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Advances clarifying the genetics and function of the immune system within the

central nervous system (CNS) and brain tumor microenvironment have led to

increasing momentum and number of clinical trials using immunotherapy for

primary brain tumors. While neurological complications of immunotherapy in

extra-cranial malignancies is well described, the CNS toxicit ies of

immunotherapy in patients with primary brain tumors with their own unique

physiology and challenges are burgeoning. This review highlights the emerging

and unique CNS complications associated with immunotherapy including

checkpoint inhibitors, oncolytic viruses, adoptive cell transfer/chimeric antigen

receptor (CAR) T cell and vaccines for primary brain tumors, as well as reviews

modalities that have been currently employed or are undergoing investigation for

treatment of such toxicities.
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Introduction

Primary brain tumors are tumors that originate within the brain, spinal cord, and spinal

fluid. CNS tumors are relatively uncommon in the United States with 25,000 cases annually

and represents 1.3% of all new cancer cases (1). Primary brain tumors are classified by

histopathologic criteria and immunohistochemical (IHC) data according to the World

Health Organization (WHO) Classification of Tumors of the CNS published in 2021 (2).

CNS tumors are a diverse constellation of over one hundred different histological subtypes

with distinct epidemiology, clinical characteristics, prognosis, and treatments (3). While

more than half of all primary CNS tumors are benign, they can cause significant morbidity,

and the more aggressive tumors have high mortality often with limited effective treatment

options in the recurrent setting. Glioblastoma Multiforme (GBM) is the most common

primary malignant brain tumor in adults and despite aggressive treatment with surgery,

radiation (RT) and chemotherapy, prognosis remains poor with limited effective treatment

options in the recurrent setting with an expected five-year survival rate of less than 5% (2).
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Treatment of recurrent GBM and other high grade gliomas

(HGG) outside of clinical trials often involves re-resection, re-

irradiation with either short course fractionated radiation or single

fraction stereotactic radiosurgery, temozolomide re-challenge,

lomustine or bevacizumab (4). There have been multiple clinical

trials combining therapeutic agents, but thus far, have shown no

improvement in outcome (4). As such, there is an urgent need for

novel therapeutic agents and combination regimens for treatment of

recurrent HGG.

Given the robust response to immunotherapy observed in other

cancer types, immunotherapy is an appealing treatment option for

recurrent malignant CNS tumors including HGG and GBM. The

emergence of immune checkpoint inhibitors (ICIs) for solid tumors

and chimeric antigen receptor T (CAR T) cells for liquid tumors has

led to substantial tumor response and improved survival multiple

extra-cranial cancer types (5–7) and is increasingly used in patients

with secondary brain metastases (8). However, neurologic toxicities

associated with immunotherapy can limit the potential anti-tumor

effects, can involve the entire neuroaxis leading to permanent

discontinuation of therapy and can cause significant morbidity and

even mortality (9). Diagnosing CNS toxicity in patients with primary

brain tumors have unique and distinct challenges given the

overlapping presentations of immune-related toxicity, tumor

pseudoprogression and true tumor progression. Many symptoms

such as fatigue, confusion, and headache are non-specific and

difficult to classify into a specific neurologic syndrome and are

often underrecognized and underreported and has not been studied

systemically in patients with primary brain tumors. As a result, there

is substantial variation in reporting of adverse events among

publications and there may be a bias towards reporting severe

events in the literature. Given the emergence of a substantial

number of immunotherapy trials for primary CNS tumors, there is

an urgent need to further understand the spectrum of immune-

related neurological CNS toxicity that can occur and optimally

manage these immune related adverse events. This review

highlights the emerging and unique CNS complications associated

with immunotherapy including checkpoint inhibitors, oncolytic

viruses, adoptive cell transfer/chimeric antigen receptor (CAR) T

cell and vaccines for primary brain tumors.
Methods

Objective

To evaluate the CNS complications associated with

immunotherapy for primary brain tumors including checkpoint

inhibitors, oncolytic viruses, adoptive cell transfer/chimeric antigen

receptor (CAR) T cell and vaccines; and to prepare a review on the

available evidence.
Criteria for considering studies for
this review

Types of studies: Randomized controlled trials (RCTs), quasi‐

randomized trials, non‐randomized studies, and controlled before‐
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and‐after studies that include relevant concurrent comparison groups.

We do not expect to find cluster‐randomized trials. In view of the

limited number of trials in primary brain tumors, we included case‐

control studies, studies without a control group, case series and case

reports. Studies included a minimum of 1 participant.

Types of participants: People aged 6 months of age and older

diagnosed with a primary brain tumor according to 2021 WHO

Classification of Tumors of the Central Nervous System. Participants

with new diagnosis, first and subsequent recurrences were included.

Types of interventions: Any active immunotherapy treatment

(checkpoint inhibitors, oncolytic viruses, adoptive cell transfer/CAR T

cell and vaccines) or treatment combination compared with another

active treatment (surgical resection, radiation, chemotherapy).
Primary outcomes

Severe adverse events (grade 3 or higher according to a

standardized measurement tool, such as the Common Terminology

Criteria for Adverse Events (CTCAE) v 5.0)

Incidence of pseudoprogression (according to a standardized

measurement tool, such as Response Assessment in Neuro-

Oncology (RANO) or Immunotherapy Response Assessment in

Neuro-Oncology (iRANO)).
Search methods for identification of studies

Electronic searches: For evidence on the safety and incidence of

serious adverse events in the CNS, we will prepare the search

strategies and conduct the searches of the following databases from

1990 onwards. We will use Cochrane Central Register of Controlled

Trials (CENTRAL), in the Cochrane Library; MEDLINE Ovid (from

1990 onwards); Embase Ovid (from 1990 onwards), and PubMed

(from 1990 onwards).
Adoptive cell transfer/CAR-T cell

Adoptive cell transfer or T-cell therapy is a form of cancer

immunotherapy involving the autologous or allogeneic transplant

of tumor-infiltrating lymphocytes (TILs) or genetically modified T

cells expressing novel T-cell receptors or chimeric antigen receptors

(CAR-T cell therapy). Adoptive cell transfer has shown remarkable

success in the treatment of hematologic malignancies and is a

promising therapy for the treatment of other solid malignancies,

including brain tumors. CAR-T cells are synthetically engineered cells

that express a chimeric antigen receptor against specific tumor

antigens without major histocompatibility complex (MHC)

molecules or antigen presenting cells and then can individually

activate multiple immune cells and secrete cytokines to promote

effector function and cell trafficking allowing self-amplification and

improved T cell response (10, 11). Although the first CAR-T cells

were developed in 1987, progress and discoveries in their anti-tumor

function have led to several generations of CAR T engineering now

with fourth generation CAR T compositions termed ‘armored CAR’

or TRUCKs (T-cells Redirected towards Universal Cytokine Killing).
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TRUCKs are specific armored CAR T cells that modulate the tumor

microenvironment by secreting cytokines to interfere with the

immunosuppressive cytokine profile to increase anti-tumor activity

of the CAR T cells and tissue-resident immune cells (12). CAR T cells

have been shown to be highly efficacious against chronic

lymphoblastic leukemia (CLL), acute lymphoblastic leukemia (ALL)

and diffuse large B cell lymphoma (DLBCL) leading to FDA approval

of two CD19 antigen-specific CAR T cell products, tisagenlecleucel

(CTL019, Kymriah©) and axicabtagene ciloleucel (Yescarta©), for the

treatment of refractory B cell hematologic malignancies (13). Given

the promising results in extracranial malignancies, the use of adoptive

cell transfer is emerging as a potential therapeutic option for patients

with brain cancers.

Single antigen CAR T cell therapies are under investigation in

malignant brain tumors, including glioblastoma multiforme (GBM),

the most common mal ignant bra in tumor in adul t s ,

medulloblastoma, ependymoma and diffuse intrinsic pontine glioma

in pediatric patients. Several molecules have been identified as

potential tumor antigens for CAR T cell therapy targeting primary

brain tumors through immunohistochemical (IHC) analysis

including EGFR/EGFRvIII, IL13Ra2, HER2 and B7-H3 (14).

Ideally, tumor antigen targets should be expressed on all cancer

cells within a primary tumor, but minimally expressed on normal

tissues to avoid killing of normal cells by the CAR T cells. Non-

specific targeting can lead to toxicity and cytokine release syndrome

(CRS), which is a potentially significant and well described side effect

of CAR T cell therapy.

Neurotoxicity is one of the most common and potentially fatal

complications of CAR T cell therapy with an incidence ranging from

2% to as high as 60%–70% (7, 15, 16). Symptoms range from mild

delirium, language dysfunction to seizures, coma, and fulminant

intracerebral edema (17, 18). This syndrome of neurological adverse

events is designated “immune effector cell-associated neurotoxicity

syndrome” (ICANS) by the American society of Transplantation and

Cellular Therapy. The variability in incidence noted in hematologic

malignancies is attributed to the incidence of CRS, type of

malignancy, properties of individual CAR constructs and

differences in grading schemes. Unlike hematologic malignancies in

which there is expression of a single tumor antigen, solid tumors have

significant antigen heterogeneity and many antigens associated with

solid tumors are also expressed on healthy tissue, increasing the risk

of off-target toxicity. In solid tumor malignancies, CRS is less well

defined and incidence of ICANS is not well reported with setback in

June of 2021 for the use of CAR T in solid tumors after Tmunity

Therapeutics halted its phase 1 clinical trial of prostate-specific

membrane antigen (PSMA)-directed, TGF- b sensitive CAR T cells

for prostate cancer after two fatalities from ICANS.

