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Glioblastoma is a highly lethal brain cancer with a median survival rate of less than 15

months when treated with the current standard of care, which consists of surgery,

radiotherapy and chemotherapy. With the recent success of immunotherapy in other

aggressive cancers such as advanced melanoma and advanced non-small cell lung

cancer, glioblastoma has been brought to the forefront of immunotherapy research.

Resistance to therapy has been a major challenge across a multitude of experimental

candidates and no immunotherapies have been approved for glioblastoma to-date. Intra-

and inter-tumoral heterogeneity, an inherently immunosuppressive environment and

tumor plasticity remain barriers to be overcome. Moreover, the unique tissue-specific

interactions between the central nervous system and the peripheral immune system

present an additional challenge for immune-based therapies. Nevertheless, there is

sufficient evidence that these challenges may be overcome, and immunotherapy

continues to be actively pursued in glioblastoma. Herein, we review the primary

ongoing immunotherapy candidates for glioblastoma with a focus on immune

checkpoint inhibitors, myeloid-targeted therapies, vaccines and chimeric antigen

receptor (CAR) immunotherapies. We further provide insight on mechanisms of

resistance and how our understanding of these mechanisms may pave the way for

more effective immunotherapeutics against glioblastoma.
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INTRODUCTION

Glioblastomas are grade IV gliomas of the central nervous system (CNS) and are the most common
and most aggressive type of brain maligancy (1). Patient prognosis is extremely poor, with a median

survival of less than 15 months with the current standard of care (SOC), which consists of surgical

debulking followed by radiation and chemotherapy (temozolomide) (2). Glioblastomas are

currently considered incurable, and all patients inevitably experience and succumb to tumor

recurrence, highlighting the urgent need to identify new therapeutic options (3).

The 2016 World Health Organization (WHO) classification of CNS tumors broadly groups

glioblastomas based on the mutational status of isocitrate dehydrogenase 1/2 (IDH) (4). Most
glioblastomas are IDH-wildtype (wt), which typically arise in older patients (age >50) and are
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associated with poor prognosis (4). A small subset of

glioblastomas (~10%) are IDH-mutant (mut), which are often

secondary tumors that arise from the progression of lower grade

gliomas and are associated with better survival compared to

IDH-wt (4). Glioblastomas can be further classified into classical,

mesenchymal, and proneural subtypes based on unique
molecular signatures (5, 6). Classical tumors are characterized

by EGFR amplification as well as lack of TP53 mutations and

homozygous deletion of CDKN2A (5, 6). Mesenchymal tumors

have the worst prognosis and are characterized by expression of

NF1, often co-mutated with PTEN (5, 6). Proneural tumors have

the best prognosis and are characterized by PDGFRA expression
(5, 6). Whilst it was previously thought that a fourth subtype

(neural) existed, this notion was revised after the neural signature

could not be found in tumor cells (5, 6). Glioblastoma tumors are

highly heterogenous, with multiple subtypes making up different

regions of a single tumor (7, 8). Moreover, each subtype is

functionally distinct with unique immunological landscapes
including differences in T cell infiltration and macrophage/

microglia composition (9). For example, loss of NF1 (i.e.

mesenchymal subtype) is associated with a characteristic increase

in tumor-associated macrophages (TAMs) (9). Recurrent

glioblastomas tend to accumulate macrophages and resemble a

mesenchymal state as they become increasingly aggressive and

treatment-resistant (10). The immense heterogeneity and
microenvironmental evolution of glioblastoma tumors must be

considered when developing potential therapies.

Since the addition of temozolomide to glioblastoma SOC in

2005 (2), substantial research efforts and hundreds of clinical

trials have been initiated to in an effort to further improve SOC,

with very little success. Anti-angiogenic drugs such as
bevacizumab, an inhibitor of vascular endothelial growth

factor-A (VEGF-A), and cilengitide, an inhibitor of ⍺Vb3 and

⍺Vb5 integrin, have been highly pursued in glioblastoma clinical

trials, however both of these compounds failed to improve

survival of newly diagnosed and recurrent glioblastoma (11–

13). In fact, out of the hundreds of clinical trials that have been

initiated for glioblastoma in the last decade, few have improved
overall survival. Among those that have been moderately

successful is the tumor-treating fields (TTF) device, which was

approved by the U.S. Food and Drug Administration (FDA) in

2011 for recurrent or refractory glioblastoma (14). TTF involves

the local delivery of low-intensity electric fields to disrupt mitosis

of glioblastoma cells. In phase III clinical trials, patients with
newly diagnosed glioblastoma treated with TTFs in combination

with maintenance chemotherapy had a median overall survival

of 20.9 months compared to 16 months with maintenance

chemotherapy alone (14). Despite this modest success, TTFs

have not been incorporated into SOC due to ongoing skepticism

amongst the medical community regarding the unblinded nature

of TTF trials, as well as issues with patient compliance, which is
critical for treatment efficacy (15).

