferation and survival via initiating 

downstream signalling through the PI3K–AKT–mTOR 

and RAS–MEK pathways [58]. More importantly, EGFR 

works as a cotranscription factor that is localized in the 

nucleus and results in cancer progression. Currently, 

there are two main monoclonal antibodies (mAb) tar-

geting EGFR, cetuximab and panitumumab. Cetuximab 

is a chimeric IgG1 mAb that blocks the ligand-induced 

phosphorylation of EGFR through binding to EGFR in 

cancer cells, with a higher affinity than both EGF and 

TGF-α [58]. In terms of breast cancer, nuclear EGFR 

expression is associated with resistance to gefitinib, an 

oral tyrosine kinase inhibitor (TKI), in vitro [59]. More-

over, nuclear EGFR expression also correlates with a 

more aggressive clinical behaviour in breast cancer [60]. 

EGFR expression is predominant in 89.5% of TNBC and 

can be transferred from TNBC cells to immune cells, 

leading to a decreased level of EGFR on TNBC cells, 

and its expression on immune cells correlates with a 

high tumour grade in TNBC patients (p = 0.02) [61, 62]. 

�is indicates that EGFR can be transferred via trogo-

cytosis from one cell to another at the time of contact 

and may alter the function of immune cells [63]. EGFR 

down-regulation also induces the reduction of PD-L1 

expression on cancer cells [64], which could improve 

the efficacy of these inhibitors in TNBC. Further inves-

tigation is warranted to elucidate the mechanism of 

modulation of EGFR by immune cell contact to TNBC 

cells and its interaction with the reduction of PD-L1 

expression, which may provide novel aspects for immu-

notherapy for TNBC.

Moreover, EGFR signalling may promote tumour 

growth and enhance immune escape by stimulating 

aerobic glycolysis in TNBC cells and producing lactate, 

which inhibits T cell activity [65]. In the past two dec-

ades, cetuximab has shown marked anti-tumour efficacy, 

including increasing the anti-tumour effects of doxoru-

bicin [66], prolonging the PFS of TNBC patients in com-

bination with cisplatin [67] and increasing the response 

rate for TNBC in combination with irinotecan [68]. 

Panitumumab is a fully humanized IgG G2 mAb, which 

is directed to EGFR to competitively inhibit EGFR bind-

ing, and has also been studied in TNBC [58]. Combined 

with chemotherapy, panitumumab also raises the pCR 

rate in TNBC patients [69]. In addition, dual EGFR inhi-

bition, either by a combination of noncompetitive EGFR 

mAbs or a combination of an EGFR mAb and an EGFR 

tyrosine kinase inhibitor, might exert an improved anti-

tumour effect in TNBC [70, 71]. Currently, a number of 

clinical trials have been carried out treating TNBC with 

anti-EGFR mAbs, and encouraging results will be yielded 

soon.

Despite the encouraging data on anti-PD-1/PD-L1, 

the efficacy of PD-1/PD-L1 inhibitors in patients with 

EGFR-activating mutations remains unclear. Preclinical 

investigations involving NSCLC and head and neck can-

cer revealed the immune modulatory effect of the EGFR 

signalling pathway, including repression of MHC I and 

MHC II [72], upregulation of PD-L1 expression (through 

the AKT/mTOR pathway, AKT-STAT3 pathway and 

ERK1/2 pathway) [73, 74], increasing the number and 

activity of immunosuppressive Tregs (through the EGFR/

GSK-3b/Foxp3 axis) [75], and inhibiting the activity of 

CTLs [65]. �erefore, inhibiting EGFR by either mAbs 
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or EGFR-TKIs could decrease the expression of PD-L1 in 

tumours.

However, the PD1/PD-L1 pathway might accounted for 

EGFR-TKIs resistance [76]. Delayed tumour growth and 

increased survival have been demonstrated in preclinical 

EGFR mutant lung cancer models treated with anti-PD-1 

mAbs [77]. Together, combination of anti-PD-L1 mAbs 

with anti-EGFR mAbs or EGFR inhibitors will probably 

exert a synergetic effect. To better apply this combination 

to treatment of TNBC, further investigations are war-

ranted to demonstrate the exact interaction between the 

PD-1/PD-L1 and EGFR pathways and the efficacy of this 

combination in TNBC.

Anti‑PD‑1/PD‑L1 with VEGF inhibitors

Vascular endothelial growth factor A (VEGF-A) is 

released by tumour cells and is associated with tumour 

progression, angiogenesis and invasion in TNBC and 

other malignancies [78]. In a TNBC patient cohort, Su, 

Jung-Chen profiled VEGF-A levels and found associa-

tions with distant metastasis-free survival (DMFS) and 

disease-free survival (DFS), further demonstrating that 

high VEGF-A levels correlate with the risk of develop-

ing metastatic disease in TNBC [79]. Bevacizumab (BM) 

is a recombinant humanized mAb that blocks angio-

genesis by targeting VEGF-A and was first approved 

for medical use in the United States in July 2004 [80]. 

