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Glypican 3 (GPC3) is a heparan sulfate proteoglycan and cell surface oncofetal protein

which is highly expressed on a variety of pediatric solid embryonal tumors including

the majority of hepatoblastomas, Wilms tumors, rhabdoid tumors, certain germ cell

tumor subtypes, and a minority of rhabdomyosarcomas. Via both its core protein and

heparan sulfate side chains, GPC3 activates the canonical Wnt/β-catenin pathway, which

is frequently overexpressed in these malignancies. Loss of function mutations in GPC3

lead to Simpson-Golabi-Behmel Syndrome, an X-linked overgrowth condition with a

predisposition to GPC3-expressing cancers including hepatoblastoma and Wilms tumor.

There are several immunotherapeutic approaches to targeting GPC3, including vaccines,

monoclonal antibodies, antibody-drug conjugates, bispecific antibodies, cytolytic T

lymphocytes, and CAR T cells. These therapies offer a potentially novel means to

target these pediatric solid embryonal tumors. A key pediatric-specific consideration

of GPC3-targeted immunotherapeutics is that GPC3 can be physiologically expressed

in normal tissues during the first year of life, particularly in the liver and kidney. In

summary, this article reviews the current evidence for targeting childhood cancers with

GPC3-directed immunotherapies.

Keywords: glypican 3, hepatoblastoma (HB), germ cell tumors (GCT), Wilms tumor (WT), rhabdoid tumor,

rhabdomyosarcoma, neuroblastoma, immunotherapy

INTRODUCTION

Glypican 3 (GPC3) is an oncofetal protein which is enriched on the surface of several pediatric
solid embryonal tumors. This mini review evaluates the biological role of GPC3, synthesizes
the published expression data in pediatric solid embryonal tumors, and describes the current
immunotherapeutic approaches to target GPC3.

BIOLOGY

Glypicans are a highly conserved family of heparan sulfate proteolgycans which are attached to
the plasma membrane via a C-terminal glycosyl-phosphatidylinositol (GPI) anchor (1, 2). These
surface proteins interact with growth factors to influence morphogenesis and are predominantly
expressed during development (1, 2). Six glypicans (numbered 1–6) have been identified in humans
and broadly are subdivided into two groups with GPC1, GPC2, GPC4, and GPC6 are the orthologs
of Dally whereas GPC3 and GPC5 are the orthologs of Dlp in Drosophila melanogaster (1).
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GPC3 is located on Chromosome Xq26 and encodes GPC3,
also known as DGSX, GTR2-2, MXR7, OCI-5, SDYS, SGB, SGBS,
and SGBS1 (2–4). During development, GPC3 is expressed in
the placenta, fetal liver, fetal lung, and fetal kidney although it is
absent or only minimally expressed in most adult tissues (5). This
physiologic change may be mediated by suppression from DNA
methylation within the GPC3 promoter region (5–7).

GPC3 consists of an N-terminal domain that includes a
secretory signal peptide as well as a GPI anchored C-terminal
core protein containing two heparan sulfate chains (2–4). As with
other glypicans, the GPC3 core protein and heparan sulfate side
chains interact with a variety of regulatory proteins important in
cell growth and differentiation, including Wnt, Hedgehog, and
fibroblast growth factor (FGF) (8–12). In particular, GPC3 has
been shown to interact with Wnts and binds directly to Frizzled,
stimulating the formation of signaling complexes between these
proteins which activates the canonical Wnt/β-catenin signaling
pathway (8, 10). This signaling pathway is important for normal
development of the kidney and liver, and is frequently aberrantly
overexpressed in pediatric embryonal tumors (3, 8, 10, 13–17).

Simpson-Golabi-Behmel Syndrome (SGBS) is an X-linked
overgrowth condition similar to the more common Beckwith-
Wiedemann syndrome, and is associated with renal, hepatic,
skeletal, and cardiac anomalies as well as predisposition to
Wilms tumor, hepatoblastoma, and neuroblastoma (2, 18). SGBS
is caused by constitutional microdeletions or truncating point
mutations in GPC3 which are predicted to result in a loss
of function (2, 7, 18–21). Loss of GPC3 binding to insulin
like growth factor 2 (IGF-2) was originally understood to
cause this overgrowth phenotype but a series of subsequent
papers demonstrates that this instead due, at least in part, to
hyperactivation of Hedgehog signaling (20–24).