Overall, the failure of past therapeutic candidates to improve

glioblastoma SOC is in part a reflection of the rapid and

aggressive progression of this disease. Therefore, major

research efforts are being made to better understand the brain

tumor microenvironment (TME), which holds untapped

potentia l for novel cancer therapies . The immune

compartment of glioblastomas is quite substantial, with the

majority of cells coming from the myeloid lineage (16). Despite

this, glioblastomas are effective at escaping host immune

surveillance. Indeed, one of the hallmarks of cancer is the
ability to evade cellular immunity (17). Immunotherapies seek

to re-direct immune cells against a tumor by exploiting a

patient’s immune system. Many immunotherapies such as

immune checkpoint inhibitors (ICIs) and chimeric antigen

receptor (CAR) T cell therapy have been enormously

successful for other aggressive cancers and are now being
investigated as potential therapies for glioblastoma (18–22).

Herein, we review several ongoing immunotherapeutic

approaches for glioblastoma with a focus on ICIs, myeloid-

targeted therapies, tumor vaccines, and CAR immunotherapies.

We further discuss some key challenges facing immunotherapy

in glioblastoma including mechanisms of resistance, which
must be overcome in order for the next generation of

immunotherapeutics to bring meaningful benefit to patients.

IMMUNE PRIVILEGE AND THE CENTRAL

NERVOUS SYSTEM: A CASE

FOR IMMUNOTHERAPY

The unique relationship between the brain and the immune

system is central to the use of immunotherapy in brain diseases

such as glioblastoma. Historically, the brain has been viewed as a

tightly sealed organ, guarded by a closely regulated blood brain

barrier (BBB), and devoid of any lymphatics or immune

surveillance. However, this notion of “immune privilege” was
disputed when it was discovered that allo-antigens could illicit an

immunological response in the brain (23). Several subsequent

isograft versus allograft studies further substantiated this field-

shifting discovery (24, 25). As a result of technological advances

such as intravital imaging, it is now known that immune

surveillance and specifically, the priming and activation of T

cells, largely takes place in the meningeal compartment of the
CNS (26). However, it only became clear in the last decade how

the CNS connects to the peripheral immune system. In 2015, two

seminal studies showed for the first time a network of functional

lymphatic vessels that line the dural sinuses, which drain into the

deep cervical lymph nodes, and serve as a gateway for T cell

trafficking between the periphery and the cerebrospinal fluid
(CSF) of the CNS (27, 28). While once thought to be immune

privileged, it is now appreciated that the brain receives constant

immune surveillance and communication with the peripheral

immune system, allowing the possibility of immunotherapy as a

means of treating diseases of the CNS.

Despite these potential opportunities, one remaining

challenge for glioblastoma treatment efficacy is overcoming the
BBB. This tightly regulated barrier between the peripheral blood

and CNS functions to facilitate the movement of ions,

neurotransmitters, and nutrients while shielding the CNS from
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neurotoxins and most macromolecules (29). Thus, while small

(<400Da), lipid-soluble (<8 hydrogen bonds) drugs may be able

to passively diffuse across the BBB (30), large or water-soluble

drugs are largely excluded by a network of extremely tight

junctions (29). This presents a significant challenge for

systemic immune-based therapies that rely on effective
antibody delivery into tumors or peripheral transfer of cells.

Interestingly, one of the hallmarks of brain tumors is a loss of

BBB integrity and subsequent increased tight junction

permeability (31). In glioblastoma, this characteristic is

attributed to loss of claudin-3 and altered levels of claudin-1

and claudin-5, which are the major structural proteins that
regulate BBB tight junction permeability (32, 33). While

disruption of the BBB may seemingly be advantageous for

drug delivery, especially for drugs that depend on the

recruitment of peripheral immune cells, loss of BBB integrity

may also enhance tumorigenicity by enabling the infiltration of

pro-tumorigenic cel ls such as peripheral ly-derived
immunosuppressive macrophages (34). This double-edged

sword is further complicated by the fact that the BBB is not

ubiquitously disrupted, and in fact remains completely intact

within specific regions of glioblastoma tumors (35). Therefore,

systemic therapies for glioblastoma must be able to overcome

these complex limitations in order to be effective.

