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Immunotherapy targeting toll-like receptor
2 alleviates neurodegeneration in models
of synucleinopathy by modulating
α-synuclein transmission and
neuroinflammation
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Abstract

Background: Synucleinopathies of the aging population are an heterogeneous group of neurological disorders that

includes Parkinson’s disease (PD) and dementia with Lewy bodies (DLB) and are characterized by the progressive

accumulation of α-synuclein in neuronal and glial cells. Toll-like receptor 2 (TLR2), a pattern recognition immune

receptor, has been implicated in the pathogenesis of synucleinopathies because TLR2 is elevated in the brains of

patients with PD and TLR2 is a mediator of the neurotoxic and pro-inflammatory effects of extracellular α-synuclein

aggregates. Therefore, blocking TLR2 might alleviate α-synuclein pathological and functional effects. For this purpose,

herein, we targeted TLR2 using a functional inhibitory antibody (anti-TLR2).

Methods: Two different human α-synuclein overexpressing transgenic mice were used in this study. α-synuclein low

expresser mouse (α-syn-tg, under the PDGFβ promoter, D line) was stereotaxically injected with TLR2 overexpressing

lentivirus to demonstrate that increment of TLR2 expression triggers neurotoxicity and neuroinflammation. α-synuclein

high expresser mouse (α-Syn-tg; under mThy1 promoter, Line 61) was administrated with anti-TLR2 to examine that

functional inhibition of TLR2 ameliorates neuropathology and behavioral defect in the synucleinopathy animal model.

In vitro α-synuclein transmission live cell monitoring system was used to evaluate the role of TLR2 in α-synuclein

cell-to-cell transmission.

Results: We demonstrated that administration of anti-TLR2 alleviated α-synuclein accumulation in neuronal and

astroglial cells, neuroinflammation, neurodegeneration, and behavioral deficits in an α-synuclein tg mouse model

of PD/DLB. Moreover, in vitro studies with neuronal and astroglial cells showed that the neuroprotective effects

of anti-TLR2 antibody were mediated by blocking the neuron-to-neuron and neuron-to-astrocyte α-synuclein

transmission which otherwise promotes NFκB dependent pro-inflammatory responses.
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Conclusion: This study proposes TLR2 immunotherapy as a novel therapeutic strategy for synucleinopathies of

the aging population.

Keywords: Immunotherapy, α-synuclein, Toll-like receptor 2, Transmission, Neuroinflammation, Neurodegeneration,

Synucleinopathy, Parkinson’s disease

Background

Following Alzheimer’s Disease (AD), synucleinopathies

such as Parkinson’s disease (PD) and dementia with Lewy

bodies (DLB) are the second most common group of neu-

rodegenerative disorders of the aging population [1]. Over-

all, they represent heterogeneous group of neurological

conditions, characterized by progressive accumulation of

α-synuclein in neuronal and glial cells, selective neuronal

degeneration, and neuroinflammatory responses [1–4].

The mechanisms through which the various species of

α-synuclein aggregates lead to selective neurodegeneration

and neuroinflammation is not completely understood

[5, 6]. However, previous studies suggest that α-synuclein

oligomers might trigger synaptic dysfunction by interfering

with endo-lysosomal transport, mitochondrial function,

and calcium dysregulation [5]. Moreover, transmission

of α-synuclein aggregates from neuron-to-neuron and

neuron-to-glia has been suggested as the underlying

mechanism of the neurodegeneration and neuroinflam-

mation in synucleinopathy [1].

We have previously shown that the oligomeric forms of

extracellular α-synuclein interact with Toll-like receptor 2

(TLR2) on the surface of neurons and glial cells [7, 8].

While engagement of neuronal TLR2 by extracellular

α-synuclein resulted in neurodegeneration by inhibition

of autophagy via AKT/mTOR signaling [8], extracellular

α-synuclein activated microglia through TLR2 signaling

via NFκB and p38 MAPK, thereby resulted in neuro-

inflammatory responses with TNFα and IL-6 productions

[7]. In addition, recent studies suggested that other recep-

tors such as lymphocyte-activation gene 3 (LAG3) might

mediate the pathological effects of α-synuclein transmis-

sion [9].

TLR2 belongs to a family of pattern recognition receptor

which modulate responses to exogenous pathogens as well

as endogenous misfolded proteins released following dam-

age and cellular stress [10]. In the central nervous system,

TLR2 is expressed in glial cells and neuronal populations,

and recent studies have shown that the levels of TLR2 are

elevated in neurodegenerative disorders such as AD and PD

[11–14]. Single nucleotide polymorphism in the TLR2 gene

has also been associated with PD [15]. Moreover, we have

recently shown that inhibition of TLR2 by gene deletion

or siRNA-mediated knock down rescues the pathology as-

sociated with α-synuclein accumulation in cellular models

and transgenic mice [8]. Therefore, TLR2 and downstream

signaling have been suggested a new therapeutic target for

synucleinopathy [7, 8, 16].

In addition to approaches modulating TLR2 activity by

genetic manipulations such as siRNA, more recent stud-

ies have also proposed the use of small organic mole-

cules that antagonize TLR2 signaling [17]. While these

approaches have some advantages, the main drawback is

the low CNS penetration ration and the non-selectivity

of small molecules. As an alternative, recent studies have

suggested that the immunotherapy blocking α-synuclein

[18] and modulating the immune responses might hold

some value [19]. For example, neutralizing TLR2 with a

monoclonal antibody has been recently shown to ameli-

orate the pathology in a murine model of AD [14].

