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Abstract  

Despite the great improvement of patient outcomes by trastuzumab, a monoclonal 

antibody targeted on HER2-positive breast cancer, approximately 23% of patients with 

early-stage disease treated with adjuvant trastuzumab either fail to respond or 

experience recurrence within 10 years, highlighting the importance of identifying which 

HER2-positive patients would benefit from trastuzumab upfront. Efforts to identify 

biomarkers predictive of response to trastuzumab in initial breast tumor core biopsies 

have been complicated by the clinical and biological heterogeneity of HER2-positive 

tumors. Therefore, we identified a trastuzumab-resistant (TrR) signature that accurately 

predicts response to trastuzumab quantitively and qualitatively in vitro and in vivo, via 

repurposing transcriptome profiles in an engineered cell line model. We additionally 

demonstrated that our TrR signature was associated with tumor progression and 

capable of stratifying patient prognosis. Our study further illustrated the possible 

mechanism of this resistance as being less inherited cytotoxic T cell infiltration and 

failure to secrete Interferon-γ upon trastuzumab treatment in TrR tumors. These findings 

highlight the potential clinical application of TrR signature in treatment management and 

identifying possible immunotherapy interventions.     
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Introduction 

Breast carcinomas with HER2/ERBB2 receptor amplification and overexpression 

account for approximately 20% of all breast cancers, which also confer more aggressive 

phenotypes and are associated with poor prognosis (Arteaga, Sliwkowski et al., 2011, 

Singh, Jhaveri et al., 2014, Slamon, Clark et al., 1987). The clinical management of this 

cohort often relies on diagnosis and targeting of a single molecule, such as mutation 

status, amplification or gain/loss of function of HER2 (6). The strategy to target the 

HER2 receptor with a monoclonal blocking antibody (mAb), trastuzumab, has led to 

great improvement in overall survival in HER2-positive breast cancer.  However, 

approximately 25% patients in this cohort still fail to respond to this treatment initially 

and almost 23% of patients with early-stage HER2-positive breast cancer treated with 

adjuvant chemotherapy and trastuzumab experience disease recurrence within 10 

years (Perez, Romond et al., 2011, Perez, Romond et al., 2014), highlighting the 

importance of identifying which HER2-positive patients will benefit from this treatment 

and those that will not. Although other HER2-targeted agents, including lapatinib, 

pertuzumab, and trastuzumab emtansine (T-DM1), administered either in place of or in 

combination with trastuzumab have demonstrated activity in trastuzumab-resistant (TrR) 

cancers, the challenge remains to identify patients who require the addition of these 

agents upfront. Efforts to identify biomarkers in the initial breast tumor core biopsy 

predictive of response to trastuzumab have been complicated by the clinical and 

biological heterogeneity of HER2-positive tumors. The predictors generated from patient 

data are usually accompanied by insufficient sample size, heterogeneity in mutation 

status and treatment complexity; therefore, the conclusion usually remains elusive 

(Harris, You et al., 2007, Varadan, Gilmore et al., 2016). Exploring the transcriptome 

profiles of engineered cell line models to identify biomarkers for trastuzumab resistance 

could be one of the most promising approaches to overcoming existing challenges with 

their homogenous genetic background and drug specificity.  

 

Increasing evidence that the immune system plays a significant role in the therapeutic 

effects of HER2-targeted therapy has been provided by multiple studies (Galluzzi, 

Buque et al., 2017, Gennari, Menard et al., 2004, Loibl, de la Pena et al., 2017, Muller, 
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Kreuzaler et al., 2015, Musolino, Naldi et al., 2008, Stagg, Loi et al., 2011, Varadan et 

al., 2016, Varchetta, Gibelli et al., 2007), e.g., trastuzumab was able to facilitate killing 

tumor cells via antibody-dependent cellular cytotoxicity (ADCC) through recruitment of 

natural killer cells (NK cells)(Herrmann, Lehr et al., 2004, Okita, Mougiakakos et al., 

2012). In addition, the presence of tumor-infiltrating lymphocytes (TIL) was also found to 

be associated with improved outcomes with trastuzumab treatment in clinical trials 

(Adams, Gray et al., 2014, Ibrahim, Al-Foheidi et al., 2014, Loi, Michiels et al., 2014, Loi, 

Sirtaine et al., 2013, Luen, Salgado et al., 2017, Perez, Ballman et al., 2016, Salgado, 

Denkert et al., 2015, Stanton & Disis, 2016). Lately, multiple clinical trials targeting the 

TrR cohort by modulation of certain cytokines, e.g., interleukin-2, interleukin-6, have 

been initiated based on preclinical studies (Mani, Roda et al., 2009, Repka, Chiorean et 

al., 2003, Zhong, Davis et al., 2016), suggesting that the interaction of tumor-secreted 

cytokines with innate or adaptive cells contributes to trastuzumab efficacy. However, 

other than NK cells, no study has yet correlated other types of immune cells with patient 

response to trastuzumab treatment.  