Some maintain that the reduced number and function of 

tumour vessels induced by an antiangiogenic treatment 

might impact the intratumoural delivery of concurrently 

applied chemotherapy. Still, the efficacy of additional BM 

remains controversial across the world. Although the 

FDA ruled to withdraw its indication for advanced breast 

cancer in 2011, BM remains in application in other coun-

tries, including Australia. �e addition of BM has been 

shown to improve the overall response rate (ORS) and 

PFS in patients with metastatic TNBC [81–83]. Although 

the randomized phase III BEATRICE trial showed no 

significant benefit from BM therapy for early TNBC 

[84], a trend towards an improved OS was observed in 

the triple-negative subgroup who received BM. �us, 

BM not only helps to overcome adaptive resistance but 

also improves tumour perfusion to maintain intratu-

moural drug delivery when combined with a rational 

and complementary chemotherapy partner [85, 86]. �e 

NSABPB-40 trials showed a significantly improved OS 

with BM [87], and the GINECO A-TaXel Phase 2 Study 

also showed high activity and manageable safety for the 

combination of paclitaxel, capecitabine and BM in TNBC 

[88].

As mentioned above, VEGF has an effect in immune 

regulation by suppressing antitumour immune responses 

[89]. VEGF-A produced in the TME enhances expression 

of PD-1 and other immune checkpoint molecules, and 

high levels of VEGF-A might be involved in resistance 

to PD-1 blockades, which could be reverted by target-

ing the VEGF-A/VEGFR pathway [90]. Blocking the 

VEGF pathway could also potentiate anti-PD-L1 mAb 

(atezolizumab) therapy and improve antigen-specific 

T-cell migration [91, 92]. A phase I study evaluating ate-

zolizumab in combination with BM showed an overall 

response rate of 40% in metastatic renal cell carcinoma 

[92] and was well-tolerated in these patients without 

synergistic toxicity, which is important because both 

PD-1 and VEGF blockades were thought to cause unique 

adverse events, such as autoimmune diseases in some 

patients [91].

Bevacizumab has been shown to improve the ORS 

and PFS of patients with metastatic TNBC and improve 

intratumoural drug perfusion for combination chemo-

therapy (reviewed above), which shows that combining 

two agents may be a promising strategy. �e similar syn-

ergistic anti-tumour effect in  vivo can also be induced 

successfully by combining PD-1/PD-L1 and VEGF-A/

VEGFR blockade [93], although few cases of patients 

with TNBC who had a significant response to combina-

tional treatment of anti-VEGF with immune check-point 

blockade have been reported so far. In view of these, tar-

geting VEGF-A/VEGFR could synergize with anti-PD-1/

PD-L1 treatment and might be a good candidate for 

TNBC treatment.

Anti‑PD‑1/PD‑L1 with PARP inhibitors

Similar to BRCA1-mutated tumours, 25% of sporadic 

breast cancers are deficient in DNA-repair, mainly in 

homologous recombination (HR) when double stranded 

DNA breakage (DSB) occurs [94]. PARP [Poly (ADP-

ribose) polymerase] is a nuclear enzyme that participates 

in the repair of DNA single-strand breaks (SSBs) via the 

base excision repair pathway, and it is highly expressed in 

more than 90% of TNBC [95]. Inhibition of PARP results 

in accumulation of SSBs, which can lead to the formation 

of irreparable toxic DSBs in BRCA1/2 defective cells [96]. 

PARP inhibitors are promising agents for the treatment 

of BL-1 (basal-like 1) TNBC, which features an enriched 

cell cycle, elevated DNA damage response (ATR/BRCA), 

proliferation pathway, and cell-cycle checkpoint loss 

pathways [97]. PARP inhibitors serve as a group of novel 

oral anticancer drugs that are highly active in TNBC 

with selected mutations or epigenetic silencing of genes 

involved in the DNA damage response (DDR), includ-

ing BRCA1 and BRCA2 [98]. However, PARP inhibitors 

can upregulate PD-L1 expression and enhance cancer-

associated immunosuppression. �us, anti-PD-1/PD-L1 

mAbs may exert a supplementary and increased anti-

tumour effect in combination with a PARP inhibitor [99]. 
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To further confirm the efficacy of this combination, a few 

clinical trials have been carried out (Table 1).

Anti‑PD‑1/PD‑L1 with anti‑MMP‑14 antibodies for potential 

application

�e matrix metalloproteinase (MMP) family mediates 

ECM degradation and promotes cancer metastasis [100]. 