We have previously shown that α-synuclein oligomers

propagate from neuron to glial cells engaging the TLR2

and promoting inflammation which reduced in the TLR2

knockout background [8], however it is unclear if immuno-

therapy with TLR2 antibodies might rescue the complex

pathology in models of synucleinopathy. In this context,

the main objective of this study was to evaluate the thera-

peutical effects of targeting TLR2 with a functional inhibi-

tory antibody (anti-TLR2) and to better understand the

mechanisms action of the immunotherapy by investigating

the role of TLR2 dependent pro-inflammatory signaling of

extracellular α-synuclein via NFκB. We show that the ad-

ministration of anti-TLR2 was able to decrease the accu-

mulation of neuronal and astroglial α-synuclein, resulting

in reduced neuroinflammation, neurodegeneration, and

behavioral deficits in an α-synuclein transgenic mouse

model of PD/DLB. Moreover, the anti-TLR2 blocked

the neuron-to-neuron and neuron-to-astrocyte α-synuclein

transmission and reduced the NFκB dependent pro-

inflammatory responses in cell based model. Therefore,

TLR2 might be a viable target and TLR2 immunother-

apy is a novel therapeutic strategy for synucleinopathies

of the aging population.

Methods

Antibodies and chemicals

Pam3CSK4 was purchased from InvivoGen (San Diego,

CA). The following antibodies were used for western

blot analysis, immunostaining analysis, and animal model

injection: α-synuclein (Syn-1; BD Bioscience, San Diego,

CA), α-synuclein (Syn211), β-actin (Sigma-Aldrich), NeuN,

GFAP (GA5), Tyrosine Hydroxylase (Millipore, County
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Cork, Ireland), Iba1 (Wako, Richmond, VA), TLR2, IL-6,

phosphor-NFκB (Abcam, Cambridge, MA), TLR2 (clone

T2.5), IgG (eBioscience, San Diego, CA), Active-caspase

3 (R&D systems, Minneapolis, MN), Venus-GFP, and

phosphor-p38 MAPK (Cell signaling, Danvers, MA).

Human specimens, neuropathological evaluation and

criteria for diagnosis

Human specimens (8 non-demented controls and 8

PD/DLB cases) were obtained from Alzheimer Disease

Research Center/University of California, San Diego.

The diagnosis of PD/DLB was based on the initial clinical

presentation with dementia followed by parkinsonism and

the presence of α-synuclein and ubiquitin positive Lewy

bodies in cortical and subcortical regions [20].

Delivery of lentiviral vectors into mice brain

To determine the role of TLR2 in α-synuclein pathology,

we delivered either LV-control or LV-TLR2 into non-tg

and α-syn-tg mice expressing human wild-type α-synuclein

under the PDGF-β promoter (D line) [21]. Two microliters

of either LV-control or LV-TLR2 (2.2 × 107 infection units)

was bilaterally stereotaxically injected into the hippocampus

(anterior-posterior [AP], − 2.0 mm; medial-lateral [ML],

1.5 mm; and dorsal-ventral [DV], − 1.3 mm). After 5 weeks

post injection, mice brains were processed for immunohis-

tochemistry and biochemical analysis. The right hemi-

brains were post-fixed in phosphate-buffered 4% PFA at

4 °C for neuropathological analysis, while the left hemi-

brains were snap-frozen and stored at − 70 °C for biochem-

ical analysis. All procedures for animal use were approved

by the institutional Animal Care and Use Committee at

University of California, San Diego under protocol S02221.

Synucleinopathy mouse model and anti-TLR2 treatment

Transgenic mice overexpressing wild-type human α-

synuclein under the mThy1 promotor (α-Syn-tg, Line

61) were used for TLR2 passive immunization analysis

since mice develop α-synuclein accumulation in cortical/

subcortical regions, neuroinflammation, neurodegener-

ation, and behavioral deficits [22–24]. Nine-month old

mice were injected intraperitoneally (IP) with either

control IgG or T2.5 antibodies (5 mg/kg) once a week

for 4 weeks. At the end of the study, mice were tested

for behavioral defect. Upon termination, the right

hemi-brains were post-fixed for neuropathological ana-

lysis and the left hemi-brains were stored at − 70 °C for

biochemical analysis. All procedures for animal use

were approved by the institutional Animal Care and

Use Committee at University of California, San Diego

under protocol S02221.

Immunohistochemistry, double-immunolabeling, and

neuropathological analysis

The procedures for immunohistochemical, immunofluor-

escence, double-immunolabeling, and neuropathological

analysis have been described elsewhere [25]. Briefly,

blind-coded sagittal brain sections were incubated with

primary antibodies at 4 °C for overnight. To detect protease

K (PK) resistant α-synuclein aggregates, sections were

pre-treated with PK (10 μg/ml) for 8 min as previously de-

scribed [26]. The next day, sections were incubated with ei-

ther biotinylated-, FITC-conjugated, Texas-red-conjugated

secondary antibodies or detected with avidin D-HRP (ABC

elite, Vector Laboratories, Burlingame, CA) and with

Tyramide Signal Amplification Direct system (PerkinElmer,

Waltham, MA), respectively. Sections were imaged by

Olympus BX41 microscope. All immunoreactivity levels

were determined by optical density analysis using Image

Quant 1.43 program (NIH). The cell numbers of GFAP,

Iba-1, and NeuN-positive cells were determined per field

(230 μm × 184 μm) for each animal based on cell body

recognition using Image Quant 1.43 program (NIH).

Preparation of tissue extract and western blot analysis

The procedures for tissue extraction preparation and

western blot analysis have been described elsewhere [8].

Briefly, whole brain homogenates were prepared in the

1% triton-containing lysis buffer, then sonicated. The

proteins were separated by electrophoresis and transferred

to PVDF membranes using semi-dry Trans-Blot Turbo

Transfer System (Bio-Rad, Hercules, CA). Membranes

were blocked with Odyssey blocking buffer (LI-COR

Biosciences, Lincoln, NE) and probed with primary and

followed by fluorescence-tagged secondary antibody. The

fluorescent signal detection and densitometric analysis were

performed using ODYSSEY CLx (LI-COR Biosciences) and

Image Studio (LI-COR Biosciences).

Behavioral analysis

The evaluation of behavioral defects of synucleinopathy

mouse model has been previously described elsewhere

[8, 27]. Briefly, to evaluate hyperactivity and anxiety-like

behavior of synucleinopathy mouse model, animals were

tested in the open field apparatus. Data was collected

using a Kinder Smart Frame Cage Rack Station activity

monitor system (Kinder Scientific, Poway, CA). Data col-

lection began when an animal was placed in the test

chamber. Animals were evaluated for 10 min to deter-

mine total activity, latency, and percentage of the time

in the periphery vs the center of the box (Thigmotaxis).