The presence of baseline neurological disorders or magnetic

radiographic imaging (MRI) changes is reported to increase the risk

of ICANS and has led to a cautious use of CAR T in patients with

known CNS involvement of leukemia or lymphoma (19, 20) and

presents potential additional risk factor in patients with primary brain

tumors, whom at baseline often have neurological deficits and

distinguishing between ICANS and tumor progression, tumor

pseudoprogression or non-specific neurological symptoms such as

headache, confusion, fatigue and altered mental status presents a
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profile in patients with primary brain tumors, neurological symptoms

related to CAR T cell mediated inflammation in sites of CNS disease

has been termed by Majzner et al., 2022 as ‘tumor inflammation-

associated neurotoxicity’ (TIAN). They describe two categories if

TIAN: the first category of TIAN relates to increased intracranial

pressure (ICP) intracranial space constraints secondary to

inflammation-induced tissue edema and/or obstruction of CSF flow;

the second category of TIAN relates to primary dysfunction of brain

or spinal cord structures affected by inflammation manifested as

transient worsening or recrudescence of pre-existing symptoms. The

authors propose TIAN as an emerging classification of ICANS for

tumors in the CNS (21). Adopting this terminology, in this review we

will refer to CNS-associated CAR-T neurological complications

as TIAN.

In 2015, Brown et al. performed a first in human pilot study

assessing the feasibility, safety, and toxicity of intracranial

administration of first-generation autologous interleukin-13

receptor subunit alpha-2 (IL13Ra2)-specific CAR CD8+ T cell

clones for the treatment of recurrent high-grade glioma (WHO

grade III and IV) following tumor resection. The IL13 Ra2 is a

monomeric receptor for interleukin 13 that is present in up to 60%

of GBMs and is associated with the activation of proinflammatory and

immune pathways (22). Overexpression of IL13 Ra2 activates the

phosphatidylinositol-3 kinase/AKT/mammalian target of rapamycin

pathway, leading to poor prognosis and increased tumor invasiveness

in GBM (23). Intracranial delivery of the IL13-zetakine+ CTL clones

into the resection cavity of three patients with recurrent high-grade

glioma (HGG) via Rickham catheter placement was well-tolerated

with all three patients reporting grade 3 headaches and one patient

with shuffling gait and tongue deviation attributed to neurologic

toxicity from CAR T requiring hospital admission and treatment with

single infusion of 10mg intravenous dexamethasone. All three

patients were noted to have increase in gadolinium contrast

enhancement on MRI immediately following CAR T administration

and 2/3 had decreased contrast enhancement on follow-up MRI after

a few months (24). This established the feasibility and safety of locally

delivered autologous CAR T cells without development of serious

treatment-associated side effects.

Following this pilot trial, Brown and colleagues 2016 modified the

IL13Ra2-targeted CAR T cells by incorporating 4-1BB (CD137) co-

stimulation and a mutated IgG4-Fc linker to improve antitumor

potency, improve T-cell persistence and reduce off-target Fc-receptor

interactions. They report on a single patient with multifocal recurrent

glioblastoma with leptomeningeal disease with five intracranial

lesions and spinal cord drop metastases that showed evidence of a

complete response according to Response Assessment in Neuro-

Oncology criteria after 16 cycles of treatment with six intracavitary

infusions and 10 intraventricular infusions. Infusions were not

associated with Grade 3 or higher toxicity. Grade 1 and 2 events

were observed within 72 hours after CAR T cell infusions including

headaches, generalized fatigue, myalgia, and olfactory auras (25).

However, the use of concurrent dexamethasone dosed upwards of

4mg daily may have influenced the reported safety profile. This study

further corroborated the safety and feasibility of intracavitary and

intraventricular delivery routes.
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Epidermal growth factor receptor variant III (EGFRvIII) targeting

CAR T cells are also being tested in patients with recurrent GBM.

EGFRvIII results from an in-frame deletion of exons 2–7 of the EGFR

gene and is the most common mutation of this receptor that occurs in

upwards of 30% of GBM patients (26). In a pivotal phase 1 clinical

trial by O’Rourke et al., 2017 (16), the most common CNS neurologic

adverse events included dysgeusia, headaches, cranial neuropathies

(facial and hypoglossal nerve weakness), lethargy, dysarthria, and

dizziness. Three participants experienced clinically significant

neurologic adverse events associated with EGFRvIII CAR T

infusion with grade 4 cerebral edema, grade 3 seizure and altered

mental status and grade 3 intracerebral hemorrhage. For intracerebral

edema and seizure, siltuxumab (anti-IL-6) and high dose steroids

were administered for treatment to treat the hypothesized intracranial

cytokine release (27). Likewise, Goff et al., 2019 evaluated the use of

IV administration of EGFRvIII CAR T therapy in 18 patients with

recurrent glioblastoma. No neurological DLTs were noted, but

evidence of grade 2 neurologic symptoms or suspected seizure

activity was observed in 10/18 patients resulting in corticosteroid

adjustment in four and antiseizure medication adjustment in three

participants (28).

B7-H3 (CD276) is a type I transmembrane protein that plays a

critical role in the activation or inhibition of T-cell function, is highly

overexpressed in a wide range of cancers and correlates with negative

clinical outcomes and poor prognosis. Tang et al., 2021 noted

transient disease regression of a single patient with recurrent GBM

after administration of B7-H3 targeted CAR-T (29). They reported

grade 2 headaches associated with intracavitary administration of

CAR-T.

Human epidermal growth factor 2 (HER2) is a transmembrane

glycoprotein that is expressed in several CNS tumors including GBM,

ependymoma, and medulloblastoma, but no expressed in normal

brain tissue, making it an appealing target for immunotherapy given

on-target specificity with limited off-target potential toxicity (30).

Ahmed et al., 2017 evaluated the safety and feasibility and the anti-

glioblastoma activity of IV HER2 CAR T therapy in recurrent

pediatric and adult HER2-positive glioblastoma. 17 patients were

evaluated (10 adult patients and 7 pediatric patients with rage 10-69

years). The authors report that infusions were well tolerated and no

neurologic DLTs observed. No grade 3 or 4 neurological toxicities

were reported and only three grade 2 adverse neurological events

attributed to CAR T infusion were observed with two grade 2 seizures

and one grade 2 headache (31). Use of corticosteroids and/or

antiseizure medications was not clarified.

The most recent study to date by Majzner et al., 2022 is a phase 1

dose-escalation trial of autologous GD2-CAR T cells in children and

young adults with pontine and spinal cord H3K27-mutated diffuse

midline gliomas (21). This study evaluated the safety and tolerability

and identified the recommended phase II dose of engineered

disialoganglioside GD-2 CAR T cell infusion. They describe four

patients who underwent first-in-human treatment with intravenous

and intraventricular GD-2 CAR T cells. There were significant

associated and anticipated neurological toxicity termed TIAN

including cranial nerve symptoms, elevated ICP with hemiplegia,

extensor posturing, and clinically significant cerebral edema,

headache, hydrocephalus, and transient worsening of baseline
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and requires CSF drainage from Ommaya reservoir followed by

administration of anakinra (IL-1R antagonist) and corticosteroids.

Transient worsening of baseline neurological symptoms was treated

with anakinra, tocilizumab and/or corticosteroids with improvement

back to baseline neurological examination (21). Given the location of

diffuse midline gliomas involvement in the brainstem, anticipated

development of neurological symptoms with a predetermined

treatment algorithm was conducted and included placement of

Ommaya reservoir to monitor ICP, removal of CSF via Ommaya

reservoir, hypertonic saline, anti-cytokine agents (anakinra and

tocilizumab) and corticosteroids. The prompt recognition and early

treatment to mitigate neurologic toxicity enabled the safe and feasible

delivery of intravenous and intraventricular administration of GD-2

CAR T therapy. This study highlighted the main categories of TIAN

as it related to ICP and inflammation-induced cerebral edema and

transient recrudescence of baseline neurological symptoms and

underscored the need for clear and timely management algorithms

to mitigate potentially fatal treatment associated toxicity.

In hematologic malignancies, treatment of CRS often targets

elevated cytokines (most elevated cytokines typically seen are IL-10,

IL-6 and INF- g) and is managed using corticosteroids interleukin-6

blockade (32, 33). IL-6 blockade via tocilizumab or siltuximab have

shown dramatic reversal of severe CRS in patients treated with

CART-19 and is actively being studied in other therapies (34, 35).

However, there is some controversy regarding the use of Tocilizumab

for ICANS in absence of CRS given poor blood brain barrier

penetration and potential shunting of IL-6 to the CSF and

worsening ICANS. In the Zuma-1 trial (cohort 3), patients were

treated with prophylactic tocilizumab in combination with CART19

resulting in reduction in severe CRS, but there was a trend toward

increased ICANS rates and severity thought to be due to peripheral

IL-6 receptor blockade resulting in shunting of IL-6 to the CSF space

and worsening CNS toxicity (36, 37). The use of IL-6 blockade for

treatment of CAR T associated neurotoxicity in primary brain tumors

is not well described with paucity of literature demonstrating efficacy

in improvement in neurological symptoms after IL-6 blockade. In

hematologic malignancies, the standard approach for treatment of

ICANS includes supportive care and administration of

corticosteroids. Novel approaches to inhibit inflammatory cytokines

are being investigated including use of IL-6 inhibitor, siltuximab (38),

Il-1 inhibitor, anakinra (39), and granulocyte-macrophage colony-

stimulating factor neutralization with lenzilumab (40) and endothelial

protection using debfibrotide (41).