Immune Checkpoint Inhibitors (ICIs)
The discovery of immune checkpoint molecules PD-1 and CTLA-

4 has undoubtedly transformed the field of cancer immunotherapy

(36, 37). Anti-CTLA-4 and anti-PD-1/PD-L1 ICIs have been

extremely successful for aggressive cancers such as advanced
melanoma and non-small cell lung cancer (NSCLC) (18–20),

and there is growing interest in the utility of ICIs as a potential

treatment for glioblastoma. In chronic inflammatory conditions

such as cancer, prolonged T cell activation leads to increased

CTLA-4-expressing Tregs and upregulation of CTLA-4 on

cytotoxic T lymphocytes (CTLs), which interacts with the B7

family of receptors and leads to reduced T cell proliferation and
survival (Figure 1) (38). In gliomas, this immunosuppression is

bolstered by the upregulation of PD-L1 on tumor cells and

circulating monocytes/macrophages, which further inhibits

CD8+ and CD4+ T cell activation (39, 40). Prolonged T cell

activation also causes upregulation of PD-1, which recognizes

PD-L1 on antigen-presenting cells (APCs) and tumor cells, and
results in T cell exhaustion and reduced survival (Figure 1) (38).

These immune signatures, including the upregulation of multiple

immune checkpoints and an increased fraction of Tregs, are highly

characteristic of the glioblastoma TME, and warrant investigation

of ICIs as a potential means of restoring T cell responses (41–44).

Accordingly, several studies have explored the use of ICIs

in experimental models of glioma and results have been
promising (45–49). For example, in an implanted mouse

model of glioma using SMA-560 cells, anti-CTLA-4 conferred

long-term survival in 80% of mice, and reduced the fraction of

infiltrating Tregs (49). Additionally, anti-PD-1 eradicated

44% of orthotopic GL261 tumors when used alone, and 100%

when combined with temozolomide (45). In a glioblastoma

stem cell (GSC) mouse model, triple combination therapy with

anti-CTLA-4, anti-PD-1 and an IL-12 expressing oncolytic

virus (G47D-mIL12) cured 89% of mice, with 100% of the

cured mice alive at 96 days post-tumor re-challenge, suggesting

establishment of immunological memory with this combination

therapy (50).
Although preclinical work has been promising, ICI efficacy in

glioblastoma patients has been limited. There have been a

number of case studies reporting dramatic responses in

glioblastoma patients receiving nivolumab (anti-PD-1) (51, 52),

most striking of which is the case of a 60-year-old patient with

recurrent glioblastoma who received nivolumab for 2 years
without any progression, toxicity or need for corticosteroid

treatment (52). Despite these exceptional cases, overall, ICI

clinical trials in glioblastoma have been disappointing.

Checkmate 143 trial was the first randomized trial testing ICIs

for recurrent cases of glioblastoma. The initial phase I study

assessed the safety of nivolumab (anti-PD-1) and ipilumamab
(anti-CTLA-4) in 40 patients with recurrent disease, and results

showed that nivolumab alone was better tolerated compared to

the dual therapy, with adverse advents associated with

ipilumumab (53). Unfortunately, the subsequent open-label

randomized phase 3 trial comparing nivolumab to

bevacizumab failed to improve overall survival in 369 patients

with recurrent glioblastoma (54). Additionally, a recent phase II
clinical trial assessing pembrolizumab (anti-PD-1) with or

without bevacizumab in recurrent glioblastoma patients failed

to meet the primary endpoint of 6 months progression-free

survival (PFS) with either therapeutic approach (55). Attention

has since shifted to newly diagnosed glioblastoma, where a pre-

surgical dose of nivolumab followed by post-surgical
continuation of treatment was reported to provide long-term

survival benefit in two patients with newly diagnosed

glioblastoma, who were alive at 33 and 28 months post-surgery

(56). However, all clinical studies to-date evaluating nivolumab

in primary glioblastoma, including Checkmate 498 and

Checkmate 548 trials, have failed to meet primary endpoints.

Overall, ICIs have failed to demonstrate a significant benefit in
glioblastoma thus far and several explanations have been proposed

(Figure 1). Glioblastomas are inherently immunologically

“cold”, containing few T cells and predominantly occupied by

pro-tumorigenic TAMs, particularly in IDH-wt tumors (57, 58).