Cell cultures and lentiviral vector infections

The maintenance and differentiation of human SH-SY5Y

neuroblastoma, human primary astrocytes, and mouse pri-

mary cortical neurons were previously described [7, 8, 28].
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Construction and maintenance of V1S and SV2 cells

have been described elsewhere [29]. Construction and

preparation of lentiviral vectors (LV-control, LV-sh.control,

LV-α-Syn, LV-sh.TLR2, and LV-TLR2) have been previously

described [8, 30]. To deliver lentiviral vectors, cells

were infected with viral vectors at multiplicity of infection

of 100 (LV-control and LV-α-Syn) and 50 (LV-sh.control,

LV-sh.TLR2, and LV-TLR2).

In vitro live α-synuclein cell-to-cell transmission

monitoring assay

V1S (1.25 × 105) cells were seeded onto trans-well inserts

(Corning, Corning, NY) and either SV2 (1.25 × 105) or

human primary astrocytes (2.3 × 104) cells were placed

in lower compartments on poly-L-lysine-coated glass cov-

erslips. The next day, the trans-well inserts were moved

onto the lower compartment to start the co-culture. The

lower compartments were harvested at the indicated time

point. After incubation, coverslips were fixed with parafor-

maldehyde (4%) for 30 min in the dark. Fixed SV2 cells

were also single immunolabelled against active caspase-3.

Fixed human astrocytes were double-immunostained with

anti-N-term-venus and anti-IL-6. Coverslips were imaged

with a laser scanning confocal microscope Zeiss 800 (Carl

Zeiss, Oberkochen, Germany) at 900× magnification. An

average 10 fields were analyzed per condition and Image J

program was used to determine the pixel intensity. At first

images were converted to gray scale then inverted and a

mask generated to segment the two cellular compart-

ments. Then the region of interest in the cellular compart-

ment was traced semi-automatically and a threshold was

applied followed by estimation of pixel intensity. The di-

ameters of venus punctum were analyzed using Zen pro-

gram (Carl Zeiss). At least 300 puncta (100 puncta per set,

total 3 sets per condition) were analyzed.

α-Synuclein internalization analysis

dSY5Y neuronal cell, human primary astrocyte, or mouse

primary neuron was treated with either LZCM or αSCM

(α-synuclein concentration: approximate 1 μg/ml) [7] for

indicated hours in the presence of either IgG (5 μg/ml) or

T2.5 (5 μg/ml). After an incubation, cells were washed

with PBS for 3 times and fixed with 4% PFA. The fixed

cells were immunolabelled with antibodies against human

α-synuclein, active caspase-3, and/or N-terminus of venus.

Coverslips were analyzed with microscope Zeiss 800 (Carl

Zeiss) at 900× magnification.

Quantitative polymerase chain reaction

Extraction of total RNAs and preparation of cDNA

from mice brains and cultured cells have been de-

scribed previously [8, 25]. Quantitative real-time PCR was

performed using TaqMan® Fast Advanced Master Mix (Life

Technologies) according to manufacturer’s instruction with

gene specific primers obtained from Life Technologies,

such as TNFα (Mm00443258_m1), IL-1β (Mm00434228_m1

and Hs01555410_m1), IL-6 (Mm00446190_m1 and

Hs00174131_m1), CX3CL1 (Hs00171086_m1), CCL5

(Hs00982282_m1) and β-actin (Mm00607939_s1 and

Hs03023880_g1). Amplification of DNA products was

measured by the StepOnePlus real-time PCR system

(Applied Biosystems, Carlsbad, CA). Relative mRNA

levels were calculated according to the 2-exp (ΔΔCt)

method. All ΔCT values were normalized to β-actin.

Statistical analysis

InStat (GraphPad Software, San Diego, CA) was used for

all statistical analysis. All data were analyzed for statistical

significance by using either unpaired t test or one-way

ANOVA. All data are presented as means ± SEM.

Results

TLR2 expression is similarly increased in neuronal and glial

cells in α-synuclein transgenic models as is in the brains of

patients with PD/DLB

We have previously shown that TLR2 might mediate the

neurotoxic and pro-inflammatory effects of α-synuclein

oligomers [8] and it has been recently reported that

levels of TLR2 expression are increased in the brains of

patients with synucleinopathy [11–13]. Therefore, antag-

onizing TLR2 might be able to reverse or prevent the

pathological cascades triggered by α-synuclein oligomers.

To further validate this possibility, we analyzed the levels

of TLR2 in the brains of PD/DLB patients (Fig. 1a-c)

and in a transgenic mouse model expressing high levels

(3–4 fold) of human α-synuclein under the mThy1 pro-

moter (α-Syn-tg; Line 61) using immunolabeling analysis

(Fig. 1d-f) [23]. This α-Syn-tg model (high expresser of

α-synuclein) was selected because the mice develop

neurodegenerative, neuro-inflammatory, and behavioral

deficits similar to patients with PD/DLB [31]. The neo-

cortex of PD/DLB patients and α-Syn tg mice were

double-immunolabelled against TLR2 and various cel-

lular markers, such as NeuN (neuron, Fig. 1a and d),

GFAP (astrocyte, Fig. 1b and e), and Iba-1 (microglia,

Fig. 1c and f). We found that TLR2 expression was in-

creased in pyramidal neurons in the neocortex of patients

with PD/DLB and in the α-Syn-tg mice (Fig. 1a and d).