Another potential method of managing TIAN is incorporation of

safety switches either by inclusion of transgenic enzymes selectively

activated by a cytotoxic pro-drug known as suicide genes such has

herpes simplex virus-thymidine kinase or inducible caspase 9 or by

expression of surface molecules such as CD20 or EGFR that can be

targeted using clinically approved monoclonal antibodies (42–44).

Suicide genes engineered into the CAR T cells provide a switch to

induce apoptosis of CAR T cells to prevent potentially toxic immune

stimulation and reverse CRS (44, 45). While suicide gene iCasp9 was

incorporated into the GD-2 CAR T construct, the engineered suicide

switch was not utilized given absence of life-threatening toxicity that

was refractory to IL-6 blockade and corticosteroids (21).
frontiersin.org

https://doi.org/10.3389/fonc.2023.1124198
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Mantica and Drappatz 10.3389/fonc.2023.1124198
Vaccine therapy

Vaccine therapy for primary brain tumors is based on the tumor-

specific response to the introduction of foreign antigens to antigen

presenting cells to induce and enhance the immune system to

eradicate the tumor. Antigen targets for vaccines are classified into

two broad categories: 1) tumor-associated, which are over-expressed

in tumors such as survivin and Wilms tumor 1 in GBM, or 2) tumor-

specific, which are exclusively expressed by tumor cells such as

EGFRvIII and isocitrate dehydrogenase (IDH) R132H in GBM and

astrocytoma grade 4 (46, 47). Another vaccine target is neoantigens,

which are proteins that arise from mutations within tumor cell and

typically vary between cells and between individuals. Neoantigen

vaccines utilize personalized sequencing data from whole exome

and RNA of individual patient’s tumor to identify specific

individual mutations (48). Many potential tumor antigens do not

originate from mutations but are the result of overexpression of

normal proteins. This is the case with tumor-associated antigens that

are also expressed in other tissues and targeting the antigen may lead

to off-target effects and toxicity (49).

Broadly, the basis of primary brain tumor vaccine therapy starts

with two main vaccine platforms including peptide vaccines and

nucleic acid vaccines (DNA or RNA) that are then packaged into a

vehicle including either dendritic cells, viral vectors, heat shock

proteins, or montanide, then paired with an adjuvant such as

tetanus toxoid, poly-ICLC, imiquimod, GM-CSF, or immune-

checkpoint inhibitors to boost the efficacy of the vaccine (50).

Vaccines are given intra-nodally, intramuscularly, intra-dermally or

intravenously and are presented by antigen presenting cells (APCs) to

T cells in the lymph node then primed T cells migrate to the tumor

site where they mount an anti-tumor response (50). To date, there are

over 150 clinical trials incorporating vaccine therapy for treatment of

gliomas. Given the considerable number of clinical trials in primary

brain tumors utilizing vaccine therapy, highlighting the potential CNS

toxicity of such treatments is imperative for ongoing safe and novel

vaccine therapy approaches in primary brain tumors. Vaccine therapy

in CNS tumors has been developed over the last 30 years (Table 1)

with the first vaccine trial in 1993; yet, to date, there have only been

three vaccines that have reached phase III clinical trials:

Rindopepimut, DCvax, and PPV (51–53).

Peptide vaccines are short chain 20-30 amino acids sequences that

are synthesized to form an immunogenic peptide molecule

representing a specific epitope of an antigen in order to induce

activation of T cells (54). In GBM, peptide vaccines are some of the

most commonly used vaccine platforms. EGFRvIII, CMV pp65,

TERT, IDH1, surviving, WT1 have been used as single-antigen

peptide and include epitopes of tumor-associated or GBM-specific

antigens (55, 56). The seminal phase III clinical trial ACT IV

investigating the use of Rindopepimut, a peptide vaccine targeting

the EGFR deletion mutation EGFRvIII, plus temozolomide in newly

diagnosed GBM in its failure to improve OS highlighted the limitation

of single-antigen approach due to tumor heterogeneity and immune

selection (51). Importantly, this trial also demonstrated the safety and

tolerability of peptide vaccines as it related to CNS toxicity. The most

common grade 3-4 CNS adverse events compared to control included

brain edema (2% vs 3%), seizure (2% vs 2%), and headache (2% vs

3%). There was no evidence for increased toxicity that might
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theoretically arise due to Rindopepimut-induced immune

infiltration of the brain such as cerebral edema or seizure (51).

Similar CNS adverse events were reported in the phase II ReACT

trial of Rindopepimut plus bevacizumab, again without evidence for

increased CNS toxicity related to the peptide vaccine (57). Another

pivotal advance in vaccine therapy for primary brain tumors is the use

of cytomegalovirus (CMV) phosphoprotein 65 (pp65), which is

tumor-specific and not present on normal brain tissue (58, 59).

Preliminary results of the Phase I trial PRiME (NCT03299309)

which is testing the peptide vaccine PEP-CMV in malignant

glioma and

medulloblastoma patients has demonstrated no grade 3 or 4

toxicities related to the vaccine and thus far no report of CNS

toxicity attributable to the vaccine (59).

Another tumor-specific single antigen vaccine that has been

studied is IDH1 (55, 60). Eighty percent of low-grade gliomas have

an IDH1 mutation, of which IDH1 R132H substitution is the most

common. Three phase I clinical trials have studied peptide vaccines

targeting IDH1R132H including NOA-16 (NCT02454634), RESIST

(NCT02193347) and AMPLIFY-NEOVAC (NCT03893903) and one

trial that is pending ViCToRy (NCT05609994). NOA-16 evaluated

patients with grade III or grade IV IDH1R132H mutation

astrocytoma and the RESIST trial evaluated patients with grade II

astrocytomas. Pseudoprogression in peptide vaccine arm versus

control was 37.5% vs 16.7% without apparent association with age,

extent of resection, standard of care treatment or WHO grade. In

NOA16, pseudoprogression was associated with the onset of

peripheral IDH1-vaccine-induced immune responses and was

restricted to patients with transient or sustained T cell immune

responses (60, 61). Additional tumor-associated antigens have been

tested including survivin (phase II study of SurVaxM vaccine in newly

diagnosed GBM: NCT02455557) and WT1 (multiple clinical trials

underway using DSP-7888 for pediatric HGGs and progressive GBM)

(62). Final data from the phase 2a single-arm trial of SurVaxM for

newly diagnosed glioblastoma evaluated 63 patients with newly

diagnosed GBM with no serious adverse events (63).

A major challenge with single agent peptide vaccines is the

potential for tumor immune escape. As such, clinical trials have

investigated multiple agent peptide vaccine targets. A trial by Pollack

et al., 2014 used glioma-associated antigen (GAA) vaccine consisting

of EphA2, interleukin-13 receptor alpha 2 (IL-13Ra2), and survivin

in HLA-A2–positive children with newly diagnosed brainstem glioma

and HGG. Twenty-six children were enrolled, 14 with newly

diagnosed BSG treated with irradiation and 12 with newly

diagnosed BSG or HGG treated with irradiation and concurrent

chemotherapy . F ive chi ldren (19%) had symptomatic

pseudoprogression, which responded to dexamethasone and was

associated with prolonged survival. Two children developed acute

neurological worsening several months after vaccination, one with

central hyperventilation and one with multiple cranial neuropathies

resulting in aspiration pneumonia and necessitating intubation. MR

imaging demonstrated increased tumor size and enhancement during

vaccination followed by radiographic stabilization. Four of five

children with BSG and pseudoprogression survived at least 18

months after diagnosis versus two of 15 without pseudoprogression

(64). Other early phase I and I/II clinical trials investigating multiple

antigen targets using IMA950, a combination of 11 tumor-associated
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antigens, in newly diagnosed GBM and IMA950/polyinosinic-

p o l y c y t i d y l i c a c i d s t a b i l i z e d w i t h p o l y l y s i n e a n d

carboxymethylcellulose (ICLC) in newly diagnosed high grade

astrocytomas. Both trials demonstrated that multi-antigen peptide

vaccines were safe and well tolerated. However, the most common

SAE reported was seizures 8/39 (20%) and 9/19 (47%), respectively

(65, 66). Pseudoprogression was observed in 4/19 (22%) in the

IMA950/poly-ICLC trial and observed most frequently after the

fourth vaccination (65). Pseudoprogression was treated with high

dose steroids followed by a steroid taper over 10 days with

radiographic improvement in cerebral edema with minimal tumor

progression. It was felt that there was no association between residual

tumor volume and extent of cerebral edema, and the occurrence of

increase edema was not thought to be associated with modification of

the vaccine formulation (65).

Based on the current early phase clinical safety data utilizing

peptide vaccines either single-antigen or multi-antigen peptide

targets, the most common CNS toxicities are cerebral edema or

pseudoprogression, seizures and headaches. Although there are

clearly a limited number of clinical trials and small samples sizes

for comparison, the percentage of participants within the trials that

develop pseudoprogression appears similar between single-antigen

and multi-antigen peptide vaccines. More studies are needed to
Frontiers in Oncology 06
compare the rates of pseudoprogression and any association with

the number of antigen targets presented.

Another common vaccine platform used in primary brain tumors

are nucleic acids (DNA or RNA). DNA-based vaccines are currently

being studied in clinical trials in GBM (NCT03491683, NCT04015700,

NCT02718443). This platform utilizes the method of encoding tumor-

associated antigens and immune-stimulating cytokines into bacterial

DNA plasmids that are then inserted into host cells resulting in

presentation on both MHC Class I and II molecules to activate

innate immune response (67). The interim analysis for the phase I/II

study using DNA vaccines INO-5401 and INO-9012 combined with

PD-1 antagonist cemiplimab in newly diagnosed GBM thus far has

reported tumor inflammation (7.7%) and seizures (7.7%) as the second

and third most common adverse event following thrombocytopenia

(11.5%) (68). RNA-based vaccines are actively being investigated, but to

date, no clinical data is available pertaining to CNS toxicity of RNA

nucleic acid vaccine platform.