While ICIs may initially restore T cell function, the overwhelming

presence of immunosuppressive myeloid cells remains a prevailing
source of resistance to treatment (59). Immunologically “hot”

tumors, characterized by high T cell infiltration and immune

activation, have generally been more responsive to ICIs, and there

is ongoing research aimed at understanding how to turn

immunologically cold tumors, like glioblastoma, into hot

tumors, in order to improve ICI efficacy (60, 61). Moreover,

only 3.5% of glioblastomas exhibit a high tumor mutational load
(62), which influences sensitivity to ICIs (63), suggesting that a

very small minority of glioblastoma patients are likely to benefit

from this treatment.

Another potentially overlooked mechanism of resistance to

ICIs is iatrogenic resistance in response to chemotherapy or
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steroids. The combination of ICIs with chemotherapy is

receiving widespread attention as a mechanism to induce

tumor mutations (neo-antigens) (64). However, systemic

chemotherapy, including temozolomide, is inherently

immunosuppressive and causes lymphodepletion and
myelotoxicity in preclinical models and in cancer patients (64).

This may be particularly harmful for glioblastoma patients as

tumor-infiltrating lymphocytes are already rare. Studies have

explored the possibility of local chemotherapy using implanted

slow-release polymers (65, 66), which avoids systemic

lymphodepletion and significantly enhances response to ICIs
in preclinical models by increasing tumor antigen-specific T cells

(67). In addition, corticosteroids are routinely prescribed for

cancer patients to manage symptoms, including dexamethasone,

which is given to glioblastoma patients to manage cerebral

edema. However, corticosteroids are anti-inflammatory, and

may antagonize the therapeutic effects of ICIs; in fact, they are

used to treat immune-related adverse events from ICIs (68).

Alternative therapies for cerebral edema have been proposed,

such as bevacizumab or mannitol. However, both agents come

with significant drawbacks, including the need for repeated

intravenous infusions, elevated bleeding risk (69), impaired
perioperative healing (69), hypertension (70), and diminished

efficacy with prolonged use (71). Therefore, it is unclear how to

effectively integrate ICIs with current SOC treatments that are

critical for glioblastoma management.

Finally, glioblastoma tumors can adapt to immune

checkpoint blockade by upregulating alternative checkpoints
such as TIM-3 following ICI treatment (72). Combining anti-

PD-1 with TIM-3 blockade may potentially overcome this

acquired resistance. For example, combining anti-PD-1 with

anti-TIM-3 improved overall survival from 28% (anti-PD-1

alone) to 60% (dual therapy) in preclinical GL261 models, and

this was further enhanced to 100% when combined as a triple

FIGURE 1 | The current landscape of major glioblastoma immunotherapies and mechanisms of resistance. Immune checkpoint inhibitors (ICIs) target T cell

exhaustion through blockade of immune checkpoints PD-1 and CTLA-4 to restore T cell function and antitumor activity. Myeloid-targeted therapies such as CSF-1R

inhibitors reprogram immunosuppressive microglia (MG) or monocyte-derived macrophages (MDMs) (pro-tumorigenic) to become more anti-tumorigenic. Peptide

vaccines, dendritic cell (DC)-vaccines and personalized vaccines educate T cells to target tumor neoantigen(s). Chimeric antigen receptor (CAR) immunotherapies

involve genetically engineering a patient’s own T cells or non-patient NK-92 cells to express neoantigen-specific CARs, which are expanded in culture and adoptively

transferred to the patient. Glioblastoma is highly resistant to therapy, and currently, none of the depicted immunotherapies have succeeded in improving treatment,

although many clinical trials are currently ongoing. The grey boxes outline major mechanisms of resistance that are barriers to each immunotherapeutic approach,

including intrinsic, adaptive and iatrogenic mechanisms. Image made with BioRender.com.
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therapy with stereotactic radiosurgery (SRS) (73). In addition to

the PD-1 pathway, recent work has identified expression of the

inhibitory receptor CD161 on intratumoral T cells in

glioblastoma, and blockade of CD161 enhanced T cell anti-

tumor activity both in vitro and in GL261 transplantable

mouse models (74). Interestingly, CD161 is encoded by the
NK cell gene, KLRB1, highlighting NK cell receptors as

potential targets for immunotherapy. Taken together, future

studies should explore novel targets and combination therapies

to improve ICI efficacy.