PEDIATRIC TUMORS

Pediatric malignancies derived from tissues that express GPC3
during development, such as the liver or kidney, frequently
demonstrate upregulation of GPC3 which is likely important
to both malignant transformation and tumorigenesis in these
childhood cancers. GPC3 drives cell growth and inhibits
differentiation via alterations in Wnt/β-catenin, Hedgehog,
and FGF signaling which are often aberrantly expressed in
pediatric embryonal tumors. In addition, alternative pathways
not involved in physiologic GPC3 function, such as the Yap-
Hippo pathway as has been shown in adult liver tumors, may also
contribute to GPC3-mediated pediatric tumor development (25,
26). Finally, GPC3 has been reported to increase expression of
the multi-drug resistance associated protein and therefore GPC3
in tumors may contribute to chemoresistance and treatment
failure (27–29).

Abbreviations: CTL, Cytolytic T Lymphocytes; FGF, Fibroblast growth factor;

GPC, Glypican; GPI, Glycosyl-phosphatidylinositol; HCC, Hepatocellular

carcinoma; IGF, Insulin-like growth factor; IHC, Immunohistochemistry;

NK, Natural killer; OCCC, Ovarian clear cell carcinomas; SGBS,

Simpson-Golabi-Behmel Syndrome.

It is not fully understood how these childhood cancers are
able to re-induce GPC3 expression. A study of the GPC3
promoter methylation in primary pediatric embryonal tumors
revealed gain of methylation mainly in boys with Wilms tumor
and loss of methylation exclusively in girls with neuroblastoma
(6). Increased tumor GPC3 expression was more commonly
reported in a study of women than men with hepatocellular
carcinoma (HCC), the most common adult liver tumor, although
this has not been reproduced in subsequent studies (5).
Thus, regulation of this X-linked gene may be not only age
and tissue-specific but also gender-dependent and there are
likely multiple means by which GPC3 becomes aberrantly
deregulated in cancer. Nevertheless, across multiple studies, the
extent of immunohistochemical (IHC) expression of GPC3 is
relatively consistent for any given histology of embryonal tumor
(Figure 1), each of which is to be reviewed in detail below.

Hepatoblastoma
There are a variety of studies that demonstrate that GPC3 is
nearly universally expressed on most hepatoblastomas although
may be absent in less typical subtypes (e.g., teratoid) or
portions of hepatoblastoma with mesenchymal differentiation
(30–36). GPC3 was the second most highly transcriptionally
overexpressed gene in a study of 48 hepatoblastoma tumors
compared to normal liver (37). Although highly expressed,
multiple studies have found that soluble GPC3 is an inferior
serum biomarker of hepatoblastoma response compared with
alpha fetoprotein, the current standard of care (37, 38).
Combining the results from 5 studies evaluating GPC3
expression via IHC in hepatoblastoma found that 131/135
(97%) cases demonstrate GPC3 expression, as shown in
Figure 1 (31–35).

Germ Cell Tumors
Several studies of extragonadal germ cell tumors demonstrate
that yolk sac tumors and choriocarcionomas virtually always
express GPC3 via IHC (Figure 1) (35, 39–41). In fact, GPC3
expression has been used to distinguish ovarian germ cell tumors
from ovarian carcinomas (39). Other germ cell tumors, such
as teratomas, embryonal carcinomas, and germinomas rarely
express GPC3 (40, 41).

Wilms Tumors
Elevated transcriptional and proteomic expression of GPC3 is
evident in a significant portion of Wilms tumors, as compared
with adult kidney tumors and normal kidney tissue (36, 42,
43). Combining the results from 3 studies evaluating GPC3
expression in Wilms tumor revealed that 50/87 (58%) exhibit
GPC3 expression, as shown in Figure 1 (34, 35, 43). In addition
to constitutional mutations seen in patients with SGBS, somatic
tumor mutations in GPC3 have even been identified in some
cases of Wilms tumors (44).

Rhabdoid Tumors
A series of 3 studies of extracranial malignant rhabdoid
tumors demonstrate that 22/34 (65%) of these rare and highly
aggressive tumors express GPC3 (34, 45, 46). Interestingly, other
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FIGURE 1 | GPC3 immunohistochemistry in pediatric solid embryonal tumors. Bubble area is proportionate to the number of tumors evaluated in a particular study.

extrarenal INI1 negative solid tumors except for undifferentiated
sarcomas rarely express GPC3 (45). Given the challenging
diagnostic overlap between some of these INI1 negative
tumors, particularly extrarenal malignant rhabdoid tumor and
epithelioid sarcoma, GPC3 may not only be a reasonable
therapeutic target but may be helpful in improving diagnostic
accuracy (45).