One of the most used vaccine vehicles is dendritic cells (DCs).

DCs are antigen presenting cells (APCs) that traffic via the tumor

draining lymph nodes of the brain to the deep cervical lymph nodes,

capture and present exogenous antigens via MHC Class I molecules

to stimulate CD8+ T cells and induce an adaptive and innate immune

response. As such, DCs are an ideal vehicle for vaccines in CNS
TABLE 1 CNS Toxicity of Primary Brain Tumor CAR-T Trials.

Clinical
Trial

NCT Primary
Brain
Tumor

Tumor
Antigen
Target

Number
of

Patients

Method of
Delivery

Neurologic
Dose-Limi-
ting Toxicity

CNS Adverse Events Pseudoprogression

Brown
et al. 2015
(24)

NCT00730613 rHGG IL13Ra2 3 Intracavitary Headache (1/3) Grade 3 Headache
Grade 3 Shuffling gait and
tongue deviation
Grade 3 Leukopenia,
headache, and fatigue

3/3

Brown
et al. 2016
(25)

NCT02208362 rGBM,
multifocal

IL13Ra2 1 Intracavitary
and
Intraventricular

None Grade 2 Headaches,
generalized fatigue,
myalgia, and olfactory
auras

0/1

O’Rourke
et al. 2017
(27)

NCT02209376 rGBM,
multifocal

EGFRvIII 10 IV None Grade 4 Cerebral edema
Grade 3 Seizure and
altered mental status
Grade 3 Intracerebral
hemorrhage

Not Reported

Ahmed
et al. 2017
(31)

NCT01109095 rGBM HER2 17 IV None Grade 2 seizures (2/17)
Grade 2 headaches (1/17)

Not Reported

Goif et al.
2019 (28)

NCT01454596 rGBM EGFRvIII 18 IV None Grade 3 motor weakness
and urinary incontinence
Grade 2 neurologic
symptoms or seizure (10/
18)

Not Reported

Tang
et al. 2021
(29)

NCT03241940 rGBM B7-H3 1 Intracavitary None Grade 2 headache Not Reported

Majzner
et al. 2022
(21)

NCT04196413 H3K27M-
mutated
DMG

GD-2 4 IV
Intraventricular

None Increased ICP
Hydrocephalus
Worsening baseline
neurological symptoms
Headache

1/4
CNS, central nervous system; DMG, diffuse midline glioma; IV, intravenous; r- recurrent; HGG, high grade glioma; GBM, glioblastoma.
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tumors (69). DC vaccines are derived from patient-derived DCs from

peripheral blood cultured ex vivo with pro-inflammatory cytokines

such as IL1beta, TNF-alpha and PGE1 (70). They are then pulsed with

antigens including peptides, tumor RNA, tumor-associated antigens,

tumor-derived exomes, and tumor lysates (70). DC vaccine studies in

CNS tumors have explored multiple types of loaded antigens

including various tumor-associated, tumor-specific, and neo-antigen

peptides and nucleic acids. There are four main categories of DC

vaccines: single tumor antigens, multiple antigens, autologous whole-

tumor lysate, and glioma stem cells (50). Over 30 clinical DC vaccines

clinical trials have been performed between 2001 and 2022 in primary

brain tumors across these broad categories with majority of trials

reporting minimal to no neurologic toxicity (Table 1).

Single tumor antigen dendritic cell vaccines use single antigen

targets such as EGFRvIII packaged into a dendritic cell vehicle. One of

the early studies evaluating the use of tumor-specific DCs vaccines

targeting EGFRvIII in glioblastoma is the phase I trial by Sampson et al.,

2010. Patients underwent leukapheresis to obtain peripheral blood

mononuclear cells (PBMC) for DC generation and pulsed with

PEPvIII that spans the fusion junction of EGFRvIII conjugated to

keyhole limpet hemocyanin and bathed with cytokines TNF-alpha and

IL-6. Twelve patients received three vaccines in equal doses two weeks

apart then followed without additional therapy until radiographic or

clinical progression. Toxicity was reported as minimal, and there were

no adverse events exceeding grade 2 toxicity at any of the DC doses

tested (71). There was no report of CNS neurotoxicity. Several other

early phase I and I/II studies evaluating single tumor antigen pulsed

DCs have similarly shown minimal overall toxicity and paucity of CNS

neurotoxicity (Table 1) including a phase I trial for recurrent GBM I

which patients received DCs pulsed with WT1 (72, 73) and a phase I

trial of IL-13Ra2 pulsed DCs (74). Likewise, the use of DCs pulsed with

mRNA encoding CMVpp65 antigen has been studied by Batich et al.,

2017. Eleven patients with newly diagnosed GBM received dose-

intensified temozolomide and three doses of CMVpp65 DC vaccine.

No patients experienced neurologic AEs related to the pp65-DC

vaccine (75). Batich et al. conducted three sequential clinical trials

using CMVpp65 DC vaccines in patients with newly diagnosed GBM.

Pooled results from the three separate trials demonstrated that nearly 1/

3rd of the GBM patient population receiving CMV-specific DC vaccines

resulted in exceptional long-term survival and no reported CNS specific

neurotoxicity (76).

One proposed benefit of DC vaccine use over other

immunotherapy treatments such as adoptive cell transfer is that DC

vaccines can be pulsed with multiple target antigens to generate an

immune response to a variety of targets and potentially overcome

innate limitations in immunotherapy due to the heterogeneity of

high-grade brain tumors. However, as the number of multiple antigen

targets increases, the theoretical risk for off-target toxicity remains a

concern (70). Several trials utilizing multi-agent DC pulsed vaccines

have been studied to date including (72, 77, 78). The largest multi-

peptide pulsed DC vaccine study is the phase II study of ICT-107, an

autologous DC vaccine targeting six antigens on both tumor and

cancer stem cells including HLA-A1–restricted, melanoma-associated

antigen-1 (MAGE-1) and antigen isolated from immunoselected

melanoma-2 (AIM-2), and the HLA-A2–restricted, human EGFR-2

(HER2/neu), tyrosinase-related protein-2 (TRP-2), glycoprotein 100

(gp100), and IL13 receptor alpha 2 (IL13Ra2). The specific targeted
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antigens were selected given high expression in GBM tumors with all

six expressed in 83% of tumors (79). Notably, the multi-agent DC

pulsed vaccines had minimal neurological toxicity with two trials

reporting no neurologic toxicity (72, 77) and a single trial

demonstrating modest neurologic toxicity compared to placebo

with reported Grade 2 headaches (2.5% vs 16.3%), convulsions

(8.8% vs 14%), partial seizures (6.3% vs 2.3%), and hemiparesis (5%

vs 4/7%) and four grade 3 convulsions (5% vs 2.3%) (78). It is unclear

whether the reported adverse events are related to DC vaccination

administration or clinical neurological complications secondary to

underlying high grade brain tumors, especially given unremarkable

rates of neurologic events compared to placebo. While there are

limited number of clinical trials using multi-agent pulsed DC

vaccines, to date, there does not appear to be an increased number

of reported neurologic adverse events compared to single-agent

pulsed DC vaccine administration.

Another commonly and extensively studied approach to DC

vaccination is the use of autologous surgical specimen tumor lysate

pulsed DC vaccines, which offers a personalized approach unique to a

patients’ individual tumor profile and allows immune presentation of

neo-antigens and tumor-associated antigens (70). Like multi-peptide

pulsed DC vaccines, this approach confers a potential risk for

aberrant or indiscriminate antigen presentation and off-target

toxicity. However, the theoretical increase in CNS toxicity has not

materialized in several clinical trials to date with over twenty phase I,

II and III clinical trials from 2001-2020 showing minimal neurologic

toxicity (Table 1). A recent study by Bota et al., 2022 of 57 patients

treated with Aivita GBM vaccine (AV-GBM-1) noted neurologic AEs

attributed to the DC vaccine including headache (37%), seizures

(33%), focal neurological deficits (28%), fall (18%), dizziness (18%),

cerebral edema (16%), and confused/forgetful (11%) (80). There were

noted 55 SAEs in total with 32/55 consider CNS SAEs including:

seizures (16), falls (7), focal weakness (6) and cerebral edema (3); and

one patient discovered decreased at home after refusing to go to the

hospital after a fall two days prior, with immediate cause of death

unclear (80). The largest tumor-lysate DC vaccine trial is the ongoing

phase III randomized, double-blinded, placebo-controlled clinical

trial of autologous tumor lysate-pulsed DC vaccine (DCVax®-L) for

newly diagnosed glioblastoma (79). The interim analysis of 331

intention to treat (ITT) participants showed 93 (28.1%) patients

with grade 3 or 4 adverse events related to ‘nervous system

disorders’, with report of only 3 patients (0.9%) with cerebral

edema and 2 patients (0.6%) reported seizures. Of note, the 28%

nervous system disorders observed was not further delineated in this

interim report and it was noted that the rate of adverse events was

comparable to standard of care alone (79).

An emerging DC vaccination approach within the last several

years is the use of glioma stem cells or cancer stem cells (CSC) pulsed

DC vaccines. CSCs in brain tumors are defined by functional

characteristics that include sustained self-renewal, persistent

proliferation, and tumor initiation upon secondary transplantation

(81). Two recent trials by Ogino et al., 2022 and Hu et al., 2022 tested

the use of DCs pulsed with CSC for the treatment of low-grade

gliomas and newly diagnosed and recurrent GBM, respectively. Hu

et al., 2022 reported no neurologic toxicity associated with CSC DC

vaccination (82) and Ogino et al. (83) reported occurrence of

headaches (n=16), dizziness (n=3) and seizures (n=1) with multiple
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events in same participants, although no grade was assigned (82, 83).