MMPs are localized to invadopodia, which are filamen-

tous actin (F-actin)-rich cellular protrusions that degrade 

ECM, and MMP-14, a cell surface receptor that degrades 

collagen, is required for invadopodia formation, which 

activates secreted MMPs to promote cancer metasta-

sis [101, 102]. Targeting the early steps in metastasis, 

such as ECM degradation and invasion in cancer cells, 

may improve outcomes in TNBC [103]. �e enhanced 

expression of MMP-14 probably leads to concordantly 

enhanced metastasis in cancer models and is associ-

ated with a comparatively poor prognosis in human 

breast cancer [104]. Several selective MMP-14 antibod-

ies have been exploited. DX-2400, a potent and highly 

selective human antibody inhibitor of MMP-14 activ-

ity, significantly decreases MMP-14 activity, decreases 

immunosuppressive TGF-β, polarizes macrophages to 

an anti-tumour phenotype, and increases iNOS, leading 

to impaired primary tumour growth and an improved 

response to radiation therapy [105]. Moreover, some 

specific scFv antibodies bind outside the catalytic cleft 

of MMP-14 and impactfully prevent its proteolytic func-

tions at the surface of cells [106]. Fab R2C7 is another 

inhibitory Fab with an excellent selectivity for MMP-14 

[107]. Fab 3369 inhibits MMP-14-mediated ECM deg-

radation and MDA-MB-231 cell invasion. �rough an 

analysis of lung tissue sections from mice using a human 

TNBC xenograft model randomized between control 

IgG and IgG 3369 treatment groups, the MMP-14 inhibi-

tory antibody 3369 was found to limit MDA-MB-231 

tumour xenograft growth and metastasis [108]. More 

interestingly, Binbing Ling also demonstrated the poten-

tial of MMP-14 blockade to disrupt the immunosuppres-

sive TME in metastatic breast cancers, while a number 

of immune regulatory genes were altered with MMP-

14 blockade [108]. However, at this point, there have 

been no reports or clinical trials on targeting MMP-14 

together with anti-PD-1/PD-L1 treatment; more poten-

tial therapies can be applied in patients with TNBC in the 

future.

Currently, a number of clinical trials involving anti-

immune checkpoint inhibitors, cytokines and their anti-

bodies (anti-PD-1: Pembrolizumab, JS001, PDR001, 

Nivolumab; anti-PD-L1: Atezolizumab, Durvalumab; 

anti-CTLA-4: Ipilimumab, Tremelimumab; anti-EGFR 

mAb: Cetuximab, Panitumumab; anti-VEGF-A mAb: 

Bevacizumab; anti-MMP-14 antibody: Fab 3369, Fab 

R2C7, DX 2400) have been carried out to treat TNBC 

(Fig. 1). �ese agents might have a notably broad range of 

action with consequent problems influencing the future 

applications in the treatment of TNBC. �erefore, more 

research on specified immune checkpoint inhibitors and 

monoclonal antibodies for TNBC is urgently required.

Adoptive cell therapy (ACT)
Adoptive cell therapy is a promising and likely potent 

approach to inducing anti-tumour immune responses 

via the isolation of highly active and tumour-specific 

lymphocytes, including TILs, cytotoxic T lymphocytes 

(CTLs), � cells, NK and DC cells, large-scale ex  vivo 

expansion and the activation of these lymphocytes for 

autologous therapy [109, 110]. As the ultimate effec-

tor cells, CTLs express a unique T-cell-antigen receptor 

(TCR) that confers specificity for the particular target 

antigen. �e productive engagement of TCR/MHC/anti-

gen complexes on the target-cell surface triggers the 

CTL’s effector functions and induces the destruction 

of the target cell through the release of inflammatory 

cytokines, including tumour-necrosis factor-α (TNF-

α), IFN-γ, FAS ligand (FASL), TNF-related apoptosis-

inducing ligand (TRAIL) and cytotoxic degranulation 

[109]. NK cells play a critical role in cancer immunosur-

veillance. �erapies utilizing NK cells have shown great 

promise due to advances in NK cell expansion protocols 

[111, 112], which are classified as follows: (1) harness-

ing endogenous responses by NK stimulants or targeting 

agents and (2) using exogenous NK cells via haematopoi-

etic stem cell transplant (HSCT) or ACT [113]. Clini-

cal studies show that NK cells from BC patients can be 

expanded and have a high cytotoxic ability to kill breast 

cancer cells [113, 114]. Until now, ACT has been success-

fully used for the treatment of patients with metastatic 

melanoma, leukaemia, and neuroblastoma [115, 116]. 

�erefore, with host immune environment manipulation, 

including the pre-administration host immunosuppres-

sion and concurrent cytokine administration, with the 

transferred cells, more novel adoptive cell therapies can 

be applied in patients with TNBC in the future.