 

In this study, we developed a 43-gene signature that can accurately predict the 

response to trastuzumab in vitro and in vivo by repurposing a publicly available 

transcriptome profile (GSE15043) (Gu, Waliany et al., 2009) via a different algorithm. 

We have further demonstrated its efficacy on stratifying patients who will benefit from 

trastuzumab treatment quantitively and qualitatively. The network of genes in our TrR 

signature indicates a novel mechanism that  inherited less cytotoxic T cell infiltration in 

TrR tumors and failure of interferon gamma (IFN-γ) secretion upon trastuzumab 

treatment are likely responsible for treatment resistance. We further explored clinical 

relevance of this mechanism using our in-house treatment naïve patient samples. In 

summary, we identified a gene signature, which predicts clinical outcomes and further 

demonstrated a novel mechanism and its associated targetable key players.     
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Results 

Current clinical biomarkers for trastuzumab sensitivity in HER2-positive breast 

cancer lack sufficient accuracy. Current treatment management of HER2-positive 

breast cancer often only relies on features of a single gene, such as mutation status, 

amplification or gain/loss of function of HER2 (Arnaout, Dawson et al., 1992, Centis, 

Tagliabue et al., 1992, Dowsett, Cooke et al., 2000). However, the growing population 

of primary or acquired resistance to trastuzumab in breast cancer patients with HER2 

aberration indicates that current clinical makers such as HER2 mRNA, protein or activity 

levels for trastuzumab treatment still await improvement. To test this hypothesis in our 

study, two pairs of TrS (ZR75-30, SKBR3) and TrR cell lines (HCC1954, T47D) were 

accessed for their HER2 protein expression levels and their responses to trastuzumab 

treatment. Interestingly, HCC1954, which possesses a high expression levels of HER2, 

failed to respond to trastuzumab treatment at a fairly high dosage (Fig. 1A, top panel). 

In addition, we further analyzed the accuracy of HER2 protein levels, mRNA levels and 

phospho-HER2 (p-HER2) levels when predicting trastuzumab sensitivity across 15 

HER2-positive breast cancer cell lines utilizing data from Cancer Cell Line Encyclopedia 

(CCLE) (Barretina, Caponigro et al., 2012) and Reverse Phase Protein Array (RPPA). 

Although p-HER2 has been reported to be a more promising marker than HER2 protein 

levels (accuracy rate of 65%) and HER2 mRNA levels (accuracy rate of 55%), its 

prediction accuracy only reached 69% (Fig. 1A, bottom panel).  

In order to develop a set of biomarkers which are specific to trastuzumab sensitivity, we 

first established an isogenic panel of cell lines derived from BT474, a trastuzumab 

sensitive cell line. This panel included BT474 and two resistant clones of BT474 

continuously cultured in 1uM or 0.2uM trastuzumab for three weeks (BT474_R_1 and 

BT474_R_0.2, Fig. 1B, top right panel). To evaluate whether this adapted resistance is 

associated with downregulation of HER2 levels, we further assessed their HER2 protein 

and mRNA levels but failed to detect any significant difference (Fig. 1B). Our 

observation indicated that the possible mechanism of TrR in this model was not 

dependent on HER2, indicating that HER2 alone as a biomarker is insufficient for 

clinical treatment decision. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 24, 2020. ; https://doi.org/10.1101/2020.01.17.20017947doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.17.20017947
http://creativecommons.org/licenses/by-nc-nd/4.0/


TrR signature accurately predicts trastuzumab sensitivity in cell lines and patient 

tumors. As gene expression data has proven to have a robust capacity for predicting 

drug sensitivity (Costello, Heiser et al., 2014), we identified a TrR signature consisting of 

43 differentially regulated genes between BT474 and its derived TrR cell lines by 

leveraging their transcriptomic data, with the supervised clustering across the isogenic 

cell lines shown in Fig. 2A. To test the predictive power of TrR signature in vitro, we 

assessed the trastuzumab sensitivity data of 15 HER2-positive breast cancer cell lines 

via Cancer Therapeutics Response Portal (CTRPv2) (Basu, Bodycombe et al., 2013) 

and calculated their TrR scores from their microarray and RNA sequencing available at 

CCLE as a testing dataset. The efficacy of this signature yielded AUC values of 0.875 

and 0.750 when calculated through RNA sequencing and microarray, respectively (Fig. 