Overall, this approach is similar to tumor lysate pulsed DC vaccine

and thus far shows a modest safety profile.
Checkpoint inhibitors

Checkpoint inhibitors have been extensively studied in GBM

treatment given their promising results in other solid malignancies.

Through blocking of the tumor’s PD-L1 binding sites to T-cells,

checkpoint inhibitors allow for T-cell activation, immune

surveillance, and tumor recognition. Conversely, T-cells also have

ability to induce adverse autoimmune-mediated complications (84).

In addition to directly tumor associated complications such as

cerebral edema, headaches or increased neurologic deficits,

stimulation of autoantibody production can lead to cross-reactivity

with antigens found on normal brain and nerve tissue (84).

Checkpoint inhibitor induced autoimmunity includes a wide

spectrum of illnesses including hypophysitis, CNS vasculitis,

meningoencephalitis, myositis, retinopathy, posterior reversible

encephalopathy, myasthenia gravis, cerebellar degeneration,

neuropathy, polyradiculopathy, autoimmune encephalitis, and

progression of multiple sclerosis and has been described elsewhere

(84). However, the incidence of checkpoint inhibitor induced central

neurotoxicity in trials of patients with primary brain tumors has

been low.

Several prospective trials have evaluated checkpoint inhibitors in

patients with glioblastoma alone or in combination with standard

therapy, i.e., bevacizumab in the relapsed setting or radiation and

temozolomide for newly diagnosed glioblastoma (Table 2). Reported

efficacy in all published phase 2 and 3 studies has been low, except for

patients with mismatch repair deficiency (126) and in the context of

small studies evaluating neoadjuvant PD-1 inhibitor use (summarized

in Table 2). For example, a study by Cloughesy et al. randomized

recurrent glioblastoma patients undergoing surgery to a single dose of

neoadjuvant pembrolizumab versus no neoadjuvant dose prior to

surgery, followed by adjuvant pembrolizumab in both arms (127),

demonstrating an improvement in progression free survival (3.3

versus 2.4 months) and overall survival (13.7 versus 7.5 months) in

patients who received pembrolizumab neoadjuvantly. The trial also

demonstrated induction of TIL functional activation and production

of an interferon (IFN)-g response within the tumor. Headache and

muscle weakness were the only treatment related neurologic toxicities

in 47% and 50% of patients. Similar toxicities are commonly reported

treatment-related adverse events in patients with central nervous

system tumors; in fact, several of these adverse events were deemed

unlikely to be related to the study drug but were included for

completeness of data reporting. Other surgical window of

opportunity trials are summarized in Table 3.

Checkmate 548 evaluated the role of nivolumab in newly

diagnosed glioblastoma in combination with standard of care

(SOC) radiation and temozolomide therapy. The most frequent

neurological adverse events in both arms were headache

(Nivolumab + SOC, 9.3%; Placebo+ SOC, 5.9%) and dysgeusia

(Nivolumab + SOC, 5.6%; Placebo+SOC, 4.2%), whereas the most

frequent serious neurologic adverse event in both arms was reported

as tumor flare (2.5%/1.4%) or pseudoprogression, which is a
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permeability produces a transient increase in apparent tumor

burden followed by tumor regression. This is a well described

phenomenon which frequently occurs after chemoradiation in up to

50% of patients with newly diagnosed glioblastoma, making scan

interpretation difficult (135). Pseudoprogression was evaluated in

patients treated with temozolomide, radiation and nivolumab who

had progression free survival of ≤6 months from the first nivolumab

dose. Patients with stable follow-up scans ≥3-months following

determination of preliminary progression and no worsening

while remaining on treatment were considered as having

pseudoprogression. Only 20 patients (5.6%) in the nivolumab +

SOC arm were determined to have pseudoprogression per iRANO

criteria. CheckMate 498 was a randomized phase III study

investigating the efficacy of nivolumab and radiation compared

with conventional chemoradiation in patients with newly diagnosed

glioblastoma with negative MGMT promoter methylation. The trial

did not meet its primary endpoint, i.e., SOC therapy was associated

with superior overall survival compared with nivolumab and

radiation (median overall survival, 14.9 vs. 13.4 months).

Neurological adverse events again occurred in only 16.5% (grade 3/

4, 1.8%) of patients in the nivolumab arm and 9.5% (grade 3/4, 0%) of

patients treated on the SOC arm and were mostly headaches and

dysgeusia. The grade 3 and 4 neurologic adverse event in the

nivolumab arm consisted of cerebral edema, hemiparesis, and

seizure. There were no serious neurologic adverse events in the

control arm. In the relapsed setting, CheckMate 143, a phase III

study of nivolumab versus bevacizumab also did not demonstrate a

survival benefit of PD-! Inhibition versus bevacizumab. In the phase 1

portion of the study, anti-PD-1 monoclonal antibody nivolumab was

given with or without the anti-CTLA-4 monoclonal antibody

ipilimumab to patients with recurrent disease. That study showed

that the toxicity profile in this population was consistent with the

other trials. Cerebral edema, focal deficits and headaches were

common and were mostly attributed to disease rather than

treatment related toxicity. No new safety signals were identified.

Importantly, there was no evidence of clinically significant

neurotoxicity (131). While true checkpoint inhibitor related

neurotoxicity was low across all checkpoint inhibitor glioblastoma

trials, the main challenge has been rapid disease progression in the

brain for the majority of patients who fail to respond to checkpoint

inhibitors and the inability to distinguish actual disease progression

from possible pseudoprogression leading to challenges in early

response determination.

Based on the lack of efficacy with immunotherapy, there has been

increased interest in evaluating combination of checkpoint inhibitors

with other therapies including radiation therapy which may result in

synergistic responses. Several ongoing trials are evaluating checkpoint

blockade in combination with radiation therapy. For example, an

ongoing trial is evaluating the benefit of adding radiation to CPIs. A

phase 1 trial of recurrent GBM treated with atezolizumab,

tociluzumab and stereotactic radiation (NCT04729959). Whether

these and similar approaches lead to increased toxicity remains to

be seen.

Checkpoint blockade is also investigated as a treatment in PCNSL.

A prospective study of nivolumab including 47 PCNSL patients

(NCT02857426) demonstrated as serious adverse events edema or
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TABLE 2 CNS Toxicity of Primary Brain Tumor Vaccine Trials.

Clinical Trial NCT Phase Primary Brain
Tumor

Vaccine Target Number
of

Patients

CNS Neurologic
Adverse Events

Black et al. 1993
(85)

NCT I nAA, nGBM ImuVert 15 None reported

Sampson et al.
2009 (86)

NCT I nGBM EGFRvIII
PEP-3-KLH

12 None reported

Sampson et al.
2010 (87)

NCT II nGBM PEP-3-KLH 18 Grade 1
leukoencephalopathy

Sampson et al.
2011 (88)

NCT II nGBM PEP-3-KLH 22 None reported

Schuster et al.
2015 (89)

NCT00458601 II nGBM PEP-3-KLH 65 None reported

Reardon et al.
2015 (90)

NCT II rGBM PEP-3-KLH 36 Grade 3 back pain (6%)
Gade 3 convulsion (11%)

Grade 3 fall (3%)
Grade 3 headache (3%)

Weller et al. 2017
(51)

NCT01480479 III nGBM EGFRvIII
PEP-3-KLH

371 Headache (≥20%)
Cerebral edema (5%)

Crane et al. 2013
(91)

NCT00293423 I rGBM HSPCC-96 12 None reported

Bloch et al. 2014
(92)

NCT00293423 II rGBM HSPCC-96 41 None reported

Fenstermaker
et al. 2016 (93)

NCT01250470 I rAA, rGBM SurVaxM 9 None reported

Rosenfeld et al.
2010 (94)

NCT00262730 II nGBM Poly-ICLC 97 None reported

Rampling et al.
2016 (66)

NCT01222221 I nGBM IMA950 45 Grade 1 headache (n=20)
Grade 2 headache (n=2)
Grade 1 seizure (n=4)
Grade 2 seizure (n=4)
Grade 3 seizure (n=3)
Grade 4 seizure (n=2)

Wheeler et al.
2008 (95)

NCT I GBM Peptide 7 None reported

Hilf et al. 2019
(96)

NCT02149225 I GBM Peptide 15 Grade 3 Brain Edema

Keskin et l. 2019
(97)

NCT02287428 I GBM Peptide 10 None reported

Narita et al. 2019
(52)

NCT III rGBM Peptide 58 Headache (n=2)
Photophobia (n=1)

Symptomatic epilepsy
(n=1)

Heaviness of head (n=1)
Numbness of right ear

(n=1)
Dizziness (n=1)
Dysguesia (n=1)

Ishikawa et al.
2007 (98)

NCT I GBM Formalin-fixed Vaccine 12 None reported

Ishikawa et al.
2014 (99)

NCT I.II GBM Formalin-fixed Vaccine 24 None reported

Kikuchi et al.
2001 (100)

NCT I AA, AO, GBM Cultured glioma cells from surgical specimen
DCs Vaccine

8 Seizure (n=1)

(Continued)
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TABLE 2 Continued

Clinical Trial NCT Phase Primary Brain
Tumor

Vaccine Target Number
of

Patients

CNS Neurologic
Adverse Events

Yamanaka et al.
2003 (101)

NCT I/II AG, GBM Tumor lysate from surgical specimen DCs
Vaccine

10 Headache (n=1)

Yu et al. 2004
(87)