Chimeric antigen receptors T-cell-based therapy

Having underdone almost 30 years of evolution since the 

first generation of chimeric antigen receptors (CARs) 

was developed in 1989 by Gross G [117], this technology 

is still in its early stage of exploitation and development 

and facing nonignorable challenges, namely, the inability 

to control the rate of cytokine release and tumour lysis. 

In 2010, Rosenberg published chimeric antigen recep-

tor therapy (CAR therapy)—a personalized treatment 

involving genetically modifying a patient’s T cells to 

make them target tumour cells [118]. Currently, multiple 
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organizations are developing CARs against a host of tar-

gets, from epidermal growth factor receptor variant III 

(EGFRvIII) and mesothelin to CD19, CD20, CD30, CD33, 

and CD138 [119]. To date, ACT therapy has gained 

much attention in the past decade, especially CAR-T 

cell therapy, which grafts an arbitrary specificity onto an 

immune effector T cell. CARs are fusion receptors that 

are composed of an antibody-derived single-chain vari-

able fragment (scFv) coupled via hinge and transmem-

brane elements to a T cell signalling and co-stimulatory 

domain. Recently, the novel CAR-T was engineered to 

express interleukin-7 (IL-7) and CCL19 [120].

A few agents have been developed and applied to 

CAR-T cells for TNBC treatment. Several CAR-T 

based ACTs were used in current clinical trials, such 

as  ROR1+ CAR-T cells, anti-MUC1 CAR-T cells and 

NKG2D CAR-T cells. More candidates are in develop-

ment. A patented antibody (TAB 004) specifically rec-

ognizes a tumour-associated form of MUC1 (tMUC1) 

in > 90% of human TNBC, and the antigenic isoform 

recognized by TAB 004 is completely hidden in nor-

mal epithelia, which makes it extremely safe for the 

development of CAR-T cells [121]. Mesothelin might 

have promise as a unique tumour associated antigen 

for TNBC; it has been screened in 99 primary breast 

cancers (it was overexpressed in 67% TNBC but < 5% 

ER(+) or Her2-neu+ type, and was undetectable in 

non-neoplastic mammary epithelium) [122]. TEM8 

CAR-T cells were also recently postulated as a promis-

ing CAR-T-cell-based therapy, in which the TEM8 CAR 

T cells induce the regression of both established, local-

ized patient-derived xenograft tumours (PDX) and lung 

metastatic TNBC cell line-derived xenograft tumours, 

by both killing the  TEM8+ TNBC tumour cells and tar-

geting the tumour endothelium to block tumour neo-

vascularization [123]. Moreover, there is an increasing 

number of potential targets that are comparably highly 

expressed in TNBCs, such as FRα and brachyury, that 

have been developed [124, 125], which may provide 

implications for clinical tumour antigen screening for 

CAR-T cell-based therapies.

T cell receptors (TCRs)—engineered T cells

TCR-engineered T cells are  CD8+ T cells efficiently 

engineered to express TCRs recognizing intracellular 

Fig. 1 Current and potential future immune-related drug targets in TNBC, including immune checkpoint inhibitors, cytokines, and their antibodies



Page 10 of 19Li et al. J Transl Med  (2018) 16:147 

antigens processed by major histocompatibility (MHC) 

proteins, which can target and kill cancer cells expressing 

appropriate antigens [126]. Investigations of TCR-engi-

neered T cells began over two decades ago, with a num-

ber of preclinical studies showing their ability to mediate 

tumour lysis and eradication. �e large amount of atten-

tion has recently led to the increased development of this 

ACT, which has shown encouraging outcomes in studies 

of TCR-engineered T cells directed against NY-ESO-1, 

MAGE and GP100, with significant clinical successes in 

patients with colorectal carcinoma, synovial sarcoma, 

metastatic melanoma and multiple myeloma [126, 127]. 

Recently, placenta-specific 1 (PLAC1)-specific HLA-

A0201-restricted TCR-engineered  CD8+ T cells were 

developed to kill breast cancer cells by producing IFN-γ 

and TNF-α [128]. However, more widespread utiliza-

tion of TCR-engineered T cells in solid tumours such as 

TNBC calls for the enhancement of long-term survival 

and function of the cells, as well as closed culture proce-

dures capable of expanding T cells to sufficient numbers 

for clinical application. Fortunately, modular systems and 

semi-automated devices have been developed and used 

in large-scale manufacturing [129]. Moreover, CRISPR/

Cas9 technology can improve the function and sensitiv-

ity of TCR-engineered T cells to antigens by redirecting 

primary T cells with a pan-cancer reactive γδ TCR in 

combination with endogenous TCR-β knockout [130]. Of 

note, TCR-engineered T cells expressing a high level of 

PD-1 could reduce their functional activity; the efficacy 

of these cells may be augmented when used in combina-

tion with anti-PD-1 mAbs [131, 132].