Myeloid-Targeted Therapies
Macrophages are the most abundant cell type in glioblastoma,

accounting for up to 30% of the tumor, and are highly associated

with disease progression (16, 75). In glioblastoma, macrophages

can be either yolk sac-derived tissue-resident microglia (MG) or

monocyte-derived macrophages (MDMs) from the periphery
(34, 76, 77), with infiltrating MDMs representing the majority

of TAMs (78). In addition to having distinct ontogenies, TAMs

also adopt a variety of activation states that are not restricted to

the conventional M1/M2 designations (77, 79). Interestingly,

glioblastoma stem cells (GSCs) have been shown to recruit

TAMs by secreting periostin and cytokines associated with

alternative activation (80, 81). Once recruited, TAMs further
drive disease progression by enhancing the invasion of GSCs

through TGF-b1 signaling (82). In addition to the direct

protumorigenic effects of TAMs, they can also indirectly

mediate tumor progression by promoting T cell exhaustion via

the PD-L1/PD-1 pathway (Figure 1) (83). Moreover, infiltrating

TAMs in glioblastoma lack essential costimulatory molecules for
T cell activation (CD80, CD86, CD40), which further contributes

to an immunologically inactive tumor (84). Finally, TAMs play

an important role in tumor angiogenesis and have been

associated with resistance to anti-angiogenic therapies such as

bevacizumab (Figure 1) (85–87). Angiogenic factors not only

facilitate tumor progression, but also suppress APCs, DCs and T

cells, while augmenting the effects of TAMs and Tregs, resulting in
a continuous cycle of immunosuppression (88). Taken together,

therapies that target the myeloid compartment may be an

effective approach to reversing active immunosuppression in

the TME and preventing tumor progression.

There are many approaches to targeting TAMs in

glioblastoma, one of which is inhibition of colony stimulating
factor 1 receptor (CSF-1R), an important receptor for

macrophage differentiation and survival (89, 90). In mice, CSF-

1R inhibition re-educates macrophages to adopt an anti-tumor

phenotype, leading to tumor regression and increased survival,

with a particularly profound effect in proneural glioblastoma (89,

90). However, despite dramatic improvements in survival, drug

resistance eventually develops via alternative pathways such as
PI3K signaling (Figure 1) (91). In a phase II clinical study,

treatment with CSF-1R inhibitors in recurrent glioblastoma

patients failed to meet primary endpoint of 6 months PFS (92),

which may be attributable to the high frequency of PTEN and

PI3K pathway mutations among glioblastoma patients (5, 93).

Although CSF-1R inhibitors have generated little clinical success

as monotherapies, emerging studies have suggested that TAM-

targeted therapies may be synergistic with radiotherapy, which

may serve as a more effective approach for targeting the myeloid

compartment (94, 95). In GL261-implanted glioblastoma mice,

irradiation enhanced survival when combined with local delivery

of lipid nanoparticles directed against PD-L1-expressing TAMs
and dinaciclib, a cyclin-dependent kinase 5 inhibitor (95).

Moreover, in preclinical mouse models of glioblastoma driven

by PDGFB overexpression and/or p53 knockdown, irradiation

combined with daily CSF-1R inhibition drastically increased

survival compared to either treatment alone (94). Despite these

promising preclinical studies, a phase 1b/2 clinical trial
evaluating CSF-1R inhibit ion in combination with

radiotherapy and temozolomide for newly diagnosed

glioblastoma did not improve median PFS or overall survival

compared to historical controls (NCT01790503) (96). Although

a comprehensive review of why this clinical trial failed is

currently ongoing, preclinical studies demonstrated that daily
dosing was critical to the efficacy of CSF-1R inhibition and

unfortunately, patient tolerability restricted dosing to 5 days/

week in the clinical setting (94).

In contrast to CSF-1R inhibitors, which target bulk

macrophages, little is known about the potential benefit of

targeting specific macrophage phenotypes and/or their

recruitment. New studies have enabled the investigation of MG
and MDMs and their distinct contributions to glioblastoma

based on identifying distinguishing markers such as MDM-

specific expression of CD49d and expression of Tmem119,

CX3CR1 and SiglecH on MG (34, 97, 98). In accordance with

these findings, anti-CD49d has been shown to selectively reduce

tumor MDM numbers in preclinical glioblastoma models (94).
Interestingly, while anti-CD49d monotherapy had no impact on

survival, combining this treatment with irradiation prolonged

survival in both mouse models, warranting further investigation

(94). In the GL261 mouse model of glioblastoma, histological

analyses have shown that MDMs are more readily recruited to

perivascular tumor regions compared to MG, which is a niche for

GSCs (78). Moreover, selectively limiting MDM infiltration
through genetic Ccl2 reduction prolongs survival of GL261

