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Abstract: Glioblastoma (GBM) is the most common malignant brain tumor. Despite multimodality
treatment with surgical resection, radiation therapy, chemotherapy, and tumor treating fields, recur-
rence is universal, median observed survival is low at 8 months and 5-year overall survival is poor
at 7%. Immunotherapy aims to generate a tumor-specific immune response to selectively eliminate
tumor cells. In treatment of GBM, immunotherapy approaches including use of checkpoint inhibitors,
chimeric antigen receptor (CAR) T-Cell therapy, vaccine-based approaches, viral vector therapies,
and cytokine-based treatment has been studied. While there have been no major breakthroughs to
date and broad implementation of immunotherapy for GBM remains elusive, multiple studies are
underway. In this review, we discuss immunotherapy approaches to GBM with an emphasis on
molecularly informed approaches.

Keywords: glioblastoma; immunotherapy; checkpoint inhibitor; CAR T; vaccine therapy; viral
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1. Introduction

Glioblastoma (GBM) is the most common primary brain tumor, representing 14.5% of
central nervous system (CNS) tumors and 48.6% of malignant CNS tumors in the United
States [1,2]. According to Central Brain Tumor Registry of the United States (CBTRUS), inci-
dence is 3.23 per one hundred thousand with an average of 12,011 cases diagnosed per year
between 2013 and 2017 [2]. Treatment of GBM involves surgical resection followed by radi-
ation therapy (RT) with concomitant and adjuvant temozolomide chemotherapy [1,3]. Epi-
genetic silencing of DNA-repair gene O6-methylguanine–DNA methyltransferase (MGMT)
is associated with improved overall survival and increased benefit from temozolomide
chemotherapy [4]. Addition of tumor-treating fields to temozolomide has been associated
with modest additional survival benefit [5]. Despite multimodality treatment, tumor re-
currence is universal with median observed survival low at 8 months and 5-year overall
survival (OS) poor at 7% [2]. There is a great need for novel treatment approaches that will
improve patient outcomes.

Immunotherapy aims to generate a tumor-specific immune response to selectively
eliminate tumor cells. Immunotherapy with checkpoint inhibitors and chimeric antigen
receptor (CAR) T-Cell therapy has been effective in treatment of solid organ and hema-
tologic malignancies generating interest in application of these techniques for patients
with GBM [6–10]. However, this has been tempered by the notion that the CNS is an
immunoprivileged environment and recognition of the immunosuppressive nature of
GBM [11–13].

Traditionally, the CNS has been viewed as an immunoprivileged environment moni-
tored by microglia, in part due to the presence of the blood–brain barrier and the observation
of prolonged survival of engrafted tissue in the brain compared to other locations [11–13].
However, emerging data suggests the CNS is immunologically distinct rather than immuno-
privileged [11,12]. Indeed, there is a complex interplay between the CNS and the immune
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system, as illustrated by findings such as identification of lymphatic vessels running par-
allel to dural venous sinuses and autoimmune basis for conditions such as neuromyelitis
optica and multiple sclerosis [14,15].

GBM has been described as an immunologically ‘cold’ tumor with multiple immuno-
suppressive mechanisms [1,16–19]. In general, GBM is associated with a low mutational
burden, representing few neoantigens to elicit an immune response [1]. GBM secretes
paracrine immunosuppressive mediators and causes systemic immunosuppression via
sequestration of T cells in bone marrow [17,18]. Few tumor-infiltrating lymphocytes are
present resected GBM specimens and the existing T cells are associated with an exhausted
phenotype [19]. Successful implementation of immunotherapy in GBM requires over-
coming these factors [20–22]. Here we review approaches to immunotherapy in GBM by
highlighting prior studies with checkpoint inhibitors, CAR T-cell therapy, vaccine-based
therapies, viral therapies, and cytokine-based approaches with a focus on utilizing the
molecular makeup of tumor cells to guide treatment selection.

2. Immune Checkpoint Inhibitors

Checkpoint regulators such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4)
and programmed cell death protein 1 (PD-1) downregulate T cell activation [23]. Antigen
presenting cells (APC) present peptide fragments to T cells via major histocompatibility
complexes [23,24]. Activation of T cell receptors leads to CTLA-4 expression, promoting self-
tolerance and preventing autoimmunity [23,25]. Anti-CTLA-4 agents such as ipilimumab
and tremelimumab enhance T cell stimulation by blocking this inhibitory pathway [23,25].
Similarly, PD-1 is an inhibitory receptor expressed on T cells with program death receptor
ligand (PD-L1) potentially expressed on tumor cells [23–25]. Anti-PD-1/PD-L1 agents such
as pembrolizumab, nivolumab, and atezolizumab increase T cell activation by blocking
this inhibitory pathway [23–25].

Checkpoint inhibitors have been studied in the treatment of newly diagnosed and re-
current GBM. In an open-label, randomized, multicenter, phase III clinical trial, 369 patients
with recurrent GBM were randomized in 1:1 fashion to treatment with nivolumab vs. be-
vacizumab [26]. Median OS (mOS) was 9.8 months in the nivolumab group compared to
10 months in the bevacizumab group [26]. In an exploratory post hoc subgroup analysis,
patients with MGMT methylated tumors with no baseline corticosteroid had 17.0 month
mOS compared to 10.1 month mOS observed for patients with similar tumors treated
with bevacizumab, suggesting a subset of patients may benefit from checkpoint inhibitor
monotherapy [26].