Moreover, we found that expression of TLR2 was in-

creased in astrocytes (Fig. 1b and e) and in microglia

(Fig. 1c and f ) of disease-affected human and mouse

brains. Together, these results show comparable increases

of TLR2 expression in neurons and glial cells in PD/DLB

patients and in the high expresser α-Syn-tg mice and

provides rationale to the notion that blocking TLR2 with

neutralizing antibodies might be of therapeutic value.
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Overexpression of TLR2 aggravates α-synuclein and

related neuropathology in wild-type mice and α-synuclein

low expresser transgenic mice

To further demonstrate that increasing TLR2 expression

triggers neurotoxic and neuro-inflammatory cascades

similar to those observed in patients with PD/DLB and

in high expresser α-synuclein mouse model line (Fig. 1),

we next delivered a TLR2-overexpressing lentiviral vector

(LV-TLR2) into the brains of non-tg and an α-synuclein

low expresser (1–1.5 fold) transgenic mouse (α-syn-tg,

under the PDGFβ promoter, D line) (Fig. 2; Additional file 1:

Figure S1) [23]. This α-syn-tg was selected because the

lower levels of α-synuclein expression allowing to analyze

combinatorial effects with viral vector mediated TLR2

overexpression, moreover we have previously shown that

this model mimics aspects of DLB neuropathology and

that knocking down TLR2 with shRNA is protective [8].

Either control virus (LV-control) or LV-TLR2 was stereo-

taxically injected into non-tg and α-syn-tg mice, and then

neuropathology was analyzed after a 5-week post injection

(Additional file 1: Figure S1a). Delivery of LV-TLR2 in-

creased expression of TLR2 in both α-synuclein-expressing

neurons and neighboring glial cells (Additional file 1:

Figure S1b and c). Compared to α-syn-tg mice injected

with LV-control, the tg mice injected with the LV-TLR2

displayed a dramatic increase in the accumulation of

α-synuclein in the neocortex and hippocampus (Fig. 2a).

These α-syn-tg mice also display mild neurodegeneration

and glial cell activation [32]. Consistent with these find-

ings, compared to the non-tg injected with LV-control,

the present study reports mild astrogliosis and microglio-

sis in the neocortex and hippocampus of the LV-control

injected α-syn-tg mouse brains with overexpression of

TLR2 considerably increasing neuro-inflammation both in

the α-syn-tg mice, but also in non-tg mice (Fig. 2b and c).

Interestingly, compared to the non-tg injected with

LV-control, the non-tg mice injected with the LV-

TLR2 displayed loss of NeuN positive neurons in the

Fig. 1 Expression of TLR2 in the neocortex of synucleinopathy patients and an animal model. a–c Representative images from double-immunolabeling

for TLR2 with cellular markers in the neocortex of normal and PD/DLB patients. The percentages of TLR2-positive neurons (NeuN) (a), astrocytes (GFAP)

(b), and microglia (Iba1) (c) in the neocortex (n= 8 per group). d–f Representative images from double-immunolabeling for TLR2 with cellular markers in

the neocortex of non-tg and α-Syn-tg (Line 61) mice (9–10 month olds). The percentages of TLR2-positive neuron (NeuN) (d), astrocyte (GFAP) (e), and

microglia (Iba1) (f) in the neocortex (n= 6 per group). Data are mean ± SEM. *p < 0.05, **p< 0.01, and ***p< 0.001; unpaired t test. Scale bar, 20 μm
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hippocampus and neocortex (Fig. 2). As to the

LV-control injected α-syn-tg mice, we found loss of

neurons in the hippocampus and neocortex when

compared to the LV-control injected non-tg mice,

however no greater loss of NeuN was observed in the

LV-TLR2 injected α-syn-tg mice. (Fig. 2d). We have

previously shown [33] that neuron-inflammation and

neurodegeneration of this α-syn-tg mice were associated

with α-synuclein transfer to astroglial cells, in this context

we next investigated if the LV-TLR2 injection will enhance

this effect. As expected, no accumulation of α-synuclein

was observed in the brain of the lentiviral vector-injected

non-tg mice, in contrast LV-control injected α-syn-tg mice

displayed discrete accumulation of α-synuclein in glial-like

cells and LV-TLR2 injection resulted in a 2.5 fold increase

in the brain of α-syn-tg (Additional file 1: Figure S2a). To

confirm the identity of these cells, double labeling with

anti-GFAP and confocal microscopy was performed. This

study confirmed that in the LV-control injected α-syn-tg

mice, the α-synuclein in the glial-like cells co-localizes

with GFAP and that in tg mice injected with LV-TLR2

there is a considerable increase in α-synuclein/GFAP

co-localization (Additional file 1: Figure S2b). Collectively,

these results support the concept that increase TLR2 ex-

pression might play a role in mediating the neurotoxic

and pro-inflammatory effects of α-synuclein. Therefore, it

is possible that blocking TLR2 might be of value at ameli-

orating the pathology associated with α-synuclein accu-

mulation in neurons and glial cells.

TLR2 passive immunization ameliorates neuropathology

and behavioral defect in synucleinopathy mouse model

Together with previous studies [8, 34], our current find-

ings support the idea that levels of TLR2 play an import-

ant role in promoting the neurodegenerative pathology

and deficits in models of synucleinopathy, therefore, we

hypothesized that if functional inhibition of TLR2 would

reduce overall burden of those pathologies in the model

Fig. 2 Neuropathology analysis of LV-TLR2-delivered non-tg and α-syn-tg mice. Either LV-control or LV-TLR2 was injected into the hippocampus

of non-tg or α-syn-tg mice (D line). a–d Representative images from immunohistochemical staining of α-synuclein (a), Iba-1 (b), GFAP (c), and

NeuN (d) in the neocortex and hippocampus of lentiviral vector-delivered mice. The level of α-synuclein (a) or GFAP (c) was analyzed in the

neocortex and hippocampus of the mice by optical density quantification. The number of Iba-1 (b) or NeuN (d) positive cell was counted in

neocortex and hippocampus of the mice. Data are mean ± SEM (n = 6 per group). *p < 0.05, **p < 0.01, and ***p < 0.001; one way ANOVA. Scale

bars, 250 μm (low magnification) and 25 μm (high magnification)
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of synucleinopathy. To test this hypothesis, we adminis-

trated anti-TLR2 antibody (T2.5, a TLR2 functional

blocking antibody) to high expresser α-Syn-tg (Line 61),

which mimics neuropathological and functional aspects

of PD/DLB including neuroinflammation and increased

TLR2 expression (Fig. 1d-f ). For this purpose, non-tg or

α-Syn tg mice were injected intraperitoneally with either

control IgG or T2.5 antibodies (5 mg/kg) weekly for 4

times (Fig. 3a). Approximate 1% of injected antibody

may reach the brain according to previous antibody ther-

apy studies [22, 30, 32, 35]. At the end of the study, mice

were tested for behavioral effects. Upon termination, the

brains were analyzed for biochemical and neuropatho-

logical analysis (Fig. 3a).