NCT I AA, GBM Tumor lysate from surgical specimen DCs
Vaccine

10 Grade 2 Seizures (25%)
Grade 2 Headache (38%)

Rutkowski et al.
2004 (102)

NCT I PXA, GBM Tumor lysate from surgical specimen DCs
Vaccine

10 Grade 4 Cerebral Edema
(n=1)

Chemical meningitis (n=1)

Okada et al. 2007
(103)

NCT I AA, GBM IL-4 gene , Tumor lysate from surgical
specimen

DCs Vaccine

7 Headache (n=1)

Caruso et al.
2004 (104)

NCT I AA, PXA, EPM, GBM Tumor RNA from surgical specimen DCs
Vaccine

7 None reported

Liau et al. 2005
(105)

NCT I GBM Acid-eluted tumor-associated peptides DCs
Vaccine

12 Seizure (n=1), Headache
(n=2)

De Vleeschouwer
et al. 2008 (106)

NCT I/II GBM Tumor lysate from surgical specimen DCs
Vaccine

56 Headache (n=9)
Chemical Meningitis (n=1)
Grade 4 Cerebral Edema

(n=1)
Transient focal

neurological deficits (n=6)
Seizures (n=4)

Walker et al.
2008 (107)

NCT I AA, GBM Irradiated tumor cells
DCs Vaccine

13 None reported

Wheeler et al.
2008 (95)

NCT II GBM Tumor lysate from surgical specimen DCs
Vaccine

34 None reported

Ardon et al. 2010
(108)

NCT I GBM Tumor lysate from surgical specimen DCs
Vaccine

8 Grade 4 status epilepticus
(n=1)

Grade 4 ischemic stroke
(n=1)

Grade 3 Seizures (n=1)
Dysphasia (n=3)

Transient confusion (n=2)

Ardon et al. 2010
(109)

NCT I AA, AO, PXA, GBM,
AGG, DIPG, ATRT,

EPM

Tumor lysate from surgical specimen DCs
Vaccine

43 Headache (n=5)

Chang et al. 2016
(110)

NCT00293423 I/II GBM Heat shocked and irradiated tumor cells
DCs Vaccine

16 None reported

Okada et al. 2011
(111)

NCT00766753 I/II GBM, AA, AO, AOA GAA epitopes from synthetic peptides (IL-
13Ra2, EphA2, gp100, YKL-40) DCs Vaccine

22 Headache (n=7)

Prins et al. 2011
(112)

NCT00068510 I GBM Tumor lysate from surgical specimen
DCs Vaccine

23 Transient increase in T2/
FLAIR hyperintensity

(n=3)
Headaches (n=1)

Fadul et al. 2011
(113)

NCT I GBM Irradiated tumor lysate
DCs Vaccine

10 Neck pain (n=1)

Jie et al. 2012
(114)

NCT II GBM Heat shocked tumor cells
DCs Vaccine

13 None reported

Cho et al. 2012
(115)

NCT II GBM Tumor lysate from surgical specimen
DCs Vaccine

18 Post-op hemiplegia (n=1)
Elevated ICP (n=1)

Ardon et al 2012
(116)

NCT I GBM Tumor lysate from surgical specimen DCs
Vaccine

77 Grade 4 status epilepticus
(n=4)

Grade 4 ischemic stroke
(n=1)

Grade 3/4

(Continued)
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TABLE 2 Continued

Clinical Trial NCT Phase Primary Brain
Tumor

Vaccine Target Number
of

Patients

CNS Neurologic
Adverse Events

Grade 3/4 dementia (n=1)
Seizures (n=5)

Akiyama et al.
2012 (72)

UMIN ID
000000914

I AA, AO, GBM Synthetic peptides (WT-1, HER2, MAGE-A3,
MAGE-A1, and gp100)

DCs Vaccine

9 None reported

Iwami et al. 2012
(74)

NCT I AA, AO, GBM IL-13Ra2 peptide
DCs Vaccine

8 None reported

Lasky et al. 2013
(117)

NCT00107185 I AA, AO, GBM Tumor lysate from surgical specimen DCs
Vaccine

7 Headache (n=7)

Phuphanich et al.
2013 (77)

NCT I GBM TAA epitopes synthetic peptides (HER2, TRP-
2, gp100, MAGE-1, IL-13Ra2, and AIM-2)

DCs Vaccine

21 None reported

Vik-Mo et al.
2013 (118)

NCT00846456 I/II GBM Transfection of mRNA from glioma stem cells
DCs Vaccine

7 Seizures (n=1)

Prins et al. 2013
(119)

NCT00612001 I AA, GBM Peptide, Tumor Lysate
GAAs (urviving, her-2/neu, gp100, and TRP-

2)
DCs Vaccine

34 Seizures (n=6)
Photophobia (n=1)

Vertigo/dizziness (n=2)
Diplopia (n=1)

Hunn et al. 2015
(120)

NCT I GBM Autologous tumor lysate previously exposed
to TMZ DCs Vaccine

13 Grade 3 syncopal event
(n=1)

Post-op neurological deficit
(n=1)

Seizure (n=3)
Headache (n=2)

Mitchell et al.
2015 (121)

NCT00639639 I/II GBM Transfected synthetic pp65 mRNA from CMV 12 None reported

Sakai et al. 2015
(73)

NCT I AA, AO, GBM WT-1 antigen and/or tumor lysate from
surgical specimen DCs Vaccine

10 None reported

Inogés et al. 2017
(122)

NCT01006044 II GBM Tumor lysate from surgical specimen DCs
Vaccine

31 None reported

Batich et al. 2017
(75)

NCT00639639 I rGBM Transfected synthetic pp65 mRNA from CMV
admixed with GM-CSF

DC Vaccine

11 None reported

Liau et al. 2018
(79)

NCT00045968 III nGBM autologous tumor lysate
(DCVax®-L)
DC Vaccine

232 Cerebral edema (0.9%)
Seizures (0.6%)

Wen et al. 2019
(78)

NCT01280552 II nGBM ICT-107 (MAGE-1, AIM-2, HER2/neu, TRP-
2, IL13Ra2)
DC Vaccine

81 Grade 2 Headache (2.5%)
Grade 2 convulsions (6.3%)
Grade 2 partial seizures

(6.3%)
Grade 2 hemiparesis (5%)
Grade 3 Convulsions (5%)

Mitsuya et al.
2020 (123)

NCT01213407 II nHGG IL-12/IFN-g
DCs Vaccine

15 None reported

Wang et al. 2020
(124)

NCT02808416 I nGBM, rGBM DC Vaccine 5 None reported

Rudnick et al.
2020 (125)

NCT00576446 I AA, AO, GBM Tumor lysate from surgical specimen
DCs Vaccine

28 Grade 1 dizziness
Grade 1 speech difficulties

Grade I aphasia

Ogino et al 2022
(83)

NCT02549833 I LGG GBM6-AD, lysate of an allogeneic
glioblastoma stem cell line, with poly-ICLC

9 Headache (n=16)
Dizziness (n=3)
Seizure (n=1)

(Continued)
F
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mass effect in 2/47 subjects and seizures in 4/47 subjects according to

the available results posted on clinicaltrials.gov (136). Pembrolizumab

has also been studied in relapsed PCNSL. The first results of a

pembrolizumab phase II study demonstrated an overall response

rate of 26%, a median PFS of 2.6 months. Most importantly, there was

no significant CNS toxicity observed (137). However, similar to the

experience with checkpoint inhibitors in other malignancies,

pseudoprogression can be observed (Figure 1). There are several

ongoing trials evaluating combinations of checkpoint inhibitors
Frontiers in Oncology 12
with other agents and whether this approach increases CNS toxicity

remains to be seen.

Lastly, checkpoint inhibitors may also have a role in treatment

refractory meningiomas. A single-arm, open-label phase 2 trial

evaluating the efficacy of pembrolizumab, in 25 patients with

recurrent and progressive grade 2 and 3 meningiomas met its

primary endpoint and reported a median PFS of 7.6 months (90%

CI: 3.4–12.9 months (138). The investigators reported only one

serious neurologic adverse event which was grade-3 encephalopathy.
TABLE 2 Continued

Clinical Trial NCT Phase Primary Brain
Tumor

Vaccine Target Number
of

Patients

CNS Neurologic
Adverse Events

Hu et al. 2022
(82)

NCT02010606 I nGBM, rGBM Stem cell line lysate
DCs Vaccine

36 None reported

Bota et al. 2022
(80)

NCT03400917 II nGBM Tumor lysate from surgical specimen
DCs Vaccine

57 Headaches (n=21, 36.8%)
Seizure (n=19, 33%)
Focal weakness (n=16,

28.1%)
Fall (n=10, 17.5%)

Dizziness (n=10, 17.5%)
Cerebral edema (n=9,

15.8%)
Confused/forgetful (n=6,

10.5%)
-n, new diagnosis; -r, recurrent tumor; AA, anaplastic astrocytoma; AGG, anaplastic ganglioglioma; AO, anaplastic oligodendroglioma; AOA, anaplastic oligoastrocytoma; ATRT, atypical teratoid-
rhabdoid tumor; CMV, cytomegalovirus; CNS, central nervous system; DCs, dendritic cells; DIPG, diffuse intrinsic pontine glioma; EPM, ependymoma; GAA, glioma associated antigen; GBM,
glioblastoma; GM-CSF, granulocyte-macrophage colony-stimulating factor; HLA, human leukocyte antigen; HGG, high-grade glioma; ICP, intracranial pressure; IDH, isocitrate dehydrogenase; IFN,
interferon; IL, interleukin; KLH, keyhole limpet hemocyanin; m, months; MB, medulloblastoma; MHC, major histocompatibility complex;; mRNA, messenger ribonucleic acid; Poly-ICLC,
polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose; PNET, primitive neuro-ectodermal tumor; PXA, pleomorphic xanthoastrocytoma; Td, tetanus diphtheria; TMZ,
temozolomide; WT, Wilms tumor.
TABLE 3 Phase II/III trials of checkpoint inhibitors in glioblastoma.