2B, top panel), suggesting our signature is rather sensitive to the profiling technique. To 

investigate if the TrR signature is relevant in patient cohorts, we applied our signature to 

publicly available dataset GSE62327 (Triulzi, De Cecco et al., 2015) and GSE55348 

(Castagnoli, Iezzi et al., 2014) to test the ability of the TrR signature to identify patients 

within the HER2 breast cancer subtype who would less likely benefit from trastuzumab 

treatment. Our results suggest an accurate prediction of initial nonresponders to HER2 

inhibition by trastuzumab within this cohort, indicated by an AUC of 0.843. Although the 

TrR signature was not designated to predict patients who would likely develop a relapse 

after an initial response to trastuzumab, our analysis demonstrated an accuracy of 82% 

when predicting this population, with an AUC of 0.714 (Fig. 2B). We further assessed 

TrR signature scores in both cell lines and patient tumors and demonstrated significant 

enrichments in positive signature scores in resistant cell lineages or tumors (Fig. 3C). 

Overall, our results indicate that this TrR signature could be a powerful tool to predict 

initial response to trastuzumab in vitro and in vivo, qualitatively and quantitively. 

 

TrR signature predicts tumor progression, patient overall survival and TrR tumor-

targeting agents. 

Within the 43 genes in the TrR signature, we have detected and validated amplification 

of certain oncogenes (e.g., MUC1, Fig. S1), which are proven to be associated with 

tumor growth and progression (Horm, Bitler et al., 2012, Pochampalli, Bitler et al., 2007). 
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Interestingly, we found a significant negative correlation (correlation coefficient of -0.86) 

between TrR signature scores and doubling time within five different HER2-positive 

breast cancer cell lines (Fig. 3A). To test whether this observation applies in vivo, we 

appraised TrR signature scores through qPCR and growth curves of three TrR cell line 

(BT474_R, HCC1954, T47D) – derived xenografts. It was notable that T47D, which 

exhibited the slowest tumor progression rate, had the lowest TrR signature score (Fig. 

3B). HCC1954, which had the steepest exponential growth rate and largest tumor size 

at the end point of the experiment, exhibited the highest TrR score. To validate this 

signature in patient cohorts, we tested the performance of TrR signature in a HER2-

positive breast cancer cohort (n =220) and HER2-gastric cancer cohort (n = 453), both 

of which had trastuzumab as their first-line treatment (Digklia & Wagner, 2016). We 

report that our TrR signature was able to stratify patient survival in both cohorts, 

suggesting that our signature is insensitive to different cancer types with HER2 

amplification but rather sensitive to the treatment itself. Taken together, these results 

demonstrate that the TrR signature accurately stratifies tumor progression in vitro and in 

vivo, as well as patient prognosis following trastuzumab treatment.  

Given that TrR signature is associated with tumor progression, we asked whether we 

could identify agents that would reverse the TrR signature and thereby reduce the 

growth of TrR cells. To this end, we compared data from Connectivity Map (CMAP) with 

TrR signature. The CMAP is a public database with many drug-associated gene 

expression profiles (Lamb, Crawford et al., 2006). Remarkably, after searching for 

agents that could reverse gene expression profiles in the TrR signature and therefore 

might be expected to impede cell growth, we found that HDAC inhibitor, Trichostatin A, 

and Hsp90 inhibitor, Geldanamycin were ranked near the top of the CMAP list in terms 

of reversing TrR signature (brown arrows, Fig. 3D, left panel). Furthermore, we 

validated the efficacy of Trichostatin A and Geldanamycin and found that they 

specifically target TrR cells (Fig. 3D, middle and left panel), which is consistent with 

outcomes from other studies (Damaskos, Garmpis et al., 2017, De Mattos-Arruda & 

Cortes, 2012). The ability of the TrR signature to efficiently identify drugs that target TrR 

tumors provides evidence that the TrR signature is linked to biological functions 

involved in tumor progression.  
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TrR signature reveals novel mechanism of TrR resistance. 