Compared to IgG treated α-Syn-tg mice, injection of

anti-TLR2 significantly reduced the neuronal accumula-

tion of α-synuclein in the neocortex and hippocampus

of the α-Syn-tg mice (Fig. 3b). Furthermore, the levels of

accumulation of PK-resistant α-synuclein were reduced

by anti-TLR2 administration in the neocortex and

hippocampus of α-Syn-tg mice, while it was not detected

in antibody administrated non-tg mice (Fig. 3c). Likewise,

immunoblotting analysis demonstrated that the levels of

triton-insoluble high molecular weight α-synuclein oligo-

mers were significantly reduced in the neocortex of α-Syn-tg

mouse model after anti-TLR2 administration (Fig. 3d), while

triton-soluble and -insoluble α-synuclein monomer was not

affected by anti-TLR2 treatment (Fig. 3d).

In addition to the neuronal α-synuclein accumulation

in cortical and subcortical brain regions, the higher ex-

presser α-Syn-tg mouse model also displays neuroinflam-

matory pathology and α-synuclein accumulation in glial

cells [25] similar to that of patients with PD/DLB [36].

Compared to non-tg mice, the IgG treated α-Syn-tg mice

displayed extensive astrogliosis and microgliosis (Fig. 4a)

which was reduced by administration of anti-TLR2

(Fig. 4a). Although microglia, a brain resident immune

cell, has been regarded as a major source of cytokine

expression, recent studies have shown that astrocyte

also could produce inflammatory cytokines and chemo-

kines in response to stimulus [33]. Double immunolabeling

analysis against astrocyte marker (GFAP) and IL-6 demon-

strated that compared to non-tg mice in the IgG treated

α-Syn-tg animals there was an elevation of astroglial

IL-6 which was reduced in mice treated with anti-TLR2

(Fig. 4b).

In PD/DLB [36] and tg models [33], previous studies

have shown that α-synuclein accumulates not only in

neurons but also in glial cells Moreover, we have shown

α-synuclein transmits from neuron to glial cells [37], that

this is enhanced by TLR2 overexpression (Additional file 1:

Figure S2) and that this might result in neuro-

inflammation in models of synucleinopathy [33]. Consist-

ent with this possibility, double labeling studies showed

that compared to non-tg controls, in IgG treated

α-Syn-tg there was considerable co-localization of

human-α-synuclein in GFAP-positive astrocytes, in

contrast treatment with T2.5 significantly reduced the

astroglial accumulation of α-synuclein in the α-Syn-tg

(Fig. 4c).

Next, we investigated levels of pro-inflammatory cyto-

kines expression, such as IL-1β, TNFα, and IL-6. We

found that compared to non-tg mice, in the IgG treated

α-Syn-tg mice there was an increase in the levels of

IL-1β, TNFα, and IL-6 expression, however, treatment

with the anti-TLR2 antibody normalized levels in the

α-Syn-tg compared to non-tg mice (Fig. 4d-f ). Consist-

ent with the gene expression findings, immunoblotting

analysis demonstrated activation of NFκB and increased

IL-6 levels in IgG treated α-Syn-tg mice compared to

non-tg controls, while anti-TLR2 administration in the

α-Syn-tg showed a reduction in NFκB activation and

production of IL-6 comparable to non-tg mice (Fig. 4g).

Following this step, we analyzed if anti-TLR2 adminis-

tration had effects on the neurodegenerative pathology

in the α-Syn-tg mice (Fig. 5). We have previously shown

that these mice develop loss of neurons in the deeper

layers of the neocortex and CA3 of the hippocampus

[38] and loss of Tyrosine hydroxylase (TH)-fibers in the

striatum [24]. Compared to non-tg mice, IgG treated

α-Syn-tg mice displayed loss of neurons in the neocortex

and hippocampus that was prevented by the treatment

with anti-TLR2 (Fig. 5a). Likewise, compared to non-tg

mice, IgG treated α-Syn-tg mice displayed loss of TH-

positive fibers in the striatum and anti-TLR2 adminis-

tration significantly ameliorated the loss of TH-positive

fibers in the α-Syn-tg (Fig. 5b). Consistent with previous

studies, no difference was observed in the numbers of TH

positive neurons in the substantia nigra of antibody-

administrated non-tg and α-Syn-tg mice (Fig. 5b). In

agreement with the immunocytochemical evaluation of

neurodegeneration, immunoblotting analysis of brain ho-

mogenates also demonstrated that compared to non-tg

mice, the active form of caspase-3 was increased in the

IgG treated α-Syn-tg, however anti-TLR2 administration

normalized levels in the α-Syn-tg to those observed in

non-tg mice (Fig. 5c).