Tumour-in�ltrating lymphocytes

Tumour-infiltrating lymphocytes are white blood cells 

that have left the bloodstream and migrated into a 

tumour; they are composed of a mix of different types 

of mononuclear immune cells (T cells, B cells, NK cells, 

and macrophages) in variable proportions, of which T 

cells are dominant [133]. Known as indicators of immu-

nogenicity, TILs are not only remarkably prognostic but 

are also significantly predictive for tumours in cutaneous 

melanoma [134], colorectal cancer [135, 136], urothelial 

carcinoma [137] and breast cancer [133]. TILs also show 

a robust prognostic and predictive value in TNBC, indi-

cating the immune status of the tumour and determin-

ing the efficacy of conventional chemotherapy [138, 139]. 

However, paradoxical results have emerged in several 

studies, suggesting that some  CD8+ T cell-infiltrated 

tumours show poor outcome. Some efficient  CD8+ T 

cell invasion and infiltration in the tumour is correlated 

with good outcome, while some patients show poor out-

come due to the accumulation of  CD8+ T cells in the 

tumour-associated stroma, with poor infiltration in the 

tumour epithelium [140]. A high amount of TILs sug-

gests an immune status of a tumour near an equilibrium 

between then cancer and immune equilibrium in TNBC 

[141]. Surgical resection of the primary tumour has also 

been found to tilt the balance towards the immune sys-

tem and, therefore, result in a better prognosis of high 

TILs in TNBC [141]. Low TILs correlate with a greater 

clonal heterogeneity and mutation load in TNBC, which 

may consequently lead to tumour escape from immune 

surveillance. It is not TILs alone, however, but also the 

balance between distinct immune components in the 

TME that impacts the outcome of patients with TNBC. 

TNBC patients experiencing tumour recurrence show a 

decreased content of TILs and an increased number of 

 CD163+ tumour-associated macrophages (TAMs) com-

pared with those without recurrence [142]. High levels of 

tumour infiltrating  CD8+ T cells may reflect an improved 

prognosis with chemotherapy sensitivity, and TAMs cor-

relate with a poor outcome in TNBC patients [138]. On 

the other hand, the heterogeneity of the  CD8+ T cell dis-

tribution also crucially composes the newly identified 

distinct immune microenvironment of TNBC [140].

Despite the tremendous progress made regarding 

ACT, the potential of ACT therapy is facing inevita-

ble challenges, such as expanding specific cells, includ-

ing  CD8+ T cells. Increasing efforts have been made 

to expand  CD8+ T cells, NK cells and DCs, which will 

probably be utilized in autologous ACT for TNBC. 

Expanded NK cells from PBMCs isolated from breast 

cancer patients survive in vivo and prevent the establish-

ment and growth of TNBC cells in a xenograft mouse 

model [114]. Cytokine-induced killer (CIK) cells have 

also emerged as a potential ACT option, for their impres-

sive efficacy in improving DFS and OS in TNBC patients 

[143]. Further improvements in ACT therapy call for a 

deeper understanding of the immunological processes, 

the ability of lymphocytes to persist in vivo and to travel 

to tumours, unexpected toxicities to normal tissue, and 

the mechanisms of ACT augmentation by previous host 

immunosuppression.

Cancer vaccine
Sipuleucel-T, a personalized treatment working by pro-

gramming each patient’s immune system, is a therapeu-

tic vaccine for prostate cancer approved by the FDA in 

April 2010, showing an ability to improve overall sur-

vival in patients with castrate-resistant prostate cancer. 

�e MAGE-3 protein-based vaccine is also undergo-

ing phase III clinical trial testing in patients with mela-

noma and NSCLC [144]. To date, a tremendous number 

of cancer vaccines, from peptide vaccines such as PPV, 

to DNA vaccines such as the hDR5 DNA vaccine, and 

from cytokine vaccines such as combined GM-CSF to 
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Lymphocyte vaccines such as a DC-related vaccine, are 

carving the way for TNBC treatment.