Rhabdomyosarcomas
A significant minority of rhabdomyosarcomas express GPC3,
specifically 107/351 (31%) cases were positive in 3 different
studies including both embryonal and alveolar subtypes (11,
34, 35, 47). Other pediatric sarcomas often do not express
GPC3 (11, 47). Of all the glypicans, GPC3 exhibits the
greatest homology with glypican 5 (GPC5), which is located
on 13q32, a region of frequent genomic amplification in
rhabdomyosarcomas and specifically associated with the PAX7-
FOXO1 fusion (2, 11). Specifically in rhabdomyosarcomas, GPC5
has been specifically shown to potently activate Hedgehog
signaling, which may be a result of its increased numbers
of highly sulfated glycosaminoglan side chains compared with
GPC3 (11, 48).

Neuroblastomas
There is mixed evidence regarding the role of GPC3 in
neuroblastoma, with some studies showing increased expression
in patients with 4S disease but most revealing absent expression
of GPC3 in nearly all cases (34, 35, 42, 49, 50). The
related glypican 2 (GPC2), however, has been shown to be

an oncoprotein and immunotherapeutic target in high risk
neuroblastoma (51, 52).

TREATMENTS

The development of GPC3-directed targeted therapies was
stimulated by research into HCC where GPC3 was not only
present, but also noted to be a prognostic biomarker in adults
(4, 5, 12, 53, 54). These therapies have included vaccines,
monoclonal antibodies, antibody-drug conjugates, bispecific
antibodies, cytolytic T lymphocytes (CTL), and chimeric antigen
receptors, which are described in more detail below.

Vaccines
From 2007 to 2009, a nonrandomized, open-label, phase I
clinical trial with dose escalation of an HLA-A∗24:02–restricted
GPC3298−306 peptide vaccine enrolled 33 Japanese adults with
advanced HCC (UMIN 000001395) (12, 55). The vaccine elicited
a GPC3-specific CTL response in 30 patients, notably with
1 partial response and 19 with stable disease 2 months after
initiation of treatment (12, 55). Following this an open label,
single arm, phase II study was performed in advanced HCC
patients in Japan using theHLA-A∗24:02–restrictedGPC3298−306

or HLA-A2-restricted GPC3144−152 peptide vaccine (UMIN
000002614) (12, 56). Although this study did not reach its
primary endpoint, the 1 and 2 year event free survival was
lower for the patients who underwent surgery alone as compared
with those who received surgery plus vaccination (12, 56).
This was statistically significant in a subgroup analysis of
patients with GPC3 positive HCC (12, 56). These HLA-A∗24:02
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HLA-A2 GPC3-directed peptide vaccines were also used to
treat Japanese patients with chemoresistant ovarian clear cell
carcinoma (OCCC) (UMIN 000003696) (12, 57). This vaccine
elicited a GPC3-specific CTL response in 15 of 24 patients who
had peripheral bloodmononuclear cells collected 3 times ormore
and 3 patients demonstrated a partial response (12, 57). Finally,
a pediatric phase I study using these GPC3 directed vaccines
was conducted in Japan and was found to be safe with a 2
month disease control rate of 66% (UMIN 000006357) (12, 58).
A GPC3-specific CTL response was identified in 39% of patients
in this study, the majority of whom were in remission and were
diagnosed with hepatoblastoma (12, 58). To date, this is the only
completed GPC3-directed immunotherapeutic clinical trial in
pediatrics, as shown in Table 1.