To determine if the reduction of neuropathology had

functional consequences, we performed open filed test

to evaluated the total activity and anxiety-like behavior

of α-Syn-tg mouse model (Fig. 5d-f ). We have previously

shown that neurodegeneration and neuro-inflammation

in these mice is associated with hyper-activity [24]. Com-

pared to non-tg mice the IgG treated α-Syn-tg showed a

significant increment of the total activity (Fig. 5d). Treat-

ment of α-Syn-tg with anti-TLR2 clearly normalized the

total activity to levels comparable to the non-tg mice

(Fig. 5d). Similarly, compared to non-tg mice, the latency
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Fig. 3 Administration of anti-TLR2 (T2.5) decreases α-synuclein pathology in a synucleinopathy mouse model. a Experimental scheme. Non-tg and

α-Syn-tg (Line 61) mice were administrated with either IgG (5 mg/kg) or T2.5 (5 mg/kg) weekly for 4 weeks. The levels of α-synuclein pathology, glial

cell reactivity, neurodegeneration, and behavioral deficits were analyzed after a 5-weeks post injection. b Representative images from

immunohistochemical staining of α-synuclein in the neocortex and hippocampus of mice. The level of α-synuclein was analyzed by optical

density quantification (n = 6 per group). c Representative images from immunohistochemical staining of PK-resistant α-synuclein in the

neocortex and hippocampus of mice. The levels of PK-resistant α-synuclein were analyzed by optical density quantification (n = 6 per

group). d Immunoblot analysis of mice brain lysates. Triton-soluble and -insoluble brain lysates were probed for α-synuclein and β-actin.

The levels of triton-insoluble α-synuclein monomer and high molecular weight oligomers were determined by densitometric quantification (n = 4 per

group). Data are mean ± SEM. *p < 0.05, **p < 0.01, and ***p < 0.001, n.d. not detected; one way ANOVA for (b, d) and unpaired t test for (c). Scale bars,

250 μm (low magnification) and 25 μm (high magnification)
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level was increased in IgG treated α-Syn-tg, while anti-

TLR2 administration significantly normalized this behav-

ior (Fig. 5e). Finally, the levels of thigmotaxis (a marker of

anxiety) were not altered by α-synuclein overexpression as

well as antibody administration in the mice (Fig. 5f).

Collectively, these results suggest that targeting TLR2

by immunotherapeutic approach decreased accumulation

of neurotoxic α-synuclein aggregates and neuroinflamma-

tion, thereby ameliorating neurodegeneration and behav-

ioral defects in an animal model of synucleinopathy.

Neutralizing TLR2 inhibits abnormal accumulation of

neurotoxic α-synuclein in neuron

In this study, we showed that α-synuclein neuropathol-

ogy was modulated by TLR2 in the α-Syn-tg model and

the alterations rescued by an anti-TLR2 antibody. The

α-synuclein pathology was significantly increased by TLR2

overexpression, however, decreased by its functional inhib-

ition. Therefore, we proposed two potential mechanisms as

to how TLR2 modulate α-synuclein pathology. First,

neuronal TLR2 might modulates pathological α-synuclein

Fig. 4 Administration of anti-TLR2 (T2.5) decreases neuroinflammation in synucleinopathy mouse model. Non-tg or α-Syn-tg (Line 61) mice were

administrated with either IgG (5 mg/kg) or T2.5 (5 mg/kg) weekly for 4 weeks. a Representative images from immunohistochemical staining of

GFAP and Iba-1 in the hippocampus of mice. The level of GFAP was analyzed by optical density quantification and the number of Iba-1 positive

cell was counted in the hippocampus of mice (n = 6 per group). b Representative images from co-localization of GFAP (green) and IL-6 (red) in

the antibody-administrated mice. The percentages of GFAP/IL-6 double positive cells were analyzed in the hippocampus of mice. (n = 6 per

group). c Double immunolabeling analysis for human α-synuclein (green) and GFAP (red) in tg mice. The percentages of α-synuclein and GFAP

positive cells were analyzed in the hippocampus of tg mice (n = 6 per group). d–f Quantitative analysis of the cytokine gene expressions in the

cortex of mice. The expressions of IL-1β (d), TNFα (e), and IL-6 (f) were normalized to the levels of β-actin (n = 4 per group). g Immunoblot analysis of

the whole brain lysates probed for NFκB, IL-6, and β-actin. The levels of NFκB and IL-6 were determined by densitometric quantification (n = 3 per

group). Data are mean ± SEM. *p < 0.05, **p < 0.01, and ***p < 0.001; one way ANOVA for (a, d–g) and unpaired t test for (b and c). Scale bars, 250 μm

(low magnification) and 25 μm (high magnification)
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accumulation through intra-neuronal signaling. Second,

TLR2 may mediate neuron-to-neuron and neuron-to-glial

α-synuclein propagation. We previously demonstrated

that neuronal TLR2 modulated α-synuclein through au-

tophagy inhibition [8]. Therefore, herein, we examined the

roles of neuronal TLR2 in the pathological neuron-to-

neuron α-synuclein propagation (Fig. 6). To verify our hy-

pothesis, we first modulated the activity and expression of

TLR2 in in vitro α-synuclein transmission live cell monitor-

ing system that we developed and refer to as the dual-cell

bimolecular fluorescence complementation (BiFC) system

(Fig. 6a; Additional file 1: Figure S3a) [29, 39]. The system

consists of neuronal donor cells (V1S) and neuronal recipi-

ent cells (SV2). V1S cells are expressing α-synuclein conju-

gated with amino-terminal fragment of venus (VN-α-syn)

and SV2 cells are expressing α-synuclein conjugated with

carboxy-terminal fragment of venus conjugated α-synuclein

(α-syn-VC). Upon combining, the two proteins form the

complete Venus fluorescence molecule (Additional file 1:

Figure S3a). We previously have shown that this venus

puncta is also human α-synuclein, phosphor-α-synuclein,

and ubiquitin positive [29]. In addition, venus complemen-

tation did not observed when the V1S and SV2 cells were

co-cultured with N-terminal (V1) or C-terminal venus only

expressing (V2) cells [29]. Cell-to-cell transmission and the

resulting co-aggregation between the transferred and

endogenous α-synuclein proteins can be visualized and

quantitatively analyzed by monitoring the Venus fluores-

cence (Additional file 1: Figure S3a). To avoid physical

contacts between donor and recipient cells, the V1S and

the SV2 cells were incubated in trans-well inserts and in

lower compartments, respectively separated by a 0.4 μm

pore membrane (Additional file 1: Figure S3b). In support

of the validity of this system, the levels of Venus fluores-

cence in the recipient cells increased in proportion to the

duration of co-culture, while fluorescence was not de-

tected in single cell cultures (Additional file 1: Figure S3c).