In a phase III, randomized, multi-center clinical trial, RT with nivolumab was com-
pared to RT with temozolomide for patients with newly-diagnosed, MGMT-unmethylated
GBM [27]. The study did not meet its primary endpoint of OS [27]. In a separate phase
III, randomized clinical trial, RT with temozolomide and nivolumab was compared to RT
with temozolomide for patients with newly diagnosed, MGMT-methylated GBM [28]. The
study did not meet its primary endpoint of OS in the overall randomized population or in
patients with no baseline corticosteroid use [28].

Ineffectiveness of checkpoint inhibitor monotherapy in the recurrent GBM setting
and combination of checkpoint inhibitor therapy with RT and temozolomide in the newly
diagnosed GBM setting led to consideration of alternative approaches. One such approach
is neo-adjuvant use of anti-PD-1 treatment where checkpoint inhibitors are administered
preoperatively [29]. In a small study of 35 patients with recurrent GBM planned for re-
peat surgery, 19 patients were treated with anti-PD-1 agent pembrolizumab 14 ± 5 days
prior to resection, then continued immunotherapy [29]. The remaining 16 patients started
immunotherapy following resection [29]. mOS for patients receiving neoadjuvant pem-
brolizumab was 417 days compared to 228.5 days for patients receiving adjuvant pem-
brolizumab alone [29]. However, in a similar single-arm study where nivolumab was
administered pre-operatively to patients with surgically resectable recurrent GBM, mOS
was 7.3 months (approximately 220 days) [30]. Given the small numbers of participants,
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both results should be interpreted with caution and should not be generalized. It is also
noted that in clinical practice, only a small subset of patients with GBM are eligible for
additional surgery at the time of recurrence, typically representing smaller tumors, younger
patients with better performance status, and greater initial resection [31].

Patient selection based on tumor mutational burden may represent another approach
for successful use of immune checkpoint inhibitors for GBM treatment. In GBM, high
tumor mutational burden can occur either due to the presence of DNA polymerase and
mismatch repair defects within tumor cells or as a post-treatment phenomenon after ad-
ministration of RT and temozolomide [1,32]. Clinical trials are evaluating the efficacy of
immunotherapy with pembrolizumab (NCT02658279) and combination therapy with ipili-
mumab and nivolumab (NCT04145115) in patients with recurrent GBM with hypermutator
pheonotype [33,34].

Combining immune checkpoint inhibitors with other treatment modalities represents
another strategy to generate an antitumor immune response. Combination of check-
point inhibitor therapy with other modalities such as hyperfractionated radiotherapy
(NCT03532295; NCT03661723), laser interstitial thermal therapy (LITT) (NCT02311582;
NCT03277638) is also being studied in clinical trials [35–38]. Ongoing checkpoint in-
hibitor trials are summarized in Table 1. Combination of these agents with other im-
munotherapy approaches that also leverage tumor molecular genetics is explored in the
following sections.

Table 1. Ongoing Checkpoint Inhibitor Clinical Trials in Glioblastoma.

Trial Identifier Title Phase Tumor Type

NCT02658279 Pembrolizumab (MK-3475) in Patients with Recurrent
Malignant Glioma with a Hypermutator Phenotype N/A 1 Recurrent Glioma

NCT04145115
A Study Testing the Effect of Immunotherapy (Ipilimumab
and Nivolumab) in Patients with Recurrent Glioblastoma

with Elevated Mutational Burden
2 Recurrent GBM 2

NCT03532295 Retifanlimab and Epacadostat in Combination with Radiation
and Bevacizumab in Patients with Recurrent Gliomas 2 Recurrent Glioma

NCT03661723 Pembrolizumab and Reirradiation in Bevacizumab Naïve and
Bevacizumab Resistant Recurrent Glioblastoma 2 Recurrent GBM

NCT02311582 MK-3475 in Combination with MRI-Guided Laser Ablation in
Recurrent Malignant Gliomas 1/2 Recurrent Glioma

NCT03277638 Laser Interstitial Thermotherapy (LITT) Combined with
CheckPoint Inhibitor for Recurrent GBM (RGBM) 1/2 Recurrent GBM

1 Study phase not listed on ClinicalTrials.gov; 2 GBM: Glioblastoma.

To date, a majority of studies have focused on anti-PD-1/PD-L1 and anti-CTLA-
4 approaches. Alternative checkpoint therapy targets include cluster of differentiation
47 (CD47) and cluster of differentiation 73 (CD73) [22]. CD47 binds signal-regulatory
protein alpha (SIRPα) to inhibit macrophage-mediated phagocytosis [22]. Hu5F9-G4 is an
anti-CD47 immunotherapy that has demonstrated preclinical activity against GBM, but no
clinical trials have been completed to date for glioma treatment with this agent [39].

Extracellular adenosine is thought to have an immunosuppressive effect in the tumor
microenvironment [22]. Adenosine monophosphate (AMP) is degraded to adenosine by
CD73 [22]. Oleclumab, also known as MEDI9447, is an anti-CD73 antibody that was shown
to prevent AMP-mediated lymphocyte suppression in preclinical models [40]. Combination
of oleclumab with anti-PD-1 agent durvalumab is the subject of clinical trial NCT02503774
for advanced solid tumors [41]. Other monoclonal antibodies and small-molecule inhibitors
of CD73 are being developed [22]. To date, no clinical trial data is available for GBM, but
in a preclinical study, absence of CD73 improved survival in a murine model treated with



Int. J. Mol. Sci. 2022, 23, 7046 4 of 17

anti-CTLA-4 and anti-PD-1 therapy [42]. Further studies are needed to determine the safety,
feasibility, and efficacy of CD47 and CD73-based approaches for GBM treatment.