The innate resistance or adaptive resistance to trastuzumab is a combined effect of co-

mutations/co-genetic alternations in cancer cells, which could be more determinative 

than the effects of individual alterations. Here, we hypothesize that the network of 43 

genes in the TrR signature, with the top predicted canonical pathways being inhibited 

cytokine-cytokine receptor interaction, inhibited immune cell trafficking etc., indicates 

the mechanism of TrR resistance (Fig. 4A). We further investigated which immune cell 

type might be associated with this resistance by collecting seven different immune cell 

signatures and correlated TrR signature scores of our isogenic cell line panel derived 

from BT474 with scores calculated from the seven signatures. As shown in Fig. 4B, 

cytotoxic T-cell signature exhibited an extremely similar performance in distinguishing 

BT474 from its derived TrR cell lines with TrR signature, with a correlation coefficient as 

high as 0.61. Based on this observation, we performed immunohistochemistry staining 

of CD4 and CD8, markers that are commonly used to identify cytotoxic T cells (Zhang & 

Bevan, 2011), on our in-house FFPE samples (core biopsies, treatment naïve) of 

patients whose long term clinical outcomes proved to be sensitive or resistant to 

trastuzumab treatment. Significantly greater infiltration of CD8+/CD4+ T cells were 

observed in TrS patients, regardless of their ER status, shown in Fig. 4C. To determine 

whether this infiltration is associated with tumor-secreted cytokines or chemokines as 

predicted in the pathway analysis, we performed ELISA cytokine arrays on culture 

media secreted by BT474 and BT474_R with or without trastuzumab treatment. 

Interestingly, significantly higher levels of multiple cytokines associated with cytotoxic T-

cell recruitment and infiltration (CCL5, ICAM-1) (Maimela, Liu et al., 2019) were 

detected in BT474-secreted media (Fig. 4D), which is consistent with the observation of 

more infiltrated T cells in TrS patient samples. We also observed a strong stimulation of 

IFN-γ and CD40L secretion, which are commonly associated with cytotoxic functions of 

CD8+ T cells through the production of TNF-related apoptosis-inducing ligands, ROS 

(McClory, Hughes et al., 2012) and Perforin (Wongtrakoongate, 2015), in BT474-

containing media with trastuzumab treatment. In contrast, inhibited secretion of those 

two cytokines was detected in BT474_R-containing media post-trastuzumab treatment. 
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Overall, our results suggest that deficiency of cytotoxic T cell infiltration due to 

insufficient secretion of CCL5 or ICAM-1 in tumors of TrR patients, combined with 

failure to stimulate tumor cells to secrete IFN-γ and CD40L by trastuzumab treatment, 

may be a possible mechanism contributing to trastuzumab resistance in TrR tumors.  
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Discussion 

HER2 immunoreactivity of HER2-positivie breast cancers are often used clinically for 

treatment management. Targeting of the HER2 receptor in the form of a monoclonal 

blocking antibody, such as trastuzumab, has shown great improvement in patient 

survival. However, a large population of non-responders to this treatment and a 

recurrence rate of 23% for HER2-positive breast cancer patients treated with 

trastuzumab has highlighted the importance of identifying biomarkers which can 

accurately predict response or resistance to anti-HER2 therapy with more complex 

mechanism of action which cannot be represented by a single molecular marker.  

Intriguingly, transcriptomic analysis, which relies on robust gene expression signatures 

designed to capture the core common features indicative of drug sensitivity, regardless 

of their precise molecular origin, represents one of the most promising approaches to 

overcome the current challenge.  Despite substantial efforts towards identify reliable 

biomarkers that predict benefits of trastuzumab treatment using patient tumors, those 

biomarkers usually only work well within a subpopulation in this cohort, e.g., a subtype 

with a particular molecular features (Varadan et al., 2016) rather than an entire cohort. 

The majority of these patient studies suffer from insufficient sample size, have various 

mutation status and treatment complexity within patient tumors. Therefore, leveraging 

transcriptomic data from appropriately engineered cell lines, which possess the same 

genetic background, can be one of the best representative proxies to identify 

therapeutic interventions since this model provides sufficient sample size, a cleaner 

background and is more drug-specific. In addition, the rapidly decreasing price of gene 

expression microarrays and RNAseq makes it plausible to integrate this technology as a 

companion diagnosis into clinical trials for the eventual individualization of patient care. 