Trial NCT Population Trial design

Nivolumab
CheckMate 548
(128)

NCT02667587 Newly diagnosed MGMT
methylated GBM

Phase 3, randomized trial of standard of care RT + TMZ with or without nivolumab ( n =716)

Nivolumab
CheckMate 498
(129)

NCT02617589 Newly diagnosed MGMT
unmethylated GBM

Phase 3, randomized trial of RT + TMZ versus RT + nivolumab ( n=560)

Nivolumab
(Ahluwalia
et al.) (130)

NCT03452579 GBM, first relapse,
dexamethasone dose ≤ 4 mg
or equivalents

Phase 2, randomized trial of nivolumab 240 mg + bevacizumab standard dose 10 mg/kg (n = 45) or
low dose 3 mg/kg IV (n = 45) every 2 weeks

Durvalumab
(Reardon et al.)
(1)

NCT02336165 Newly diagnosed MGMT
unmethylated GBM

Phase 2, single-arm study of RT + durvalumab ( n=40)

CheckMate 143
(Reardon et al.)
(131)

NCT02017717 GBM, first relapse, steroid
dose < 10 mg prednisone
equivalents

Phase 3, randomized trial of nivolumab 3 mg/kg (n = 184) or bevacizumab 10 mg/kg (n = 185) IV
every 2 weeks

Pembrolizumab
Nayak et al.
(132)

NCT02337491 GBM, first or second relapse,
dexamethasone dose ≤ 4 mg
or equivalents

Phase 2, randomized trial of pembrolizumab (n = 50) or pembrolizumab + bevacizumab (n = 50)

Pembrolizumab
KEYNOTE-028
(133)

NCT02054806 GBM cohort, recurrent, PD-
L1 ≥ 1% by IHC, bevacizumab
naïve

GBM cohort (n = 26) of basket study, phase 2 study of pembrolizumab 10 mg/kg every 2 weeks

Durvalumab
(Reardon, et al.)
(134)

NCT02336165 GBM, recurrent Phase 2durvalumab (Cohort B, n = 30); durvalumab + bevacizumab 3 mg/kg every 2 weeks (Cohort
B2, n = 33); durvalumab + bevacizumab 10 mg/kg every 2 weeks (Cohort B3, n = 33); bevacizumab
refractory, durvalumab (Cohort C, n = 22)
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The current management of central neurologic complications

from checkpoint inhibitors depends on the severity of neurologic

deficits and follows established guidelines (139). An excessive

inflammatory response can cause symptoms due to mass effect

from vasogenic edema due to increased vascular permeability. This

often necessitates treatment interruption and corticosteroids, and

sometimes surgical debulking or bevacizumab. Steroids quickly

reduce edema and diminish the associated immune response. The

goal is to use the lowest effective dose and to attempt quick

tapering if tolerated to minimize risk of long-term steroid toxicity

and permit resumption of immunotherapy. Bevacizumab is

sometimes used as a steroid sparing agent for patients who are

steroid refractory.

CNS autoimmune toxicities such as encephalitis, aseptic

meningitis, paraneoplastic disorders and demyelination due to

checkpoint inhibitors which have very rarely been reported with the

use of checkpoint inhibitors in other malignancies (140), have not

been observed or reported with the use of checkpointing inhibitors in

the published primary brain tumor trials.
Oncolytic viruses

Viruses have been under evaluation as a promising treatment

option in neuro-oncology for more than two decades. These viruses

can either be non-lytic, in which case they are used to deliver

therapeutic genes, or lytic, which means induction of tumor cell

lysis and immune response. Table 4 summarizes the completed

oncolytic virus trials in patients with gliomas (143). Oncolytic

viruses have recently emerged as a means to stimulate the innate

and adaptive immune responses against both viral and tumor

antigens and to reverse the immunosuppressive tumor

microenvironment (144, 145), allowing for a more robust cytotoxic

T cell-mediated antitumor response (146, 147). Such combination

approaches have recently been explored in a phase 2 study of the

oncolytic adenovirus immunotherapy DNX-2401 followed by the PD-

1 inhibitor, pembrolizumab (CAPTIVE/KEYNOTE-192) and a

similar approach has been explored in a recent study with

PVSRIPO and pembrolizumab, (Luminos-101, NCT04479241).
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Neurologic toxicity associated with intratumoral delivery of

oncolytic viruses is common and usually related to increased vascular

permeability, inflammation, vasogenic edema and mass effect and

associated neurologic deficits (148). Toxicities have been primarily

associated with viral replication and include fever, headache and

malaise (143, 149), however, more serious complications such as

encephalopathy, seizures, and cerebral edema were also observed

(150). Despite theoretical concerns of off-receptor viral targeting or

uncontrolled viral replication, studies have failed to demonstrate any

evidence of neurovirulence thus far. Meningitis has rarely been observed

in patients in whom the agent was inadvertently injected into CSF (150).

The main toxicity in the published trials include peritumoral edema

which is related directly to the intracerebral modes of administration

(direct injection versus convection enhanced delivery), as well as the

secondary immune response generated by the treatment. As a

consequence, patients may experience localized neurologic deficits,

such as weakness or aphasia; additionally, the risk of seizures is

increased. In a study of 61 adult glioblastoma patients treated with

intra-tumoral recombinant, live attenuated, nonpathogenic oncolytic

virus containing the oral poliovirus Sabin type 1, PVS-RIPO, most

patients experienced neurologic adverse events though the majority were

not severe. Neurologic adverse events included: headache (52%),

hemiparesis (50%), seizures (45%), dysphagia (28%), mental status

change (25%), visual field deficits (19%), paresthesia (13%), abnormal

gait (10%), dystonia (2%), and facial weakness (2%) (151). There were

only three severe adverse events, including grade 4 cerebral edema (2%),

grade 5 intracranial hemorrhage (2%) and grade 5 seizure (2%). For

symptoms due to edema and mass effect, bevacizumab was used as

supportive agent. Symptoms of viral malaise, and headache were

managed supportively (151).

Management strategies include both symptom-directed

treatment, such as for seizures, and control of the edema itself.

While steroids are a commonly utilized treatment for edema, high

doses of steroids can potentially suppress the immune response

generated by oncolytic virotherapy, thereby reducing treatment

efficacy. For refractory edema, bevacizumab, can be utilized as a

steroid-sparing agent. Bevacizumab decreases edema by normalizing

decreased vascular permeability. It has been used safely at least 2

weeks after completion of oncolytic virotherapy infusion (151). Other
FIGURE 1

Checkpoint inhibitor associated pseudoprogression. T1 post-contrast enhanced MRI images in a patient with refractory primary central nervous system
lymphoma treated with Pembrolizumab; (A); baseline, (B); increase in abnormal enhancement consistent with pseudo progression 9 weeks after starting
pembrolizumab, (C); minor response at 7 months; (D); near complete response at 10 months.
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toxicities that have been rarely observed are intracerebral hemorrhage

after tumor resection, or due to direct intratumoral injection, or

catheter placement and removal as well as hydrocephalus.

As is the case with all immunotherapies, a particular challenge has

been the difficulty in distinguishing pseudoprogression due to the

immunotherapeutic effect from true tumor progression and lack of

efficacy. Post-treatment MRIs often demonstrate an increase in

peritumoral edema, and an increase in lesion size with polycystic

degeneration, also known as a “soap bubble” appearance (Figure 2).
Discussion

Cancer immunotherapy is an exciting and emerging therapeutic

field for extracranial malignancies with the promise of forward progress

and marked improvement in patient outcomes in several solid tumor

malignancies. Yet, in primary brain tumors, failures of later phase

clinical trials evaluating immunotherapy treatments have highlighted

the ongoing challenges of single agent immunotherapy in the treatment

of brain cancer with ongoing and planned trials evaluating

combinations of immunotherapeutics including approaches aimed at

changing the immunosuppressive tumor microenvironment (152).
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The application of immunotherapy to primary brain tumors has

carried with it a substantial concern for immune-associated CNS

neurologic complications. While serious immune mediated adverse

events have been overall rare in primary brain tumor immunotherapy

trials, the reporting of CNS immune adverse events has been

inconsistent between trials and there are clear challenges in

distinguishing immune mediated adverse events from disease

progression, due to the overlapping presentations of immune-

related toxicity, tumor pseudoprogression and true tumor

progression. Similarly, imaging correlates of pseudoprogression

overlap with tumor progression resulting in implementation of new

radiographic diagnostic criteria to evaluate response in

immunotherapy trials, termed iRANO (153). Key components of

CNS toxicity concerns include the potential for unpredicted off-

tumor, off-target cross-reactivity, or non-specific targeting and

molecular mimicry.

Immunotherapy-associated CNS toxicity in primary brain tumors

has not been studied systematically, is often under-recognized and

underreported, and limited to case reports and case series of more

severe events. As such, we reviewed the CNS complications associated

with checkpoint inhibitors, oncolytic viruses, adoptive cell transfer/

CAR T cell and vaccines for primary brain tumors to help clarify and
TABLE 4 Surgical Window of Opportunity Checkpoint Inhibitor Trials.