3. CAR T-Cell Therapy

CARs are synthetic receptors designed to direct T-cells to recognize and eliminate cells
expressing a specific target antigen [43]. CARs generally consist of an extracellular antigen
recognition domain and a transmembrane domain interacting with an intracellular T-cell
signaling domain [43]. In CAR T-cell therapy, T lymphocytes collected from patients are
modified by methodologies such as plasmid transfection or viral vector transduction to
express a CAR, allowed to proliferate, and administered back to the patient with the goal
of eliciting a durable tumor-specific immune response [43]. Multiple CAR T-cell products
have been studied for treatment of GBM.

Overexpression of interleukin (IL)-13 receptor IL13Rα2 is observed in multiple types
of cancer including an estimated >75% of GBMs [44]. IL13 signaling via activation of
IL13Rα2 results in phosphoinositide 3-kinase (PIK3) pathway activation, promoting tumor
cell proliferation [44]. In pilot study, three patients were treated with 12 intracavitary
infusions of IL13Rα2-based CAR T-cell therapy with an mOS of 11 months [44]. The second
generation of this CAR T-cell product was administered to a single patient with recurrent
GBM and associated leptomeningeal disease, resulting in a complete response lasting
7.5 months [45]. However, recurrence after IL13Rα2-based therapy has been observed and
optimization approaches and development of other CAR T-cell products are underway
before wider-spread application can occur [45–47].

Receptor tyrosine-protein kinase ErbB2/HER2 expression in elevated in approximately
41% of GBM samples, representing another potential CAR T-Cell therapy target [48]. Safety
concerns were raised with this approach due to death of one patient with colon cancer after
receiving ErbB2-based CAR T-cell therapy following lymphodepleting chemotherapy [49].
A modified CAR T-cell product demonstrated safety but had limited T-cell persistence [50].
This led to exploration of virus-specific T cells as a means to deliver antitumor activity
via ErbB2-based CAR while receiving costimulation by latent virus antigens presented
by APCs [48]. In a phase I clinical trial, 17 patients with recurrent GBM were treated
with Epstein–Barr virus (EBV), adenovirus, and cytomegalovirus (CMV)-specific T cells
that also recognized ErbB2 [48]. Treatment was well-tolerated with an mOS of 11 months
reported [48].

Epidermal growth factor receptor (EGFR) amplification is frequently encountered
in newly diagnosed GBM [51]. EGFR variant III (EGFRvIII) is the most common EGFR
alteration found in GBM, representing an in-frame deletion from exons 2–7 causing an
extracellular domain alteration resulting in constitutive activation [51]. EGFRvIII-targeting
CAR T-cell therapy was studied in 10 patients with recurrent GBM, administered as a
peripheral infusion with mOS of 8 months, though this was a heavily pre-treated patient
population [52].

Use of naturally occurring tumor-binding molecules represents an alternative method
of developing CAR T-cell therapy [53]. Chlorotoxin (CLTX) is one such molecule with GBM-
binding potential, derived from the venom of Leiurus quinquestriatus [53,54]. In preclinical
models, CLTX CAR T cells demonstrated anti-tumor activity with a clinical trial underway
(NCT04214392) [53,55].

The disialoganglioside GD2 is highly expressed on target H3K27M-mutated glioma
cells. H3K27M mutation is commonly found on diffuse midline gliomas, including Diffuse
Intrinsic Pontine Glioma (DIPG) [56]. There was concern that the use of immunotherapy
in the treatment of DIPG would be precarious and result in a lethal rhombencephalitis
in this patient population [56]. Increased intracranial pressure and brainstem edema as a
consequence of obstructive hydrocephalus can be life-threatening unless immediately and
appropriate managed [56]. However, in their recent report, Monje et al. described that the
toxicities associated with the GD2 CAR T-cell infusions were manageable and reversible
with supportive care [56]. There was no obvious sign or symptom of off-tumor, off-target
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toxicity involving the brain, or peripheral nerves, as can be seen with other anti-GD2
antibodies for the treatment of neuroblastoma [56]. Notably, cytokine release syndrome
and immune effector cell-associated neurotoxicity were in line with prior reports of CAR T
therapy and no worse [56]. Three of these four patients treated derived radiographic and
clinical benefit after intravenous administration of anti-GD2 CAR T cells [56].

CAR T approaches in glioma are summarized in Table 2. While single-antigen CAR
T cells may create an anti-tumor immune response expressing that antigen, the target
may not be present in all tumor cells [1,57]. Epitope spreading refers to the concept of
diversifying epitope specificity and targeting multiple areas of a single protein or multiple
tumoral proteins [57]. Application of this concept by developing CAR T-cell products
targeting multiple antigens may result in a more robust whole-tumor immune response.
Combination of CAR T-cell therapy with immune checkpoint inhibitors may similarly
improve efficacy and duration of anti-tumor immunity.