Here, we identified a 43-gene TrR signature via a panel of engineered cell lines and 

demonstrated its high sensitivity and specificity in predicting response to trastuzumab in 

vitro and in vivo. Interestingly, our TrR signature is also able to stratify tumor 

progression and patient prognosis, therefore serving as a powerful tool to predict the 

efficacy of targeted interventions  within this cohort. The efficacy of the predicted top 

two candidates, a HDAC inhibitor, Trichostain A, and a Hsp90 inhibitor, Geldanamycin, 

on specifically targeting TrR cell lines were validated. This observation is also consistent 
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with outcomes of other studies. Our results indicate that the TrR signature is capable to 

guide repurposing drugs that were initially developed for other designations. However, 

due to some limitations of CMAP, such as limited drug perturbation data, drug coverage 

and dosage-dependent conditions (Musa, Ghoraie et al., 2018), candidates predicted 

from CMAP might not necessarily be the optimal choice to enter clinical settings. For 

example, AUY992 and Ganetespib, both of which were effective Hsp90 inhibitors but 

not present in CMAP database, were widely used to target the TrR population in clinical 

trials (6 trials in total up until 2019), whereas Geldanamycin, which was predicted and 

proven to effectively target this cohort via inhibiting the same pathway, was not found in 

clinical studies. We believe that valid drug prediction will be greatly improved with the 

evolution of future databases integrating both a CRISPR/Cas9 library for functional 

genomics and drug sensitivity gene expression profiles with a better spectrum of drug 

selections. 

Although our TrR signature was able to predict drug candidates that target HDAC 

pathways or Hsp90 pathways, inhibitors targeting either pathway have proven difficult to 

utilize. HDAC inhibitors were usually found lacking tissue and drug specificity, which 

often lead to  off-target effects (Clawson, 2016). Inhibitors of Hsp90, a chaperone 

heavily involved in post-translational modifications, frequently interferes with the 

majority of its targets, which could further disturb the functions of both tumor 

suppressors and oncogenes when targeting cancer cells (Soga, 2013). In our study, the 

network of genes within the TrR signature indicates possible mechanisms of action that 

TrR tumors inherit less cytotoxic T cell infiltration and suggests a new approach allowing 

for interrogation of immune modulation, such as a combination of IFN-γ and 

trastuzumab since the modulation of IFN-γ secretion was triggered  by trastuzumab in 

the TrS cohort but not the TrR cohort. Despite substantial efforts made by other studies 

where immune-related signatures were associated with a response to trastuzumab-

containing chemotherapy, their ability to predict benefit from specific HER2-targeted 

therapies and the in vivo effects of trastuzumab on immune response has not yet been 

elucidated. This limitation has led to another important aspect of our study - the utility of 

our archived in-house patient treatment naïve FFPE samples of patient core biopsies for 
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initial diagnosis, which is the best timing for application of the TrR signature for clinical 

treatment decision.  

Overall, our study suggests the importance of genomic evaluation beyond HER2 

IHC/FISH testing from a systems biology approach, identified with gene expression. Our 

TrR signature accurately predicts response to trastuzumab in vitro and in vivo, and 

hopefully, can soon be used in clinical settings. Our study also suggests new 

approaches for therapeutic intervention to overcome trastuzumab resistance, such as 

increasing cytotoxic T cell infiltration by regulating several important cytokines or a 

regime of IFN-γ and trastuzumab combination in early stage disease, ideally in the 

preoperative setting. We believe that with our findings and appropriate settings in 

clinical trials, we will be able to define the optimal approach for each patient to make 

this disease finally curable. 
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Materials and Methods 

Cell lines and selection 

Human breast cancer cell lines BT474 (American Type Culture Collection (ATCC)) were 

exposed continuously to either 0.2 or 1µM Trastuzumab for 3 weeks when the survived 

formation of small clusters (BT474_R_0.2 and BT474_R_1, respectively, where 

BT474_R_1 was labeled as BT474_R sometimes) started to repropagate after the initial 

growth inhibition. The cell clusters were further cultured in the continuous presence of 

trastuzumab for an extra month. BT474 and the resistant clones were further 

maintained in DMEM (Corning) supplemented with 10% FBS (GE Healthcare-Hyclone).  

Additionally, the breast cancer cell lines T47D (ATCC), HCC1954 (ATCC) and ZR75-30 

(ATCC) were cultured in RPMI (Gibco) media, supplemented with 10% FBS.  

 

Pipeline of developing signature and signature score 

Publicly available transcriptome profile (GSE15043) of genetically engineered isogenic 

TrR lines of BT474 are used to generate the TrR signature using Bioconductor in R. 