Cancer-testis antigens (CTA) as a vaccine target

Cancer-testis antigens are a heterogeneous group of 

TAAs displaying the ideal characteristics of promising 

immunotherapeutic targets [145]. Several CTAs are spe-

cifically expressed in TNBC, including SP17, NY-ESO-1 

and MAGE group [146]. Sperm Protein 17 (SP17) was 

originally identified in the flagellum of rabbit spermato-

zoa [147] and is localized in the human fibrous sheath 

(FS) of sperm flagellum during different phases of sper-

matozoa maturation [148]. SP17-specific cytotoxic T 

lymphocytes were successfully generated from normal 

donors [149]. SP17 is aberrantly expressed in ovarian 

cancers [150], oesophageal cancer [151], nervous sys-

tem tumours [152], endometrial and cervical cancers 

[153], NSCLC [154], and myeloma [155], and is associ-

ated with the migratory and motility capacity of tumour 

cells, indicating a link between the gene expression pat-

terns in germinal and tumour cells of different histologi-

cal origins [156] and is suggested as a promising target 

for immunotherapy. SP17 is expressed in both breast 

cancer cell lines and primary breast tumours and, impor-

tantly, in the TNBC subtype. Moreover, the detected 

specific anti-SP17 antibodies in patient sera was used to 

generate SP17-specific, HLA class I-restricted, cytotoxic 

T lymphocytes capable of efficiently killing breast cancer 

cells [145]. Early clinical data and assays in some respects 

support the rationale for further investigations of SP17 

for tumour vaccines [157]. NY-ESO-1 expression is an 

independent good prognostic factor (p = 0.046) in TNBC 

and leads to a high humoural immune response associ-

ated with higher TILs [158, 159]. �erefore, the detection 

of NY-ESO-1 expression in TNBC might be useful for 

selecting patients who may benefit from cancer vaccina-

tion therapy.

Personalized peptide vaccination (PPV)

A novel regimen of personalized peptide vaccina-

tion, which was developed by Itoh K, has been used in 

a phase II trial [160], and selected vaccine antigens from 

a pool of 31 peptides showed boosted immune activa-

tion and a noted clinical response [160]. An intramus-

cular vaccination with TNF-related apoptosis-inducing 

ligand receptor TRAIL R2 or death receptor 5 (DR5) 

DNA, as a novel promising vaccine target, not only elic-

its proapoptotic antibodies and IFN-γ-producing T cells 

(p < 0.001) but also inhibits TNBC SUM159 growth by 

hDR5 immune serum (p = 0.02) [161]. GM-CSF, com-

bined with breast cancer stem cell- associated antigens 

and cytosine-phosphorothioate-guanine oligodeoxynu-

cleotides (CpG-ODNs) in spontaneous breast cancer 

TA2 mice, is efficacious not only in suppressing tumour 

growth (p = 0.035) but also in activating and accumulat-

ing  CD3+CD8+ T cells to kill tumour cells (p = 0.001) 

(P < 0.05) [162].

Antigen-presenting cell (APC) and DC-based tumour 

vaccination

APC and DC-based tumour vaccination have been deeply 

investigated and met with noted success in several malig-

nancies, including TNBC. O’Shaughnessy successfully 

gave 10 TNBC patients autologous monocyte-derived 

DC vaccinations intratumourally and subcutaneously 

during preop chemotherapy, which turned out to be 

safe [163]. Day-3 DCs fused with whole apoptotic breast 

cancer MDA-MB-231 cells could elicit effective specific 

anti-tumour T cell responses and might be developed as 

a prospective vaccine for BC immunotherapy [164]. Co-

cultured DCs isolated from healthy donors and trans-

duced by Runx2 with T cells also induce CTL and kill 

TNBC cells [165].

In summary, TNBC is regarded as the prime subtype 

of breast cancers and is amenable to immune check-

point inhibition. �ere are currently a number of selec-

tive inhibitors, such as immune checkpoint inhibitors, 

cytokines, and their antibodies, as mentioned above, 

and adoptive cell therapy and cancer vaccines have also 

gained much attention in the past decade. Recently, some 

of these targets have entered into initiated clinical trials 

of immunotherapeutic interventions of TNBC (Table 1), 

which may have a notably broad range of action, with 

consequent problems influencing the future applications 

in the treatment of TNBC.

E�cacy of immunotherapy and future perspectives 
in TNBC
Synergistic e�ect of immunotherapy and chemotherapy

Increasing number of studies suggest that the chemo-

therapeutic agents such as anthracyclines, Cisplatin and 

Carboplatin exert their anti-tumour activity not only by 

directing cytotoxic effects but also by changing the TIL 

distribution. Chemotherapy with anthracyclines also 

requires priming of IFN-γ producing  CD8+ T cells in 

mice [166].

�ere are several studies involving combinations 

among immune checkpoint blockade, anti-EGFR anti-

body, ACT, Cisplatin, Carboplatin, Cyclophosphamide, 

Doxisome, and Paclitaxel, and the efficacy of chemo-

therapy requires immune cells, such as  CD8+ cells, and 

cytokines, such as IFN-γ, genes, such as CD8α/β, IFN-γ, 

IL-1β and IL-17, and the IL-1β/IL-1R signalling path-

way [167]. �ere are several mechanistic reasons that 

this combination works. First, chemotherapy alters the 

immune gene signatures in TNBC and several metabolic 
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pathways are also upregulated in response to cytotoxic 

therapy [168]. Second, both chemotherapy and check-

point antibodies induce positive changes in the TME 

and improve the outcome of TNBC patients. High levels 

of IFN-γ, TIL counts, and the corresponding enhanced 

immune response are associated with better clinical 

responses to chemotherapy and a high proportion of pCR 

[11, 57, 167, 169]. Although some chemotherapies may 

harm lymphocytes, such as  CD4+,  CD20+ and  CD68+ 

cells, they decrease immunosuppressive  Foxp3+ Tregs, 

maintain or even increase  CD8+ effectors, and invert the 

CD4/CD8 ratio [50, 170]. Finally, chemotherapy-induced 

cells release ATP to activate the NLRP3 inflammasome 

in DCs by releasing IL-1β [166]. �erefore, these change-

able gene signatures in TNBC and the immune cells and 

cytokines of TME are maybe the reason why chemother-

apy improves immunotherapy; although, it could possibly 

harm lymphocytes.