Table 2. Chimeric Antigen Receptor (CAR) T-Cell Therapies in Glioma.

Target Summary

IL13Rα2
• (IL)-13 receptor frequently overexpressed in GBM.
• In a pilot study, 3 patients with rGBM 1 treated, mOS 2 11 months.

ErbB2/HER2
• Receptor tyrosine kinase ErbB2/HER2 frequently overexpressed in GBM.
• In a phase I study, 17 patients with rGBM treated, mOS 11 months.

EGFRvIII
• Epidermal growth factor receptor (EGFR) variant III (EGFRvIII) is the most common EGFR alteration

found in GBM.
• In a phase I study, 10 patients with rGBM treated, mOS 8 months.

CLTX • Chlorotoxin (CLTX) is a naturally occurring tumor-binding molecule.
• Phase I clinical trial NCT04214392 underway.

GD2 • Disialoganglioside GD2 is highly expressed on target H3K27M-mutated glioma cells.
• In a phase I study, 4 patients with H3K27M mutant midline glioma treated, 3 had radiographic response.

1 rGBM: Recurrent glioblastoma; 2 mOS: Median overall survival.

4. Vaccine-Based Therapy

Vaccine-based therapies are intended to elicit an anti-tumor response by introducing T
cells to immunogenic tumor-specific antigens unique to tumor cells or tumor-associated
antigens overexpressed on tumor cells [1,11]. While identification of target antigens suffi-
ciently expressed in the entire population of tumor cells and the phenomenon of antigen
escape represent significant challenges, multiple clinical trials already completed in this
arena have added greatly to the understanding of GBM immunotherapy [1].

Rindopepimut is an EGFRvIII-targeting peptide vaccine that was studied in a phase
III, randomized, double-blind, clinical trial for patients with newly diagnosed GBM with
confirmed EGFRvIII expression by central analysis who had undergone maximal resection
and standard-of-care radiation therapy with concomitant temozolomide [58]. Patients were
randomized to monthly intradermal vaccine injections compared to control, concurrent
with adjuvant oral temozolomide [58]. A total of 745 patients were enrolled; 371 received
vaccine treatment and 374 received control. The study was terminated for futility with no
difference in mOS between the two groups [51]. Importantly, loss of EGFRvIII expression
was described ~57–59% of tumors in both treatment and control arms [59]. Loss of EGFRvIII
expression was not correlated with vaccine treatment or anti-EGFRvIII antibody titers,
suggesting a change occurring with GBM progression rather than a response to vaccine
treatment [59].

Survivin is an intracellular anti-apoptotic protein that inhibits caspase activation and
has a role in regulation of cell division [60]. Survivin is highly expressed in GBM cells,
representing a potential vaccine target [60]. In a study of nine patients with recurrent GBM,
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survivin peptide mimic SurVaxM was associated with mOS of 86.6 weeks [60]. Ongoing
clinical trial NCT04013672 is evaluating SurVaxM in combination with pembrolizumab in
patients with recurrent GBM [61].

Wilm’s tumor 1 (WT1) is a transcription factor involved in oncogenesis and detected
in solid organ tumors including GBM [62]. In a phase I study, 24 patients with advanced
solid organ tumors were treated with WT1 peptide vaccine DSP-7888 [62]. Intradermal and
subcutaneous routes of administration were compared with higher WT1-specific cytotoxic
lymphocyte induction noted with intradermal injection [62]. Seven patients with GBM
were included in the study, two of whom had stable disease [62]. Ongoing clinical trial
NCT03149003 is evaluating DSP-7888 in combination with bevacizumab for patients with
recurrent GBM [63].

VXM01 is a plasmid containing an attenuated Salmonella typhi, TY21a that encodes
vascular endothelial growth factor receptor-2 (VEGFR-2) [64]. Administration of vaccine
platform VXM01 is intended to recruit VEGFR-2-targeting T cells to target the tumor and
its vasculature [64]. In early data presented, 14 patients with progressive GBM were treated
with the vaccine with a decrease in intratumoral PD-L1 expression correlated with increased
survival [64]. Thus, in ongoing clinical trial NCT03750071 for patients with recurrent GBM,
VXM01 is combined with anti-PD-L1 checkpoint inhibitor avelumab [65].

IMA950 is a multipeptide vaccine developed based on antigen expression patterns
on the surface of GBM samples [66]. IMA950 contains nine major histocompatibility
complex (MHC) class I and two MHC class II peptides [66]. Poly-ICLC is an adjuvant
administered with the vaccine that was shown to enhance vaccination efficacy in mouse
glioma model [66]. In a phase I/II clinical trial, patients with newly diagnosed GBM were
treated with the vaccine [66]. The first six patients received IMA950 intradermally and
poly ICLC intramuscularly [66]. Vaccine-induced CD8+ T-cell responses were restricted
to a single peptide and CD4+ T-cell responses were absent [66]. After protocol amend-
ment, IMA950 and poly-ICLC were mixed and 13 additional patients were treated with
63.2% single-peptide, 36.8% multi-peptide CD8+ T-cell responses as well as 84.6% of pa-
tients had tumor-peptide specific CD4+ T-cell responses [66]. mOS was 19 months [66].
Ongoing clinical trial NCT03665545 is studying IMA950/Poly-ICLC in combination with
pembrolizumab for recurrent GBM [67].