Briefly, raw data were log2 transformed, quantile-normalized, and median polished. To 

determine a list of differentially expressed genes between BT474 and its derived 

resistant cell lines,  

we optimized the algorithm to maximize the accuracy of prediction while minimizing 

number of genes of interest in the desired samples by adjusting p-values (p = 0.01) and 

fold change (FC = 2) threshold. Performance of TrR signature was tested on 

independent in vitro and in vivo transcriptome datasets using Receiving Operation 

Curve (ROC). Signature scores were determined by calculating the correlations 

coefficient between medium centered gene expression levels within the signature and 

gene expression levels for that gene within a given sample, following quantile 

normalization.  

 

Patient survival analysis 

Cohorts of HER2-positive breast cancer patients and HER2-positive gastric cancer 

patients were used as independent testing sets. Patient clinical data and RNAseq data 

were acquired from The Cancer Genome Atlas Program (TCGA). TrR signature scores 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 24, 2020. ; https://doi.org/10.1101/2020.01.17.20017947doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.17.20017947
http://creativecommons.org/licenses/by-nc-nd/4.0/


were calculated following quantile normalization. To generate Kaplan-Meier curves, 

patients were divided based on the maximization of statistical difference in signature 

scores between the two groups. 

 

Cell line-derived xenografts 

All animal procedures were conducted in compliance with National Institute of Health 

guidelines for animal research and approved by Institutional Animal Care and Use 

Committee (IACUC) at Aurora Research Institute. Five-week-old female Crl:Nu(NCr)-

Foxn1nu nude mice were purchased from Charles River Laboratories and housed for 

another week in a specific pathogen-free environment, followed by subcutaneous 

injection into mammary fat pads with 1x106 cells suspended in 100µl ice-cold Matrigel 

(Corning) at a 1:1 ratio for each mouse (n=10/each group). Tumor volumes, calculated 

by V = (length x Width2)/2, and body weight were measured twice per week during 

treatment. Tumors dissected at the end point of each experiment were subjected to 

RNA extraction per protocol provided by manufacturer (Qiagen), followed by 

quantitative PCR assays for 43 genes in TrR signature. 

 

Quantitative PCR  

RNAs of cells or tissues were extracted using RNeasy mini kit (Qiagen). Extracted RNA 

was further subjected to NanoDrop for RNA quantification. An iScript cDNA synthesis kit 

(BioRad) was used for cDNA synthesis from the extracted RNA. Quantitative PCR was 

prepared in biological triplicate using ITAQ™ Universal SYBR® Green Supermix 

(BioRad) and was performed by Roche Light Cycler 480 II instrument (Roche, NJ). 

Predesigned primers for genes (Integrated DNA Technologies, IDT) listed in TrR 

signature were optimized and details were listed in supplementary table 1. B2M (IDT, 

Assay ID: Hs.PT.58v.18759587) were used in the assay as an internal control. All gene 

expression levels were normalized to the level of B2M expression within the same 

sample, which is the internal standard and mRNA expression level calculated with the 

2−ΔΔCt method. 

 

Flow cytometry 
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For cell cycle analysis, cells were harvested and washed three times with PBS, followed 

by incubation in either PE-conjugated mouse anti-human IgG or PE-conjugated mouse 

anti-human HER2 antibody (1:500, BD) for one hour at room temperature. Samples 

were further subjected to flow cytometry and data were analyzed using Flowjo software. 

 

Dose response curves 

Cell lines were plated at a density of 2000 cells per well (Nexcelom Bioscience 

Cellometer Auto 2000) in 96 well tissue culture plates using the appropriate culture 

medium, previously optimized from plate surface area and time of treatment incubation. 

Trastuzumab (SelleckChem) were serially diluted and the treated cells were incubated 

at 37 °C for 5 days, at which point the PrestoBlue cell viability assay (Invitrogen) was 

performed to determine relative cell population on a Synergy H1 microplate reader with 

Gen5 software (BioTek). The experiments were conducted in experimental triplicate, 

and the measurement was normalized to that of untreated cells. 

 

Prediction of agents targeting TrR tumors via Connectivity Map 

In order to predict drugs that may effectively target TrR cells, we used Connectivity Map 

(CMAP), we enquired genes in the TrR signature with the fold change between BT474 

TrR cell lines and BT474 parental lines (https://portals.broadinstitute.org/cmap/). For 

each gene in our TrR signature, we identified the corresponding feature set ID from 

approximately 20,000 probe sets on the HG-U133A array that are recognized by CMAP. 