tumor-bearing mice (78). Although targeting CCL2-mediated

recruitment of MDMs has not yet been clinically explored,

combining CCL2 inhibition with anti-PD-1 treatment

prolonged survival in GSC glioblastoma-bearing mice, and

may be a potential candidate for future studies (99).
Interestingly, Tie2-expressing MDMs have been identified as a

distinct hematopoietic lineage of cells that are actively recruited

to glioblastoma tumors and were shown to drive tumor

angiogenesis in an orthotopic xenograft model of human

glioblastoma (87). Remarkably, loss of Tie2-expressing MDMs

completely abrogated neovascularizat ion in human

glioblastoma-derived tumor-bearing mice, suggesting that
selectively targeting Tie2-expressing MDMs may be another

potential therapeutic avenue (87). Taken together,

reprogramming macrophage phenotypes and targeting specific

TAM recruitment may be a more effective approach to disease

control that has yet to be clinically explored.
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Vaccines
Oncogenic driver mutations and passenger mutations can give

rise to new proteins (neoantigens), which contain unique
sequences (neoepitopes) that can be recognized by T cells

when presented by major histocompatibility complex (MHC)

molecules on the surface of cancer cells or APCs (100). Vaccine-

based therapeutics facilitate the education of tumor-specific

CTLs by soliciting highly expressed tumor neoepitopes (Figure

1) (101). The most rudimentary approach to therapeutic

vaccines is to directly administer one or more peptides that
mimic the tumor neoepitope(s) of interest, although dendritic

cell (DC)-based vaccines and personalized vaccines are also

being explored as potential therapies in glioblastoma.

Approximately 40% of glioblastomas overexpress EGFR, with

the most common variant being EGFRvIII, arising from the loss

of exons 2-7 from the EGFR coding sequence (102–104). The
high frequency of EGFRvIII across glioblastoma patients has led

to the development of Rindopepimut (CDX-110), a synthetic 14-

amino acid peptide that mimics the EGFRvIII mutational site

coupled to keyhole limpet hemocyanin (KLH), an immunogenic

carrier protein (105). In 2015, the FDA granted rindopepimut

the “Breakthrough Therapy Designation”, supporting the

expedition of its approval for glioblastoma, given that clinical
studies demonstrate substantial benefit over other available

therapies. The single arm multicenter phase II trial (ACT III),

which administered rindopepimut and adjuvant chemotherapy

for newly diagnosed EGFRvIII+ glioblastoma patients, had

promising results with a median overall survival of 21.8

months compared to matched historical controls treated with
SOC (106). However, the subsequent randomized double-

blinded phase III trial (ACT IV) failed to demonstrate any

increase in survival and was terminated (107). Loss of

EGFRvIII expression following vaccination suggests that the

recurrent tumor can become resistant to EGFRvIII-targeting

memory T cells (Figure 1) (106). In fact, half of all
glioblastomas that are initially EGFRvIII+ lose EGFRvIII

expression upon recurrence (108). While overexpression of

EGFRvIII was once believed to be predictive of poor prognosis

(103), a recent study assessing the EGFR status of 106 patients

found no association between EGFRvIII and overall survival or

progression-free survival in either newly diagnosed or recurrent

glioblastoma (104). Taken together, these observations may
explain why EGFRvIII-targeted vaccines have failed to control

disease and improve survival.

DCs are an essential component of vaccination because of

their role in antigen presentation and the priming and activation

of T cells (101). It was once thought that DCs played little to no

role in the active immunity of the brain, with MG assumed to be
the predominating APCs (109, 110). However, DCs are

increasingly being recognized for their functional role in the

brain as APCs and it has been reported that they can even arise

from MG differentiation (111, 112). Interestingly, MG exhibit a

great amount of plasticity and can be skewed towards

macrophage-like or DC-like cells by M-CSF or GM-CSF,

respectively (111). While traditional vaccines rely on the
activation of DCs and other APCs in vivo, DC-based vaccines

deliver DCs pre-loaded with antigen by pulsing patient-derived
DCs ex vivo with either tumor lysate or predetermined

neoantigens (101). For glioblastoma, DC-based vaccines have

shown promise in early clinical studies (113, 114). A phase 1

clinical study investigating the dose-escalation of DCs pulsed

with tumor peptides in 12 newly diagnosed glioblastoma patients

demonstrated safety and tolerability of this therapy (113). The
double-blinded randomized phase II trial of ICT-107, involving

DCs pulsed with six synthetic peptides, increased overall survival

of newly diagnosed glioblastoma patients by 2 months compared

to placebo control, although it was not statistically significant

(114). Another DC vaccine, DCVax®-L, demonstrated safety and

tolerability in early studies and recently underwent phase 3

evaluation, but was unfortunately prematurely suspended due
to lack of funds (115). Interestingly, there appears to be subtype-

specific benefits of DC-based vaccines, whereby the

mesenchymal subtype is associated with heightened

responsiveness, including increased infiltration of CD3+ and

CD8+ T cells compared to other glioblastoma subtypes, and

increased survival compared to historical controls of the same
molecular subtype (116). Therefore, molecular subtyping may be

an important consideration for future study enrollment

and design.