On the other hand, TNBC responses to anti-PD-1 or 

anti-PD-L1 are modest (< 20%) and a high expression of 

PD-L1 is associated with an enhanced response, which 

demonstrates that immune checkpoint blockade in the 

neoadjuvant setting enhances the effects of the conven-

tional neoadjuvant chemotherapy alone [169]. Treat-

ment with anti-PD-1 during DC maturation enhances 

DC survival [171]. �e synergistic therapeutic activ-

ity of Doxisome (liposomal encapsulated formulation 

of Doxorubicin) with anti-PD1 is due to increased DCs 

infiltration in the TME, which internalizes tumour anti-

gens, induces T cell anti-tumour immune responses, and 

increases the therapy response in TNBC [172]. Chemo-

therapies, containing anti-EGFR/VEGF mAbs, also show 

significantly positive outcomes [68, 87, 88]. A small sam-

ple size trial shows that cyclophosphamide, thiotepa 

and carboplatin, as first-line regimens, combined with 

DC-CIK immunotherapy and followed by oral low dos-

age cyclophosphamide, as maintenance therapy, were 

effective and safe for metastatic TNBC exposure com-

pared to the previously used anthracyclines and taxane-

based adjuvant chemotherapy [173]. All these studies 

demonstrated that the association between the immune 

response and the clinical outcomes of TNBC probably 

correlate with the role of the immune cells in the admin-

istration of cytotoxic chemotherapy.

Antibody–drug conjugates (ADC)

Antibody–drug conjugates are a burgeoning new treat-

ment modality that utilizes monoclonal antibodies that 

recognize TAAs/TSAs and preferably internalizes when 

bound to the tumour cells to deliver highly potent cyto-

toxic agents [174]. �ere are at least 100 clinical trials 

involving ADCs in different types of cancers, including 

melanoma, gastrointestinal cancer, pancreatic cancer, 

colorectal cancer, ovarian cancer, cervical cancer, and 

endometrial cancer. (https ://clini caltr ials.gov/ct2/resul 

ts?cond=antib ody±drug±conju gate&term=&cntry 

=&state =&city=&dist=), and three ADCs (SGN-LIV1A, 

glembatumumab vedotin (CDX-011, CR011-vcMMAE) 

and Sacituzumab Govitecan (MMU-132, hRS7-SN-38) 

are carried out to treat TNBC among these clinical trials.

�e zinc transporter LIV-1 (SLC39A6) is over-

expressed in TNBC and is maintained after hormonal 

therapy in primary and metastatic sites. SGN-LIV1A is 

an anti-LIV-1 antibody linked to a potent microtube dis-

rupting agent monomethyl auristatin E (MMAE) via a 

cleavable dipeptide linker and displays specific cytotox-

icity both in  vitro and in  vivo against LIV-1 expressing 

cancer cells by internalizing and trafficking to the lyso-

some [175]. IMMU-132 is made from a humanized anti-

Trop-2 (expressed in TNBC) mAb (hRS7) conjugated 

with SN-38 (the active metabolite of irinotecan) and is 

well tolerated and induces early and durable responses 

in heavily pretreated patients with metastatic TNBC, 

which mediates early pro-apoptosis signalling events 

(p53 and p21 WAF1/Cip1) and leads to the cleavage of 

PARP [176, 177]. A combination of IMMU-132 plus 

PARP inhibitors, such as olaparib or talazoparib, pro-

duces significantly improved anti-tumour effects and 

delays tumour progression compared with monotherapy 

in mice bearing BRCA1/2-mutated TNBC [178]. Glyco-

protein NMB (gpNMB) is a novel type I transmembrane 

protein that is overexpressed in most breast cancers and 

promotes metastases by mediating intercellular adhe-

sion, promoting tissue repair, regulating cell growth 

and differentiation, and down-modulating anti-tumour 

T-cell responses. CDX-011 is composed of an anti-

gpNMB mAb and MMAE and has a clinically acceptable 

safety profile in its first study in breast cancer, showing 

12  weeks of PFS in 60% of TNBC patients treated with 

CDX-011 [179]. �e EMERGE trial also confirmed its 

enhanced activity in patients with gpNMB-overexpress-

ing TNBC [180]. More pivotal clinical trials concerning 

these promising ADCs are currently underway and more 

new ADCs, such as protein tyrosine kinase 7 (PTK7)-

targeted ADC, and novel potential candidates for ADC, 

such as STM108, are in development [37, 181].