Another multipeptide vaccine under investigation is EO2401, which consists of three
‘oncomimics’, described as peptides homologous, but not identical, to tumor antigens [68,69].
Ongoing clinical trial NCT04187404 is studying use of EO2401 in metastatic adrenocortical
carcinoma as well as malignant pheochromocytoma and paraganglioma [68]. In a parallel
phase 1b/2a clinical trial NCT04116658, immunogenicity of the vaccine is being assessed in
the setting of recurrent GBM [69].

Personalized neoantigen vaccines represent a different approach to anti-tumor vaccine
development informed by sequencing data from individual tumors. In a phase I/Ib trial,
a neoantigen vaccine was administered to 10 patients with newly diagnosed GBM [70].
mOS of 16.8 months was reported with neoantigen-specific CD4+ and CD8+ T-cell re-
sponse noted in patients who were not receiving dexamethasone, suggesting potential for
neoantigen targeting vaccines to alter the GBM immune milieu in absence of corticosteroid
treatment [70].

In another phase I trial, 15 patients with newly diagnosed GBM were treated with
personalized vaccine APVAC1, derived from premanufactured library of antigens based on
tumor sequencing as well as APVAC2, targeting neoepitopes [71]. Sustained CD8+ memory
T-cell responses were noted with APVAC1 and predominantly CD4+ responses were noted
with APVAC2 [71]. Ongoing clinical trial NCT02287428 is evaluating use of a personalized
neoantigen vaccine in combination with pembrolizumab for patients with newly diagnosed
GBM [72].

An alternative approach to antitumor vaccine development for GBM involves use of
antigen-presenting dendritic cells (DCs) to generate a polyvalent immune response [11].
In a phase II, double-blind, placebo-controlled randomized clinical trial for patients with
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newly diagnosed GBM, ICT-107 DC vaccine was studied [73]. GBM stem cell-associated
peptides MAGE-1, HER-2, AIM-2, TRP-2, gp100, and IL13Rα2 were selected as antigens of
interest for development of this DC vaccine [73]. Autologous monocytes were harvested
from each subject with DC differentiation stimulated by culturing in recombinant gran-
ulocyte monocyte colony stimulating factor (GM-CSF) and interleukin 4 (IL4), followed
by interferon gamma and lipopolysaccharide [73]. Resulting DCs were incubated with
9–10 amino acid synthetic peptides derived from the six pre-selected antigens [73]. Subjects
were subsequently administered 1 mL of pulsed DCs (1.1 × 107 cells/mL) with controls
administered 1 mL of DCs unpulsed with antigen (3.6 × 106 cells/mL) [73]. A total of
124 patients were enrolled, randomized 2:1 between ICT-107 and unpulsed DC [73]. mOS
was 17 months in the treatment group compared to 15 months in the control group, which
was not statistically significant [73]. Further analysis revealed a differential immune re-
sponse based on HLA status [73]. MAGE-1 and AIM-2 were selected as HLA-A1 antigens.
gp100, HER2/neu, IL13Rα2, and TRP-2 were selected as HLA-A2 antigens [73]. Though
not statistically significant, the mOS benefit only occurred in HLA-A2 patients independent
of MGMT methylation status [73]. This observation suggests a potential role for antigen
and patient selection based on HLA typing in future studies.

In a phase II randomized trial in patients with newly diagnosed GBM with at least
70% resection, patients were randomized in a 1:1 fashion to standard-of-care therapy (SOC)
and SCO alongside dendritic cell vaccine Audencel [74]. Vaccine was administered weekly
during weeks 7 to 10, followed by monthly intervals [74]. mOS was 18.3 months in both
groups [74].

In another study conducted at China Medical University, 34 patients with newly diag-
nosed GBM were treated with SOC therapy with or without adjuvant autologous dendritic
cell vaccine [75]. Vaccination was administered starting 1–2 months postoperatively and
continued over a 6-month period [75]. Among the 76 patients studied, mOS for the vaccine
group was 31.9 months, comparing favorably to the control group at 15.0 months [75].
However, Results of the ICT-107 DC vaccine, Audencel DC vaccine, and China Medical
University DC vaccine studies were combined in a metanalysis and no substantial effect on
mOS was noted [76].

In a different study, autologous DCs were pulsed with tumor cell lysate [77]. 331 patients
with newly diagnosed GBM were randomized 2:1 between DCVaxL and placebo ad-
ministered following completion of radiation therapy during treatment with adjuvant
temozolomide on days 0, 10, and 20, then months 2, 4, and 8, and thereafter at 6-month
intervals starting at month 12 [77]. Of note, 1599 patients were screened for the study
with 1268 excluded for reasons such as non-GBM diagnosis (306), insufficient tumor lysate
(201), disease progression (250), issues with vaccine manufacture (75), and unsuccessful
leukapheresis (61) [77]. Among 331 evaluable patients, 232 were randomized to vaccine
and 99 to placebo with crossover permitted at progression and 90% of participants ulti-
mately receiving vaccine treatment [77]. Preliminary data indicated 23.1 months mOS,
which compares favorably to historical mOS of 15–17 months from other studies with
further analysis pending [77]. Ongoing clinical trial NCT04201873 is evaluating dendritic
cell vaccine ATL-DC with checkpoint inhibitor pembrolizumab in patients with surgically
accessible recurrent GBM [78].