Monoclonal Antibodies
Codrituzumab (RO5137382; RG7686; GC33) is a recombinant
humanized antibody targeting GPC3 which interacts with
CD16/FcγRIIIa on natural killer (NK) cells to cause antibody-
dependent cytotoxicity in a GPC3-dependent manner (59–63).
This drug has been studied in a series of 4 clinical trials in
adults with HCC. For the first-in-man study in the US, 20
patients with advanced HCC were enrolled on a dose-escalation
study of codrituzumab and a maximum tolerated dose was
not reached as there were no dose limiting toxicities up to
the highest planned dose level of 20 mg/kg weekly (61). Time
to progression was statistically significantly higher in those
HCC patients with higher GPC3 expression (61). A subsequent
Japanese phase I study in advanced HCC patients revealed that
7/13 (54%) patients had stable disease, 3 of whom had prolonged
(>5 month) disease stabilization (JapicCTI-101255) (62). In a
phase Ib study in combination with sorafenib (NCT00976170),
codrituzumab was not found to provide clinical benefit although
this study demonstrated that 124I radiolabeled codrituzumab was
useful to monitor antibody uptake in the tumor and persistence
of GPC3 expression after treatment (60). In a randomized
placebo controlled phase II study (NCT01507168), codrituzumab
similarly did not show a clinical benefit in advanced HCC
patients, however combined elevation of tumor GPC3 and
CD16/FcγRIIIa on NK cells correlated with survival (63–65).
In HCC, expression of GPC3 has been shown to be a poor
prognostic feature (66). Thus, even in these highest risk HCC
patients with GPC3 expression, codrituzumab may provide
clinical benefit, although monotherapy alone appears to be
inadequate for HCC. Given the effectiveness of checkpoint
inhibition with HCC, a combination of codrituzumab with the
PD-L1 inhibitor atezolizumab is currently being evaluated in
a Japanese phase I study of adult HCC patients (JapicCTI-
163325). To date, codrituzumab is the only GPC3-directed
immunotherapy to have a completed a clinical trial in the
United States, as shown in Table 1.

The Ho Lab at the National Cancer Institute (Washington,
DC, USA) has generated several additional GPC3-directed
antibodies which have been extensively studied preclinically,
including HN3, YP7, and HS20. HN3 is a GPC3-directed
antibody that recognizes a cryptic Wnt binding domain and
causes cell cycle arrest in HCC models via inactivation of Yap

signaling (67). YP7 is another high affinity monoclonal antibody
directed to the cell surface bound GPC3 and exhibited significant
growth inhibition in HCC xenografts (68). HS20 is a human
monoclonal antibody that recognizes the interaction site between
the C-terminal GPC3 core fragment and heparan sulfate side
chains in order to disrupt their interactions with Wnt (13, 69).
This antibody was found to be an effective inhibitor of Wnt/β-
catenin signaling in vitro, effectively inhibited HCC xenograft
growth in vivo, and further was shown to impair cell migration
and motility (13, 70).

Antibody-Drug Conjugates
Since GPC3 is efficiently internalized, it also is a good candidate
for conjugation of antibodies to toxins (71). As a result, HN3
and YP7 were conjugated to the Pseudomonas endotoxin A and
shown to be effective at reducing growth of xenografts in vivo,
although notably the HN3-based drug conjugate, which is able
to interfere with Wnt/β-catenin signaling, was more effective
preclinically (71). There was significant in vivo toxicity so key
immunogenic epitopes were removed from this antibody-drug
conjugate, termed HN3-mPE24, in order to make it clinically
viable (72).

Bispecific Antibodies
ERY974 is a bispecific antibody which targets both GPC3
(it was notably generated from codrituzumab) and CD3 and
demonstrates in vivo antitumor efficacy against several GPC3
positive tumors (73). Intriguingly, ERY974 was effective even
against tumors with nonimmunogenic features, by causing
inflammation in the local tumor microenvironment (73). This
is an important observation as even tumors which are not
traditionally understood to be immunologically targetable on the
basis of increased neoantigen expression could potentially be
treated using this approach. More recently, Sano and colleagues
presented results of a follow-up study which demonstrated
synergy between ERY974 with Paclitaxel and Cisplatin (74).
Given that Cisplatin is already an effective treatment modality for
the majority of the GPC3 expressing pediatric solid embryonal
tumors, this represents a promising opportunity for future
combination studies. As shown in Table 1, an adult multicenter
international phase I clinical trial of ERY974 is currently open in
the United States and Europe (NCT02748837) and has planned
expansion cohorts for stomach, esophageal, and other GPC3-
expressing cancers.

Cytolytic T Lymphocytes
During the aforementioned peptide vaccination clinical trials,
as well as a clinical study of HCC patients (UMIN 000005093),
multiple peptide specific CTL clones were generated from
peripheral blood and tumor tissue (12). These third party T
cells are actively being developed for adoptive immune cell
treatment of GPC3-positive tumors, as has been effectively
utilized in the treatment of EBV associated post-transplantation
lymphomas (12, 75, 76).
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TABLE 1 | GPC3-targeted cancer immunotherapy trials.