To examine the role of TLR2 in neuron-to-neuron

α-synuclein transmission, we activated TLR2 using a

conventional agonist, pam3CSK4 (Fig. 6b). Treatment

Fig. 5 Neuroprotective effect of anti-TLR2 (T2.5) treatment in synucleinopathy mouse model. Non-tg or α-Syn-tg (Line 61) mice were administrated

with either IgG (5 mg/kg) or T2.5 (5 mg/kg) weekly for 4 weeks. a Representative images from immunohistochemical staining of NeuN in the

neocortex and hippocampus of mice. The numbers of NeuN positive cells were counted in the neocortex and hippocampus of mice (n = 6 per

group). b Representative images from immunohistochemical staining of Thyroxine hydroxylase (TH) in the antibody-administrated mice. The level of

TH was analyzed by optical density quantification and the numbers of TH positive cell were counted in the striatum and substantia nigra of mice,

respectively (n = 6 per group). c Immunoblotting analysis of whole-brain lysates. The lysates were probed for active form of casepase-3 and β-actin.

The level of active caspase 3 was determined by densitometric quantification (n = 3 per group). d–f Behavioral analysis of the mice. The total activity

(d), latency (e), and thigmotaxis (f) were analyzed by open field test (n = 6 per group). Data are mean ± SEM. *p < 0.05, **p < 0.01, and ***p < 0.001;

one way ANOVA. Scale bar, 25 μm
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Fig. 6 (See legend on next page.)
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with pam3CSK4 significantly increased both the fluor-

escence levels and the diameter of fluorescent puncta

in recipient neuronal cells (Fig. 6b). TLR2 activation

also increased the activity of caspase-3 in recipient cells

(Fig. 6b). Similarly, overexpression of TLR2 with lenti-

viral vectors significantly increased the fluorescence levels,

the diameter of fluorescent puncta, and caspase-3 activity

in recipient cells (Fig. 6c). In contrast, these increases were

reversed by lentivirus-mediated TLR2 gene knockdown

(Fig. 6d) and anti-TLR2 treatment (Fig. 6e). Since we dem-

onstrated TLR2 mediated neuron-to-neuron α-synuclein

transmission, we next examined the role of TLR2 in

α-synuclein internalization process by recipient neurons

(Fig. 6f). Differentiated SH-SY5Y neuronal cells (dSY5Y)

were exposed to α-synuclein conditioned medium (αSCM)

[7] which contains neuron-released α-synuclein for 8 and

24 h α-synuclein (Fig. 6f). In neuronal recipient cells, ex-

posure of αSCM led to internalization of α-synuclein in a

time-dependent manner (Fig. 6f). At 8 h, internalized

α-synuclein formed small intracellular puncta, but formed

large inclusion body-like aggregates at 24 h (Fig. 6f). How-

ever, it was significantly decreased when dSY5Y cells were

exposed to αSCM in the presence of T2.5 (Fig. 6f). Simi-

larly, treatment with the αSCM resulted in increased in-

ternalization of α-synuclein and activation of caspase-3 in

primary neurons, while treatment with the ant-TLR2 anti-

body significantly blocked internalization of α-synuclein

and activation of caspase-3 (Fig. 6g). Human α-synuclein

was not detected and caspase-3 activity was not affected

in mouse primary neurons treated with LZCM (control

conditioned medium, obtained from β-galactosidase

overexpressing neuronal cells) (Fig. 6g). Collectively,

these results support that TLR2 modulates neurotoxic

α-synuclein accumulation through mediation of neuron-

to-neuron α-synuclein transmission and that treatment

with the neutralizing TLR2 antibody reduces α-synuclein

accumulation and neurotoxicity.

Antagonizing TLR2 decreases astroglial α-synuclein

accumulation and inflammatory responses

Since the astrocytes in the α-Syn-tg mice do not express

human-α-synuclein and TLR2 expression is increased in

glial cells in these mice (Fig. 1e and f), our findings

indicate that the neuro-inflammation and increased ac-

cumulation of α-synuclein in glial cells in the α-Syn-tg

(Fig. 4), might be the result of neuron to astrocyte trans-

mission. Moreover, since T2.5 ameliorated these effects

(Fig. 4) we propose that TLR2 might be a mediator of

the accumulation of α-synuclein in glial cells. To better

understand the mechanisms of action of the antibody,

we utilized a modified in vitro α-synuclein transmission

live cell (neuron-to-astrocyte) monitoring system

(Fig. 7a). We co-cultured donor neurons with recipient

human primary astrocytes (Fig. 7a). Donor neuronal cells

(V1S), expressing the amino-terminal venus-α-synuclein

fusion protein, were incubated in trans-well inserts and

recipient astrocytes were placed in lower compartments

(Fig. 7a). After 3 days of co-culture, the recipient astro-

cytes were immune-labelled with anti-venus antibody to

verify the transferred N-term venus-tagged α-synuclein

from neuronal V1S cells (Fig. 7a). Immunolabeling

analysis revealed the transmission of venus-tagged

α-synuclein from neuronal cells to astrocytes after a 3-day

co-culture (Fig. 7b). In addition, overexpression of

TLR2 significantly increased the immune-reactivity against

venus protein in astrocytes, while it was decreased by

lentiviral vector-mediated TLR2 gene knockdown and

anti-TLR2 administration (Fig. 7b and c). Co-culture of as-

trocytes with α-synuclein-expressing neuronal cells also in-

duced expression of IL-6, a pro-inflammatory cytokine gene,

in astrocytes (Fig. 7b and c). Although TLR2 overexpression

did not induce further increase of IL-6 expression in

co-cultured astrocyte, IL-6 levels were significantly reduced

by lentiviral vector-mediated TLR2 gene knockdown or by

treatment with the anti-TLR2 antibody (Fig. 7b and c).

(See figure on previous page.)