These IDs were collated into tag set of “up” or “down” -regulated genes. Outcomes were 

reported as connectivity scores ranging from +1 to -1, where positive scores denote 

increased similarity while negative scores inverse similarity between the expression 

patterns induced by agents in CMAP and the gene profiles of reference samples. 

 

Quantification of soluble factors by ELISA 

BT474 and BT474_R were seeded at 1x106 cells in 6-well tissue culture plates and 

allowed to adhere overnight. Cells were then either treated with 1 µM PBS control or 

1µM trastuzumab in 2 mL of growth media for 48 hours. The supernatants were 

collected, and the particulates removed by centrifugation. A Human XL Cytokine Array 
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kit (R&D Systems) was used to measured cytokine secretion from tumor cells. Samples 

were prepared and the ELISAs were processed in accordance with the manufacturer’s 

instructions. After reference spot normalization, duplicate spots were averaged, followed 

by subtraction of an averaged background signal. Fold changes between corresponding 

signals of BT474_R versus BT474, both cell lines with versus without trastuzumab 

treatment were calculated and cross compared.  

 

Western blot  

1x106 cells were plated in 6-well cell culture dish (Corning), collected and lysed in RIPA 

buffer (Abcam) with protease inhibitors (Cell Signaling Technologies (CST)). Lysates 

were run in 4-12% Criterion Tris-HCL Protein gels (BioRad) in a Criterion Cell 

electrophoresis system (BioRad), followed by being transferred to Nitrocellulose, 0.2 µm 

membranes. Primary antibodies were applied at various dilutions: Actin (1: 1000, 

Sigma-Aldrich, St. Louis, MO), Beta-tubulin (1:500, CST), phospho-Histone H2A.X 

(Ser139) (1:1000, γH2AX; Millipore, Burlington, MA), phosho- Histone H3 (Ser10) (1: 

500, CST), HER2/ErbB2 (1: 500, CST) , MUC1(1:500, CST), Cleaved Caspase-3 

(Asp175) (1: 1000, CST), and phospho-CDC2 (Y15) (1: 500, CST). The blots were then 

incubated with HRP-conjugated mouse (Santa Cruz Biotechnology (SCB)) or rabbit IgG 

antibodies at 1:1000 for one hour and the signals were detected on a LiCor3000 

instrument (Li-Cor) using Western Clarity ECL (BioRad). Signals were measured and 

normalized, and experiments were repeated in triplicates.  

 

Clinical sample selection and Immunohistochemistry 

From a single coordinated 15-hospital healthcare organization, medical records of 

patients diagnosed with HER2-positive breast cancer from 2007-2017 were assessed. 

Ten pairs of TrR tumors and TrS tumors were provided by our in-house Biorepository 

and Specimen Resource Center (BSRC), where the treatment naïve tumors from 

patients’ core biopsies were archived. Tumors of patients who responded to 

trastuzumab treatment and were relapse-free were classified as TrS tumors and tumors 

of patients who did not respond to trastuzumab regimen or who relapsed even though 
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some clinical response were observed initially were classified as TrR tumors. ER status 

was matched between TrR tumors and TrS tumors when sample selections were made.  

Tissue sections were further dehydrated with Xylene and stained using EnVision 

Detection SystemsPeroxidase/DAB, Rabbit/Mouse kit (Agilent) kit per protocol 

previously described (Sun, Fang et al., 2017). Briefly, tissue sections with primary 

antibodies: CD4(1:20, Abcam), CD4 (1:10, Abcam) and MUC1(1: 500, CST), were 

incubated overnight at 4°C, followed by 1-hour incubation with Labelled Polymer-HRP at 

room temperature. Negative controls were treated identically, but without primary 

antibody. Subsequently, slides were incubated with DAB+ Chromogen, followed by 

counterstaining with hematoxylin. Pictures of slides after mounting with Permount (TFS) 

were captured under microscope (Olympus). Scores of IHC for all markers are 

calculated by the percentage of tumor cells multiplied by the intensity of markers.   