Therapy name

(Drug type)

Phase Trial number Eligibility Status Sponsor Country

GPC3 Peptide

Vaccine

I UMIN 000001395 Adult HCC Complete National Cancer Center

Hospital East

Japan

II UMIN 000002614 Adult HCC Complete National Cancer Center

Hospital East

Japan

II UMIN 000003696 Adult OCCC Complete National Cancer Center

Hospital East

Japan

I UMIN 000006357 Pediatric GPC3+

Tumors

Complete National Cancer Center

Hospital East

Japan

Codrituzumab

(Monoclonal

Antibody)

I NCT 00746317 Adult HCC Complete Chugai Pharmaceutical USA

I JapicCTI 101255 Adult HCC Complete Chugai Pharmaceutical Japan

I* NCT 00976170 Adult HCC Complete Chugai Pharmaceutical USA

II NCT 01507168 Adult HCC Complete Hoffman-La Roche USA

I** JapicCTI 163325 Adult HCC Open Chugai Pharmaceutical Japan

ERY974 (Bispecific

Antibody)

I NCT 02748837 Adult HCC Open Chugai Pharmaceutical Multi-National

GAP T cells (CAR

T Cell)

I NCT 02932956 Pediatric GPC3+

Liver Tumors

Open Baylor College of Medicine USA

GLYCAR T cells

(CAR T Cell)

I NCT 02905188 Adult HCC Open Baylor College of Medicine USA

*Combination with Sorafenib.

**Combination with Atezolizumab.

Bold text refers to pediatric studies.

Chimeric Antigen Receptors
The Heczey Lab at Baylor College of Medicine (Houston, TX,
United States) has generated several GPC3-targeted chimeric
antigen receptor (CAR) constructs (77). Notably all of these
GPC3/CARs rendered T cells highly cytotoxic to GPC3-positive
HCC, hepatoblastoma, and malignant rhabdoid tumor cell lines
in vitro as well as HCC and malignant rhabdoid tumors in vivo
(77). The GPC3 directed CAR with the 4-1BB Zeta chain was
the most effective at inducing T cell expansion and proliferation
(77). As a result, two clinical trials are currently in development,
GLYCAR T cells (NCT02905188) for adults with HCC and
GAP T cells (NCT02932956) for children aged 1–21 with GPC3
positive liver tumors (Table 1).

CHALLENGES

Although GPC3 is expressed in a wide variety of pediatric
solid tumors, it is also expressed physiologically in infants,
predominantly in the liver and kidney, with detectable serum
levels during the first year of life (35). Thus, GPC3 targeted
therapies could cause significant toxicity not seen in adults
thus far due to persistent physiologic expression of GPC3
in the liver and kidney. If indeed clinical trials in pediatrics
reveal immunogenic targeting of normal tissues, strategies to
limit toxicity will need to be employed, such as limiting
age to children >1 year of age as is being done in the
GAP T cell study (NCT02932956). Given the generalized
expression of GPC3 in the fetus and placenta, GPC3 based
immunotherapies are likely to be teratogenic. Care must be

made when counseling and treating women of childbearing age
with GPC3-based immunotherapies. Finally, immunotherapies
targeting these cancers need to be designed such that they
preferntially target the core C-terminal GPC3 protein, its
heparan sulfate side chains, or their interactome rather
than the soluble N-terminal GPC3. In fact, soluble GPC3
expression may be useful as a biomarker of response to
GPC3 therapies.

CONCLUSIONS

The heparan sulfate proteoglycan GPC3 is an attractive target for
drug development as it is highly upregulated in HCC and several
pediatric solid embryonal tumors and is responsible for driving
key growth and developmental pathways which are currently not
effectively targeted using our existing therapies (2, 12, 78). At
this point, there is very limited clinical experience with GPC3-
directed immunotherapeutics in pediatric oncology: A GPC3-
directed vaccine study was conducted in Japan for children
with solid tumors expressing GPC3 (UMIN 000006357) and in
December 2018, the GAP CAR T cell study (NCT02932956)
opened for children and young adults with GPC3-expressing liver
tumors (12, 58). Vaccines, monoclonal antibodies, antibody-drug
conjugates, bispecific antibodies, CTLs, and CAR T cell based
therapies are all emerging treatment options which may provide
enhanced ability to target GPC3 in pediatric solid embryonal
tumors. As ongoing clinical trials in adults demonstrate which
of these GPC3-based modalities are safe and beneficial, it
is imperative that we rigorously evaluate the role of these

Frontiers in Oncology | www.frontiersin.org 5 February 2019 | Volume 9 | Article 108

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Ortiz et al. GPC3 in Pediatric Solid Tumors

potentially life-saving therapies in children and adolescents with
GPC3-driven tumors.
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