Another autologous dendritic cell vaccine was studied in a phase II clinical trial in
patients with newly diagnosed GBM undergoing fluorescence-guided maximal resection
with less than 1 cm3 residual tumor [79]. Following surgery, patients were treated with
radiation therapy with concomitant temozolomide chemotherapy followed by up to 12 cy-
cles of adjuvant temozolomide or until disease progression [79]. Dendritic cell vaccine was
administered prior to radiation therapy, second three weeks after radiotherapy, followed
by two monthly, four bi-monthly, and subsequent quarterly administrations [79]. Among
32 evaluable patients, mOS was 23.4 months [79]. In a phase I/II study, autologous den-
dritic cell vaccine was studied in 77 patients with newly diagnosed GBM [80]. Following
radiation therapy, patients received four weekly vaccine administrations [80]. Four addi-
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tional vaccinations were administered during adjuvant temozolomide chemotherapy [80].
Among evaluable patients, mOS was 18.3 months [80].

Vaccine-based therapies in glioblastoma are summarized in Table 3. To date there
have been no major successes with use of single-peptide, multipeptide, neoantigen-based,
or dendritic cell-based vaccines in GBM leading to broad implementation. However,
prior studies have provided key findings to assist future vaccine development such as
loss of EGFRvIII expression noted with rindopepimut highlighting the phenomenon of
antigen escape, the importance of PD-L1 expression noted with VXM01, and HLA-based
response noted for ICT-107 that can inform target antigen selection, patient selection,
and multi-agent combinatorial approaches in future studies [59,64,73]. Despite good
tolerability and feasibility demonstrated across multiple studies, DC vaccine approaches
did not demonstrate a survival benefit in a metanalysis [76]. Given significant differences in
administration schedules utilized in DC vaccine studies to date, optimization of vaccination
timing and patient selection based on HLA profiles may improve results. With multiple
ongoing studies, development of vaccine-based strategies for GBM treatment remains an
active area of research.

Table 3. Vaccine-Based Therapies in Glioblastoma.

Target/Product Summary

EGFRvIII
Rindopepimut

• Rindopepimut is an EGFRvIII targeting peptide vaccine.
• Phase III, randomized, double-blind, clinical trial for newly diagnosed GBM 1 with EGFRvIII

expression terminated for futility due to no difference in mOS 2

Survivin
SurVaxM

• Survivin is an intracellular anti-apoptotic protein highly expressed in GBM cells.
• In a phase I study, 9 patients with rGBM 3, treated with survivin peptide mimic SurVaxM, mOS

86.6 weeks.
• Phase II clinical trial NCT04013672 underway.

WT1
DSP-7888

• Wilm’s tumor 1 (WT1) is a transcription factor detected in GBM.
• In a phase I study, 7 patients with rGBM treated with WT1 peptide vaccine DSP-7888, 2 had

stable disease.
• Phase III clinical trial NCT03149003 underway.

VEGFR-2
VXM01

• Vaccine platform VXM01 includes an attenuated Salmonella typhi, TY21a that encodes vascular
endothelial growth factor receptor-2 (VEGFR-2).

• In a phase I study, 14 patients with rGBM, treated with tolerable safety.
• Phase I/II clinical trial NCT03750071 underway.

Multipeptide
IMA950

• IMA950, multipeptide vaccine based on GBM cell surface antigen expression patterns.
• In a phase I/II study, 19 patients with GBM treated, mOS 19 months after protocol amendment and

product modification.
• Phase I/II clinical trial NCT03665545 is underway.

Multipeptide
EO2401

• EO2401, multipeptide vaccine based on oncomimics.
• Phase Ib/IIa clinical trial NCT04116658 is underway.

Personalized
Neoantigen

Vaccine

• In a phase I/Ib trial, APVAC neoantigen vaccine administered to 10 patients with new GBM, mOS of
16.8 months.

Personalized
APVAC

• In a phase I trial, personalized vaccine APVAC administered to 15 patients with new GBM,
tolerable safety.
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Table 3. Cont.

Target/Product Summary

Dendritic Cell
ICT-107

• Uses antigen-presenting dendritic cells (DCs) to generate a polyvalent immune response.
• In a phase II, randomized, placebo-controlled trial, 124 patients treated, mOS 17 months in treatment

group compared to 15 months in placebo group.

Dendritic Cell
Audencel

• In a phase II, 1:1 randomized trial, 76 patients treated, mOS 18.3 months in both treatment and
control groups.

Dendritic Cell
China Medical
University trial

• In a phase II, randomized trial, 34 patients treated, mOS 31.9 months in treatment group compared to
15 months in placebo group.

Dendritic Cell
DCVaxL

• In a phase III, randomized, placebo-controlled trial, 331 patients treated, mOS 23.1 months in treatment
group compared to historical mOS 15–17 months, further analysis pending.

Dendritic Cell
EudraCT

2009-009879-35 trial

• In a phase II trial, 32 patients with new GBM who underwent fluorescence-guided maximal resection
treated, mOS 23.4 months.

Dendritic Cell
EudraCT

2006-002881-20 trial
• In a phase I/II trial, 77 patients with new GBM treated postoperatively, mOS 18.3 months.