 

Statistical analysis 

Data were analyzed by Student’s t-test and one- or two-way ANOVA per experiment 

design. A two-way ANOVA was used to assess the effects and interactions of two 

variables and multiple comparisons were achieved using Bonferroni’s post hoc test. All 

statistical analysis was completed using GraphPad Prism 6 and results are presented 

as mean ± SD of three independent experiments. Significance for normally distributed 

data was determined by student t-test (two groups) or by ANOVA with appropriate post-

hoc tests. For data not normally distributed, a rank-sum test (two groups) or a Kruskal-

Wallis test with an appropriate post-hoc test was used.  
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Figure Legends 

Figure 1. Current biomarkers for clinical management in treating HER2 (ERBB2)-
positive breast cancer lack prediction accuracy.  (A) The accuracy of biomarkers 
often used clinically, such as mRNA levels (labeled as ERBB2_mRNA), protein levels 
(labeled as ERBB2_protein) or activity levels of HER2 (indicated by ERBB2_phospho) 
to predict trastuzumab sensitivity amongst HER2-positive breast cancer cells are 0.55, 
0.65 0.69, respectively, where 1 represents the highest accuracy. Two pairs of TrS 
(ZR75-30, SKBR3) and TrR cell lines (HCC1954, T47D) were tested for their 
trastuzumab sensitivity. (B) The isogenic cell line panel consisting of BT474 and BT474-
derived TrR cell lines in trastuzumab at the concentration of 0.2mM (BT474_R_0.2) and 
1Mm (BT474_R_1) were tested for HER2 protein expression levels via flow cytometry 
(right panel), mRNA levels via qPCR (bottom, left panel) and trastuzumab sensitivity 
(top, left panel).  

Figure 2. TrR signature predicts response to trastuzumab sensitivity in cell lines 
and patient tumors. (A) Supervised clustering by significantly differentially regulated 43 
genes between BT474 and its derived TrR cell lines across the isogenic cell line panel. 
(B) Receiver-operating characteristic (ROC) curves for the prediction of training sets for 
trastuzumab sensitivity in breast cancer cell lines (top left, CCLE mRNA data; top right 
RNAseq data) and breast cancer patient tumors (bottom left, GSE62327; bottom right, 
GSE55348). Area under the curve (AUC) values were used as an indicator for accuracy. 
A ROC AUC value of 1 represents perfect prediction and 0.5 represents random chance. 
(C) TrR signature scores of BT474, its corresponding TrR lines, BT474 with control 
siRNA and HER2 siRNA, a training set of HER2-positive breast cancer cell lines with 
available data in CCLE and patient tumors with available data in GSE55348 were 
assessed and cross-compared.  
 
Figure 3. TrR signature predicts tumor progression, patient prognosis and is 
indicative of treatment for TrR patients. (A) TrR signature scores of five TrS cell lines 
and TrR cell lines were assessed and cross-compared (**P < 0.01). Signature scores 
and doubling time of cell lines which possess available data were correlated. (B) TrR 
signature scores of tumors dissected from patient-derived xenografts (PDX) generated 
from three TrR cell lines (BT474_R, HCC1954 and T47D) were assessed and cross-
compared (**P < 0.01, left panel) and the corresponding tumor growth curves were 
exhibited and cross-compared (right panel). (C) Patient overall survival analysis in 
HER2-positive breast cancer and HER2-positive gastric cancer that were treated with 
trastuzumab were separated based on TrR signature scores. log-rank p-value is 
displayed that shows statistical significance. (D) Drug candidates available in 
Connectivity Map database, which include gene expression profiles with or without 
approximately 100 drug perturbation in PC3, HL60 and MCF7 cell lines, were sorted 
based on their predicted scores. A score close to 1 represents the highest likelihood of 
its effectiveness on targeting TrR cells (left panel). Viability curves following treatment of 
the top two drug candidates, Trichostatin A (brown arrows) and Geldanamycin (red 
arrows), for five days in three TrS (BT474, SKBR3 and ZR75-30) cells and three TrR 
cells (BT474_R, HCC1954 and T47D).  
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Figure 4. Network of gene regulators in TrR signature reveals possible 
mechanism of TrR resistance. (A) Network of gene regulators in TrR signature (left 
panel) and the top canonical pathways involving those regulators are exhibited (right 
panel). (B) Correlation coefficient from linear regression between TrR signature scores 
and a series of other available innate immune cells’ signatures (cytotoxic T-cell 
signature, B cell signature, T-cell signature, immunology index, monocyte signature and 
myeloid signature) across BT474 and its derived TrR cells lines. (C) Immunohistology 
staining of CD4 and CD8 on in-house TrR and TrS HER2-positive breast cancer patient 

FFPE samples (scale bar: 200µm). (D) Significantly differentially secreted cytokine 

amongst media secreted by BT474 and BT474_R with and without 1µM trastuzumab 
treatment (right panel, **P<0.01, ***P<0.001), detected by cytokine ELISA array with 
representative blots (left panel).  
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