Trial NCT Population Trial design

Pembrolizumab (De
Groot et al.) (141)

NCT02337686 GBM, first or second relapse,
dexamethasone dose ≤ 2 mg or equivalents

Single arm surgical window of opportunity trial of neoadjuvant (up to 2 doses) and
adjuvant pembrolizumab (n = 15)

Pembrolizumab
(Cloughesy et al.) (127)

NCT02852655 GBM, first relapse Randomized surgical window of opportunity trial of neoadjuvant + adjuvant
pembrolizumab (n = 16) versus adjuvant pembrolizumab (n = 16)

Nivolumab (Schalper
et al.) (142)

NCT02550249 GBM, 27 recurrent and 3 newly diagnosed Single arm surgical window of opportunity trial of neoadjuvant and adjuvant
nivolumab (n = 30)
FIGURE 2

Axial T 1 post contrast enhanced brain MRI of a patient who received PVS-RIPO therapy. (A); baseline; (B); 4 months after PVS-RIPO, the MRI reveals
cystic tissue degradation and parenchymal brain inflammation.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1124198
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Mantica and Drappatz 10.3389/fonc.2023.1124198
understand the spectrum of immune-related neurological

CNS toxicity.

Adoptive cell transfer/CAR T therapy associated neurological

toxicity termed ‘‘tumor inflammation-associated neurotoxicity’

(TIAN) by Majzner et al., 2022 (21) is broken down into two major

categories: 1) increased ICP due to inflammation-induced tissue

edema and/or obstruction of CSF flow, and 2) primary dysfunction

of brain or spinal cord structures due to inflammation. Of the

published literature using CAR-T in primary brain tumors

(Table 5), 3 of 7 clinical trials reported on the incidence of

pseudoprogression with incidence 100% (24), 0% (25)and 25% (21)

with four studies failing to report presence or absence of

pseudoprogression. Likewise, the most frequent serious Grade II-IV

CNS AEs reported across these published studies in a total of 54

participants were headache (5 of 7 studies), seizure (3 of 7 studies),

and cerebral edema (3 of 7 studies), yet only one reported grade IV

toxicity and only one reported neurologic DLT (Table 5). Using TIAN

categories, the most common neurologic toxicity is related to category

2 primary dysfunction of brain structures resulting in headaches,

seizures, and symptomatic cerebral edema. Management of TIAN

varied with the use of corticosteroids, hypertonic saline, anti-cytokine

agents (anakinra and tocilizumab). Notably, these studies highlighted

the overall safety of varying routes of delivery (intracavitary,

intraventricular and intravenous) and underscored the need for

clear and timely management algorithms to mitigate potentially

fatal treatment associated toxicity.

Vaccine therapies have also been shown to be safe and well

tolerated. From 2001-2020, over 23 published clinical trials

encompassing 692 patients treated with a DC vaccine, showed only

10 Grade IV neurological AEs recorded including cerebral edema

(n=2), seizures/status epilepticus (n=5), ischemic stroke (n=2) and

Grade III/IV dementia (n=1). There were only two Grade III

neurological AEs reported: grade III seizures (n=1) and syncopal

event (n=1). Several trials reported seizures, headaches, transient

post-operative neurological deficits, and dizziness without applying

a grade to the events as specified by the National Cancer Institute

Common Terminology Criteria for the Reporting of Adverse Events

(NCI-CTCAE). Five trials had no reported neurological adverse
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events. Seven trials reported radiographic imaging changes with

report of leukoencephalopathy (71), cerebral edema (71, 79, 96,

102, 106) and transient increase in T2/FLAIR hyperintensity (112)

with three of the trials not assigning a CTCAE grade.

Combining the data from all 56 vaccine clinical trials

encompassing peptide, heat shock protein and DC vaccines, the

most frequently reported CNS adverse event was headache with a

total of 187 incidents followed by seizure (n=78), cerebral edema

(n=32), weakness/paresis (n=20), dizziness (n=17), fall (n=11),

confusion (n=8), focal neurological deficits (n=6), aphasia/speech

difficulty (n=5) and status epilepticus (n=5) as listed in Table 6.

Among the adverse events that were assigned a CTCAE grade, status

epilepticus was the most common Grade IV toxicity (n=5) followed

by seizure (n=2), cerebral edema (n=2) and ischemic stroke (n=2).

There was substantial variation in reporting of adverse events among

the publications. Notably, a few of the reported adverse events may

not have been related to vaccination administration, such as reporting

of post-operative neurological deficits or dementia. Despite this

variation and lack of uniform reporting of events, most adverse

events were mild, suggesting that vaccine therapy has a reasonable

safety profile.

The spectrum of checkpoint inhibitor induced neurologic

autoimmunity has been extensively reviewed in the literature. In

studies of checkpoint inhibitors for primary brain tumor patients

specifically, however, CNS complications such as vasculitis,

meningoencephal i t i s , re t inopathy, poster ior revers ib le

encephalopathy, cerebellar degeneration, autoimmune encephalitis,

and progression of multiple sclerosis have either not been observed at

all or only very rarely been recorded (84). The main observed

neurologic adverse events are largely neurologic deficits and

headaches due to inflammatory brain changes, edema and mass

effect and were rarely severe.

The main challenge has been rapid disease progression in the

brain for the majority of patients unresponsive to checkpoint

inhibitors and the difficulty in distinguishing actual disease

progression from possible pseudoprogression leading to challenges

in early response determination. In Checkmate 548 which has strictly

applied iRANO criteria, only 5.6% of patients were determined to as
TABLE 5 Completed and Published Oncolytic Virus Trials for Primary Brain Tumors.

Agent Study Population Studies/ Phases Sample Size

HSV 1716 (154–156) Glioma (newly diagnosed / recurrent) Phase I 33

DNX-2401 (157–162) Relapsed GBM and DIPG Phase I-II studies 156

G207 (163, 164) Recurrent Glioma Phase I-II studies 30

Adv-tk (165) Newly diagnosed GBM Phase II 48

Onyx-015 (166) Recurrent glioma Phase I 24

Toca 511 (167, 168) Relapsed GBM Phase I-III 244

PVSRIPO (151, 169) Relapsed GBM Phase I/Phase II 61/ 149

Reovirus (170) Relapsed Glioma Phase I 12

H1-Parvovirus (171) Relapsed GBM Phase I 18

NSC-CRAd-S-pk7 (150) Newly diagnosed GBM Phase I 12
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having confirmed pseudoprogression (128) and it is likely that most

of the neurologic adverse events reported across checkpoint inhibitor

trials are in fact due to underlying disease progression rather than

immune mediated effects.

As concerns oncolytic viruses, acute neurologic complications can

often be more directly linked to the intratumoral administration of these

agents, of which some are procedural complications. But the

determination of secondary immune response generated by the

treatment is equally challenging as with the other immunotherapeutics.

As the use of combinatorial treatment options including multi-

agent checkpoint inhibitors, oncolytic viruses, adoptive cell transfer/

CAR T cell and multi-antigen targeted vaccines for primary brain

tumors (96) continues to grow, it is critical to define and report the

unique CNS complications associated with such treatments to help

guide accurate diagnosis and appropriate management to limit

morbidity and improve or prevent the reduction of patients’ quality

of life. Prospective clinical trials evaluating clinical and laboratory

biomarkers that can help stratify or identify patients that may be more

prone for neurological complications as well as trials specifically
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aimed at the diagnosis and treatment of CNS-associated

immunotherapy complications in primary brain tumors is needed.
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TABLE 6 Summary of All CNS Adverse Events across 56 Vaccine Clinical Trials.

Grade

Adverse Events 1
n (%)

2
n (%)

3
n (%)

4
n (%)

Unassigned
n (%)

Total
n (%)

Headache 33(1.74%) 10(0.53%) 20(1.06%) 130(6.87%) 187(9.8%)

Seizure 6(0.32%) 24 (1.27%) 20(1.06%) 2(0.11%) 26(1.37%) 78(4.12%)

Cerebral edema 1(0.05%) 6(0.32%) 4(0.21%) 21(1.11%) 32(1.69%)

Weakness/paresis 3(0.16%) 12(0.63%) 5(0.26%) 20(1.06%)

Dizziness 9(0.48%) 2(0.11%) 6(0.32%) 17(0.9%)

Fall 6(0.32%) 1(0.05%) 2(0.11%) 2(0.11%) 11(0.58%)

Confusion 2(0.11%) 3(0.16%) 1(0.05%) 2(0.11%) 8(0.42%)

Focal neurological deficits 6(0.32%) 6(0.32%)

Aphasia/Speech Difficulty 2(0.11%) 3(0.16%) 5(0.26%)

Status epilepticus 5(0.26%) 5(0.26%)

Back/Neck Pain 2(0.11%) 1(0.05%) 3(0.16%)

Transient T2/FLAIR hyperintensity 3(0.16%) 3(0.16%)

Chemical meningitis 2(0.11%) 2(0.11%)

Ischemic stroke 2(0.11%) 2(0.11%)

Paresthesia/Abnormal sensation 2(0.11%) 2(0.11%)

Photophobia 2(0.11%) 2(0.11%)

Post-operative neurological deficit 2(0.11%) 2(0.11%)

Dementia 1(0.05%) 1(0.05%)

Diplopia 1(0.05%) 1(0.05%)

Dysguesia 1(0.05%) 1(0.05%)

Increased ICP 1(0.05%) 1(0.05%)

Leukoencephalopathy 1(0.05%) 1(0.05%)

Syncope 1(0.05%) 1(0.05%)
fro
The total number of participants across 56 vaccine clinical trials was 1,892. The percentage (%) is equal to the total number of events divided by the total number of participants across the 56
clinical trials.
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