1 GBM: Glioblastoma; 2 mOS: Median overall survival; 3 rGBM: Recurrent glioblastoma.

5. Viral Therapies

Oncolytic viruses can be administered either intravenously or intratumorally to be
selectively taken up by tumor cells, generating an initial cytotoxic response with intention
to trigger antigen presentation to the immune system and resulting in durable adaptive
and innate immune response [81]. Multiple viral vectors have been studied for treatment
of GBM, attempting to elicit durable antitumor immune responses [1].

AdV-tk is an adenoviral vector that has been studied in a phase II clinical trial in
patients with newly diagnosed GBM, anaplastic astrocytoma, and anaplastic oligoden-
droglioma [82]. AdV-tk, which contains the herpes simplex virus thymidine kinase gene,
was administered to the resection bed during surgery and selectively taken up by rapidly
dividing tumor cells rather than quiescent nearby normal brain tissue [82]. Patients were
subsequently treated with valacyclovir, which competitively inhibits DNA synthesis in
infected cells, resulting in cell death [82]. Among GBM patients treated in the study, mOS
was 16.7 months, compared to 13.7 months in controls, favoring the treatment arm with
the greatest benefit observed in patients undergoing a gross total resection [82]. In an
ongoing clinical trial NCT03576612 for patients with newly-diagnosed high grade gliomas,
AdV-tk intratumoral injection followed by valacyclovir is being combined with checkpoint
inhibitor nivolumab for additional antitumor immune response [83].

Interleukin 12 (IL-12) is a cytokine with anticancer activity, but limited application as a
systemic therapeutic agent due to severe toxicity [84]. A ligand-inducible expression switch
called the RheoSwitch Therapeutic System® (RTS®) was designed for local control of IL-12
production within the tumor microenvironment [85]. The system relies on use of activator
ligand velemidex with delivery of IL-12 transgene achieved by use of an adenoviral vector
Ad-RTS-hIL-12 [85]. In a phase I study of 31 patients with recurrent glioma, the safety
and tolerability of this approach was established [86]. In a subsequent open-label phase I
dose-escalation trial, use of Ad-RTS-hIL-12, velemidex, and checkpoint inhibitor nivolumab
was studied as a combinatorial immunotherapy with tolerable toxicity [85]. A larger phase
II study NCT04006119 is in progress for combination of Ad-RTS-hIL-12, velemidex, and
anti-PD-1 checkpoint inhibitor cemiplimab [87].

Local IL-12 release is also leveraged with oncolytic herpes simplex virus (oHSV)
M032 [88,89]. The oncolytic virus is selectively taken up by tumor cells resulting in an initial
cytotoxic effect while simultaneously causing tumor cells to secrete IL-12 [88]. Tolerability
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of the approach was studied in twenty-five canine patients [89]. Results from NCT02062827,
a phase I study of M032 in patients with recurrent glioma are pending [90]. An ongoing
phase II clinical trial NCT05084430 is evaluating combination of M032 with pembrolizumab
in patients with recurrent glioma [91].

Another oHSV viral vector under study for treatment of recurrent GBM is rQNestin34.5v.2 [92].
This vector is modified to replicate only in GBM cells that express nestin, which is a stem
cell marker [92]. Ongoing clinical trial NCT03152318 is studying intravenous adminis-
tration of cyclophosphamide preoperatively followed by intratumoral administration of
rQNestin34.5v.2 [93]. In this setting, chemotherapy agent cyclophosphamide is intended to
have an immunomodulatory effect [94].

oHSV G47∆ similarly selectively replicates in cancer cells, including GBM stem
cells [95,96]. In a phase II clinical trial, G47∆ was administered by stereotactic intratu-
moral injection to patients with recurrent GBM up to six times [95]. Repeated stereotactic
injections were well tolerated with one-year survival among 13 patients reported at 92%
with additional studies of the oHSV planned [95].

DNX-2401 is an oncolytic adenovirus modified to replicate selectively in retinoblas-
toma pathway-deficient cells and intended to elicit tumor necrosis while subsequently
eliciting an anti-tumor immune response [97,98]. In a phase I study, 31 patients with re-
current GBM were treated with DNX-2401 [98]. Group I received intratumoral injection
without resection [98]. Group II underwent injection followed by surgical resection and a
second injection 14 days later [98]. Patients in the resection group had mOS of 13.5 months
compared to 9.5 in the non-resection group with concurrent corticosteroid use identified
as a factor negatively influencing survival [98]. Ongoing trial NCT03896568 is evaluating
intra-arterial injection of the oncolytic adenovirus in patients with recurrent high-grade
glioma [99].

CRAd-Survivin-pk7 is another oncolytic adenovirus under evaluation for GBM [100].
In a phase I clinical trial, HB1.F3-CD human neural stem cells were loaded with the
oncolytic virus and injected into walls of the resection cavity after surgery with intended
selective uptake of the vector by tumor cells [100]. Twelve patients with newly diagnosed
high-grade glioma received injections followed by standard-of-care radiation therapy with
concomitant and adjuvant temozolomide chemotherapy [100]. mOS was 18.4 months with
no dose-limiting toxicities encountered and increase in CD8+ T cells noted at the highest
studied dose [100]. Larger scale clinical trials are planned.