Neoantigen-targeted vaccines for glioblastoma are extremely

limited by the high level of inter- and intra-tumoral

heterogeneity of these tumors (Figure 1) (7, 8). Tumor cells

also actively evade T cell immunosurveillance by altering surface
MHC expression and antigen presentation pathways (Figure 1)

(117). Thus, while the identification of neoantigens is critical,

immunization against a single molecular target, such as

EGFRvIII (rindopepimut), selectively eliminates neoantigen-

expressing cells, leaving the remaining tumor resistant to the

activated T cells (106, 118). As an alternative approach,
personalized vaccines may be more appropriate in highly

heterogenous tumors like glioblastoma (100). The personalized

vaccine pipeline involves first characterizing the mutational

profile of an individual’s tumor through comparative

sequencing, followed by selection of patient-specific targets and

finally, vaccine production (100). This personalized approach

effectively circumvents patient-to-patient variability and seeks to
maximize the affected tumor area by generating T cell immunity

against many targets. Preliminary studies using personalized

vaccines in newly diagnosed glioblastoma patients have been

generally positive (119, 120). In a phase I/Ib trial, patients were

immunized post-radiation with up to 20 synthetic long peptides

generated based on tumor DNA/RNA sequencing, and given an
immunostimulant, poly-ICLC. Neoantigen-specific T cell

responses were observed in patients who did not receive

dexamethasone and multiplex immunofluorescent staining of

tumor specimens revealed increased CD8+ and CD4+ T cell

infiltration in these responsive patients (119). Combining

personalized neoantigen vaccines with vaccination against

unmutated antigen (GAPVAC) have shown similarly
promising results where immunization generated sustained

central memory CD8+ T cell responses against unmutated

antigen, as well as neoepitope-specific Th1 responses in CD4+
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T cells (120). There are currently over 50 ongoing clinical trials

for various forms of vaccines against glioblastoma, with results

expected to be rolled out in the coming years.

CAR Immunotherapies
CAR T cell therapy is a highly personalized form of adoptive T

cell therapy that takes advantage of a patient’s own T cells and
strategically engineers them to express CARs, which target

cancer cells (Figure 1). CARs consist of an intracellular T cell

activation domain and an extracellular antigen-recognition

domain, which are joined together by a transmembrane

domain connected to a hinge (121). For refractory hematologic

cancers such as acute lymphoblastic leukemia (ALL) and diffuse
large-B-cell lymphoma (DLBCL), CAR T cell therapy has been

transformational (21, 22), however translating this therapy to

solid tumors comes with a unique set of challenges and no CAR

T cells have been approved for solid cancers to-date (122). Since

their inception, CARs have quickly evolved from basic CD3z-

signaling in the first-generation, to incorporating co-stimulatory

domains such as CD28, 4-1BB, OX40 and ICOS in second and
third-generations, followed by the addition of cytokine-

expressing domains in fourth-generation CARs (TRUCKs) and

most recently, cytokine receptor-expressing domains in fifth-

generation CARs (121–123). Despite the successful engineering

of more potent and immunogenic CAR-T cells, off-target effects,

poor tumor infiltration and a highly immunosuppressive TME
remain major barriers to the clinical efficacy of CAR T cells for

solid tumors (121).

There are several ongoing CAR T cell candidates for

glioblastoma including CARs directed against EGFRvIII,

IL13Ra2 and HER2. In an orthotopically transplanted human

glioblastoma xenograft model, third generation EGFRvIII-

specific CAR T cells prolonged survival of tumor-bearing mice
by up to 55 days compared to untreated mice (124). However,

clinical benefit has yet to be observed in patients where tumor

adaptations, including loss of EGFRvIII expression and post-

treatment infiltration of Tregs, invariably leads to resistance

against EGFRvIII-directed CARs (118, 125). Alternatively,

CAR T cell therapies can target IL13Ra2, which is
overexpressed in 58% of glioblastomas and is associated with

poor prognosis and a mesenchymal gene signature (126).