Exosomes as potential multifunctional therapeutic agents 

in TNBC

Exosomes, known as small 30–100 nm sized extracellu-

lar vesicles, are present in many and perhaps all eukar-

yotic fluids regardless of whether they are normal or 

malignant, and are particles that encapsulate contents, 

such as microRNAs. Exosome messaging contributes to 

TME interactions, including immune suppression and 

immune escape, invasive growth, adhesion, angiogenesis, 

https://clinicaltrials.gov/ct2/results%3fcond%3dantibody%c2%b1drug%c2%b1conjugate%26term%3d%26cntry%3d%26state%3d%26city%3d%26dist%3d
https://clinicaltrials.gov/ct2/results%3fcond%3dantibody%c2%b1drug%c2%b1conjugate%26term%3d%26cntry%3d%26state%3d%26city%3d%26dist%3d
https://clinicaltrials.gov/ct2/results%3fcond%3dantibody%c2%b1drug%c2%b1conjugate%26term%3d%26cntry%3d%26state%3d%26city%3d%26dist%3d
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radiation resistance, chemo-resistance and genetic inter-

cellular exchange, and can manipulate tumour progres-

sion and metastatic cascade [182, 183]. Exosomes were 

recently reported to play dramatically positive roles in the 

clinic as targets, biomarkers or even therapeutic agents. 

Exosomes can be isolated from the blood of patients with 

various malignancies through various methods, including 

chemical binding, immunoaffinity capture and differen-

tial ultracentrifugation and serve as biomarkers for diag-

nosis and the monitoring of tumour progression [184]. 

�e innovation of cancer exome-based diagnostic rou-

tines would potentiate a route towards the development 

of personalized immunotherapies [144].

Finally, there is possibility of developing exosomes as 

therapeutic agents for TNBC. Moreover, some TNBC 

cells possessing exosome-mediated apoptosis-inducing 

activity have been investigated [185]. Exosomes that 

are released from either normal cells or breast cancer 

cells can either locally or systemically effect neighbour-

ing cells, travelling through the blood and/or lymphoid 

nodes from other tissues, which is probably regulated 

by extracellular exosomes [186, 187]. Antigens may 

increase immune stimulatory capacities when they are 

carried by exosomes, which could optimize the applica-

tion of CAR-T therapy and will improve the engineered 

exosomes, which are emerging as novel vehicles for 

cancer vaccine development by APC technology. Exo-

some-based vaccines and exosome pre-loaded miRNAs/

siRNAs/toxic drugs will be therapeutic options for TNBC 

[188, 189] (Fig.  2). Although exosome-secretion could 

eliminate some cytotoxic drugs such as doxorubicin and 

cisplatin, modified exosomes may serve as a novel drug 

delivery system offering the transportation of anti-cancer 

drugs with a lower immunogenicity and toxicity [190, 

191]. �erefore, the mechanism of this interaction and 

whether engineered exosomes could be used to inhibit 

TNBC progression requires further elucidation.

Conclusions
Overall, it is evident from these studies that immunother-

apy is emerging as a novel promising option for TNBC, 

and there is the possibility of developing exosomes as 

potential multifunctional therapeutic agents for TNBC. 

In the future, modern therapeutics needs hold a huge 

guarantee for the development of affordable, novel and 

safe antibodies, antibody–drug conjugates, adoptive cell 

therapies, and cancer vaccines. We expect that exosomes 

from the tumour microenvironment are likely to become 

the most effective vaccines for TNBC. With the promis-

ing outcomes of immunotherapies, several immunother-

apies are being evaluated in phase III trials, which means 

there would be more therapeutic choices, other than 

chemotherapy, for TNBC. Immunotherapeutic interven-

tions in TNBC possibly exert a noteworthy effect based 

on the ongoing clinical trials in the neoadjuvant setting, 

adjuvant setting and metastatic setting. �e synergistic 

effects and safety concerns of immunotherapy and chem-

otherapy need be addressed. As it moves towards phase 

III trials in this field, with a growing interest from phar-

maceutical agencies, the final treatment pattern of Tri-

ple Negative Breast Cancer will be determined by these 

ongoing clinical trials, which will lead to a more refined 

Fig. 2 Exosomes may serve as a therapeutic option for TNBC. The formation and secretion of exosomes and various types of cancer vaccine 

therapies and potential vaccine targets for TNBC
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immunotherapy. However, in-depth scientific investi-

gations are required to completely determine the safety 

and effectiveness of these immunotherapies and open 

new avenues for the better management of patients with 

TNBC.
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