PVSRIPO is a live attenuated poliovirus type 1 vaccine under study for antitumor
effect in GBM as well as melanoma [101,102]. This oncolytic virus has an internal ribosome
entry site replaced with that of human rhinovirus type 2, which ablates neurovirulence [103].
CD155, which is broadly upregulated in malignant cells, mediates virus tropism for tu-
mor [101]. Similar to other oncolytic viruses, the intent is to induce a cytotoxic effect
followed by antitumor immune response [103]. In a phase I clinical trial for patients with
recurrent GBM, 61 patients were enrolled and received vaccine intratumorally [101]. Dur-
ing the dose expansion phase of the trial, overall survival was 21% at 24 months with 19%
of the participants experiencing PVSRIPO-related grade 3 or higher adverse events such
as seizure, confusion, or pyramidal track syndrome [101]. Further results from phase II
clinical trial NCT02986178 are pending [104].

A different approach to viral-based tumor treatment strategies involves use of gene
therapy where viruses rendered replication-incompetent are administered to deliver an-
ticancer complementary DNA (cDNA) [1]. Vocimagene amiretrorepvec (Toca 511) is a
gamma-retroviral replicating vector that encodes cytosine deaminase [105]. Following in-
jection of the virus into the resection wall, treatment with extended-release 5-fluorocytosine
(Toca FC) leads to local production of 5-fluorouracil, which depletes immuno-suppressive
myeloid cells and helps induce antitumor immunity [105]. A 21.7% durable response rate
was reported in an early phase trial with use of Toca 511 and Toca FC [105]. In a subsequent
phase III trial, 403 patients with recurrent GBM were randomized 1:1 between viral ther-
apy and standard-of-care chemotherapy [106]. Primary endpoint was not met with mOS
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11.1 months for the treatment arm compared to 12.2 months for the control arm [106]. It
has been noted that median prodrug dosing was suboptimal in the phase III study and
further investigation may identify specific patient populations who may benefit [107].

Viral therapies in glioma are summarized in Table 4. These therapies have so far
had limited application in GBM with early phase clinical trials recruiting small numbers
of patients [1]. Intratumoral injection does limit application to those patients who are
candidates for additional surgery at the time of GBM recurrence. However, the dual
delivery of an immediate cytotoxic effect followed by antitumor immunity may eventually
become a viable option in the newly diagnosed GBM setting.

Table 4. Viral Therapies in Glioma.

Product Summary

AdV-tk
• Adenoviral vector.
• In a clinical trial, mOS 1 was 16.7 months in GBM 2 patients.
• Phase I clinical trial NCT03576612 underway.

Ad-RTS-hIL-12
• Adenoviral vector that uses activator ligand velemidex for delivery of IL-12 transgene.
• In a phase I study, 31 patients with recurrent glioma treated, tolerable safety.
• Phase II clinical trial NCT04006119 ongoing.

M032
• Oncolytic herpes simplex virus (oHSV).
• Phase I clinical trial results pending.
• Phase II clinical trial NCT05084430 ongoing.

rQNes-tin34.5v.2 • oHSV viral vector.
• Phase I clinical trial NCT03152318 ongoing.

oHSV G47∆ • oHSV viral vector.
• In a phase II clinical trial, survival among 13 patients reported at 92%.

DNX-2401
• Oncolytic adenovirus modified to replicate in retinoblastoma pathway deficient cells.
• In a phase I study, 17 patients with rGBM 3 treated, mOS of 13.5 months compared to 9.5 in the

non-resection group.

CRAd-Survivin-pk7 • Oncolytic virus.
• In a phase I study, 31 patients with new GBM treated, mOS 18.4 months.

PVSRIPO

• Live attenuated poliovirus. Internal ribosome entry site replaced with that of human rhinovirus type
2, which ablates neurovirulence.

• In a phase I clinical trial, 61 patients enrolled, overall survival 21% at 24 months.
• Phase II clinical trial NCT02986178 underway.

Toca 511
• Gamma-retroviral replicating vector that encodes cytosine deaminase.
• In a phase III trial, 403 patients with rGBM treated, mOS 11.1 months compared to 12.2 months for

the control arm.

1 mOS: Median overall survival; 2 GBM: Glioblastoma; 3 rGBM: Recurrent glioblastoma.

6. Cytokine Therapy

Standard of care for radiation therapy and temozolomide used for management of
GBM is associated with severe prolonged lymphopenia in about 40% of patients and is
associated with poorer patient survival [108]. A recent study showed that a novel long-
acting interleukin-7 agonist, NT-I7, demonstrated the ability to correct this treatment-related
lymphopenia and significantly increased peritumoral CD8 lymphocytes and improved
survival in murine GBM models [109].

Clinical trials are ongoing to evaluate the effect of NT-I7 on lymphocytes and survival
in patients with high-grade gliomas. Early data from NCT03687957 showed that NT-I7
increased lymphocyte numbers with minimal toxicity [110]. Further study is needed to
determine whether there is survival benefit of this approach in patients with GBM.
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7. Future Directions

Successful implementation of immunotherapy in GBM remains elusive. Negative
phase III clinical trials with checkpoint inhibitors, vaccine-based therapy rindopepimut,
and viral therapy Toca 511 are disappointing [26–28,58,106]. However, studies for multiple
additional vaccine- and viral-based therapies are underway along with CAR T cell-based
therapy and combination approaches using checkpoint inhibitors. Future larger scale
implementation of immunotherapy in GBM remains possible. Approaches will need to
consider issues including antigen escape, tumor heterogeneity, tumor microenvironment,
drug delivery strategies, patient selection informed by tumor genetics, and multimodality
treatment approaches.
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