IL13Ra2-specific CAR T cells have been clinically well-

tolerated, and structurally optimized to prevent off-target Fc

interactions (127, 128). This therapeutic candidate, which is

currently being clinically evaluated (NCT02208362) (129), was
reported to cause dramatic tumor reduction and a sustained

complete clinical response (7.5 months) in a patient bearing

seven highly aggressive recurrent glioblastoma tumors (128).

HER2-targeted CAR T cells have demonstrated similar promise

in early phase clinical trials, where careful engineering has

improved tumor-specificity and reduced off-target effects

(130, 131).
The propensity for glioblastoma tumors to quickly adapt

through antigen escape remains a major barrier to CAR T cell

therapy (Figure 1) (132). To minimize the risk of treatment

resistance, it is likely that CAR T cells should target multiple

antigens or be combined with a synergistic therapy. For

example, a bispecific CAR molecule directed against both

IL13Ra2 and HER2 (TanCAR) has been shown to promote

tumor regression and increase survival in mice xenografted

with a HER2+ IL13Ra2+ human glioblastoma cell line

compared to CAR T cells against either target alone (133).

IL13Ra2 CAR T cells are also currently being clinically
evaluated in combination with nivolumab and ipilimumab

for recurrent and refractory glioblastoma (NCT04003649)

(134). Synergistic combinatorial approaches will be

instrumental in improving CAR T cell efficacy, since CAR T

cells alone have shown limited utility against solid tumors,

including glioblastoma, thus far.
As CAR T cell therapy continues to advance, CAR-NK cell

therapy has also gained attention as a potential tool for cancer

immunotherapy. In glioblastoma, NK cells can mediate tumor

cell killing and are associated with good prognosis (135). A

notable advantage of CAR-NK cell therapy is the ability to be

administered to an HLA-mismatched patient, thus allowing
the possibility of an off-the-shelf therapy (136). However, the

time and cost associated with NK cell expansion and

manufacturing remain a barrier for CAR-NK cell therapy

(137). Currently, NK-92 cells are the only NK cell line

approved by the FDA and are compliant with good

manufacturing practices (138). Remarkably, preclinical

testing of HER-2-specific NK-92 cells (NK-92/5.28.z) in an
orthotopic xenograft mouse model of gl ioblastoma

demonstrated a dramatic increase in survival (200.5 days)

compared to mice treated with control NK-92 cells (73 days)

(139). Intracranial injection of NK-92/5.28.z cells are being

evaluated in the ongoing CAR2BRAIN clinical trial for

recurrent glioblastoma, with no toxicities reported thus far at
three dose levels (NCT03383978) (140, 141). Although the field

of CAR-NK cell therapy is still relatively new, preliminary

results have been promising, and the first ever clinical trial of

CAR-NK cells for glioblastoma will indeed shed light on

whether this immunotherapy can bring benefit to patients.

CONCLUSIONS

The field of cancer immunotherapy is rapidly evolving to meet

the unique requirements and challenges of diverse cancer types.

While immunotherapies have revolutionized the clinical
management of NSCLC, melanoma, renal cancer, and several

hematological malignancies, it is becoming increasingly apparent

that mechanisms of efficacy are not one-size-fits-all. For

glioblastoma, conventional therapies provide limited benefit to

patients and most attempts to incorporate immunotherapeutics

have been futile thus far. Efforts to optimize immunotherapies

need to overcome many obstacles to achieve efficacy, including
physical barriers to drug delivery (e.g. BBB), prominent tumor

heterogeneity, abundant GSC niches, lymphocyte scarcity, and

the immunosuppressive effects of SOC treatments. Studying the

dynamics of different glioblastoma subtypes, as well as long-term

survivors, will be an important resource in understanding aspects

of the TME that promote survival. Finally, a prevailing challenge
in glioblastoma research is that the effects of immunotherapy in
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animal models rarely recapitulate clinical observations.

Genetically-engineered and transplantable mouse models are

the best tools available, however, they fail to fully reflect tumor

heterogeneity and host antitumor immunity. Further efforts are

needed to generate preclinical models that more accurately

recapitulate human disease.
Taken together, there is a desperate need to identify new

therapeutic opportunities in glioblastoma in order to improve

SOC. While immunotherapies have the potential to transform

glioblastoma treatment, many are limited by the unique and

challenging characteristics of the tumor. With a better

understanding of glioblastoma TME dynamics and improved
preclinical tools, we can open doors for more personalized and

targeted treatments that ultimately have the potential to have a

meaningful impact on patient outcomes.
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