Fig. 6 TLR2 mediates neurotoxic neuron-to-neuron α-synuclein transmission. a Overview diagram. Donor neuronal cells (V1S), expressing α-

synuclein-conjugated with N-terminus of venus were plated in trans-well insert and the recipient neuronal cells (SV2), expressing α-synuclein

conjugated with C-terminus of venus were seeded onto cover slips in the bottom well. Only SV2 cells were treated with pam3CSK4 (10 μg/ml),

lentiviral vectors, or antibodies. Images were taken from SV2 cells after a 3-days co-culture. b–e Representative confocal images for BiFC fluorescence

and caspase-3 activity in SV2 cells. Middle panels are enlargements of cropped regions outlined with dashed lines from upper panels. Lower panels are

double-immunolabeling assay with active casepase-3. The average numbers of venus fluorescence intensity in each cell, the average size of

the venus punctum diameters, and caspase-3 fluorescence intensity were analyzed. b V1S and SV2 cells were co-cultured in the presence or

absence of pam3CSK4 (10 μg/ml) (n = 3). c V1S and SV2 cells were co-cultured with either LV-control or LV-TLR2 (n = 3). d V1S and SV2 cells

were co-cultured with either LV-sh.control or LV-shTLR2 (n = 3). e V1S and SV2 cells were co-cultured with either IgG (5 μg/ml) or T2.5 (5 μg/ml)

(n = 3). f The kinetics of α-synuclein internalization in the presence of antibodies. dSY5Y cells were incubated with αSCM for indicated hours in the

presence of either IgG (5 μg/ml) or T2.5 (5 μg/ml). The kinetics was analyzed by immunolabeling assay (n = 3). g Neuronal internalization of

α-synuclein in the presence of antibodies. Mouse primary cortical neurons were incubated with αSCM or LZCM for indicated hours in the

presence of either IgG (5 μg/ml) or T2.5 (5 μg/ml). Neurons were double immunolabelled with human α-synuclein (Middle panels) and

active form of caspase-3 (low panels) (n = 3). Data are mean ± SEM (n = 3 per group). *p < 0.05, **p < 0.01, and ***p < 0.001; unpaired t test

for all analysis except (g) (one way ANOVA). Scale bar, 20 μm
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Next, we examined the role of TLR2 in α-synuclein in-

ternalization in recipient astrocytes and if treatment of

anti-TLR2 blocks this process (Fig. 7d). Primary human

astrocytes were exposed to αSCM for 8 and 24 h in the

presence of either control IgG or anti-TLR2 (Fig. 7d). In

recipient astrocytes, internalization of α-synuclein was

increased in both IgG and anti-TLR2 treated cells at the

early time point (8 h) (Fig. 7d). However, it was signifi-

cantly reduced by TLR2 inhibition at the late time point

(24 h) (Fig. 7d). This is consistent with the in vivo stud-

ies showing increased accumulation of α-synuclein in

astrocytes in the IgG treated α-Syn-tg and that anti-

TLR2 treatment reduced the astroglial accumulation of

α-synuclein (Fig. 4c). Moreover, exposure to extracellular

α-synuclein induced astroglial expressions of the pro-

inflammatory cytokines and chemoattractant chemokines,

such as IL-1β, IL-6, CCL5, and CX3CL1, while those ele-

vations were completely inhibited by anti-TLR2 treatment

(Fig. 7e-h). Immunoblotting analysis also revealed that

exposure to α-synuclein induced activation of NFκB

and p38 MAPK in astrocytes (Fig. 7i). Collectively, these

results suggest that TLR2 modulates astroglial α-synuclein

Fig. 7 Astrocyte responses by TLR2 mediated neuron-to-astrocyte α-synuclein transmission. a Overview diagram. Donor neuronal cells (V1S),

expressing α-synuclein-conjugated with N-terminus of venus were plated in trans-well insert and the recipient human primary astrocytes were

plated onto the cover slips in the bottom well. Only astrocytes were treated with either lentiviral vectors or antibodies. Images were taken from

astrocytes after a 3-days co-culture. b, c Representative confocal images for N-terminus of venus (Upper panel) and IL-6 (Lower panel) in recipient

astrocytes. The fluorescence intensity of N-term venus and IL-6 were analyzed in randomly chosen area. b V1S and astrocytes were co-cultured in

the presence of either LV-control/sh.control, LV-TLR2, or LV-sh.TLR2 (n = 3). c V1S and astrocytes were co-cultured in the presence of either IgG

(5 μg/ml) or T2.5 (5 μg/ml) (n = 3). d The kinetics of astroglial α-synuclein internalization in the presence of antibodies. Human primary astrocytes

were incubated with αSCM for indicated hours in the presence of either IgG (5 μg/ml) or T2.5 (5 μg/ml). The kinetics was analyzed by immunolabeling

assay (n = 3). e–h Quantitative analysis of the cytokine/chemokine gene expressions in astrocytes. The cells were incubated with either LZCN or αSCM

for 24 h in the presence of indicated antibodies. The expressions of IL-1β (e), IL-6 (f), CCL5 (g), and CX3CL1 (h) were normalized to the levels of β-actin

(n = 4). Data are mean ± SEM. *p < 0.05, **p < 0.01, and ***p < 0.001; one way ANOVA for all analysis except (d) (unpaired t test). Scale bar, 20 μm
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accumulation through neuron-to-astrocyte α-synuclein

transmission, thereby regulates astroglial responses, and

the blocking of this effect might underlie the neuroprotec-

tive and immunomodulatory effects of the anti-TLR2

treatment.

Discussion
The present study showed that administration of anti-

TLR2 alleviated α-synuclein accumulation in neuronal

and astroglial cells, neuroinflammation, neurodegener-

ation, and functional deficits in the mouse model of

PD/DLB. Moreover, in vitro studies with neuronal and

astroglial cells showed that the anti-TLR2 blocks NFκB

dependent pro-inflammatory responses by blocking the

neuron-to-neuron and neuron-to-astrocyte α-synuclein

transmission. While for this study we focused on the

effects of blocking TLR2 on glial and NFκB dependent

neuro-inflammatory responses, in previous studies we

investigated the pathological roles of TLR2 in neurons

in in vitro and in vivo models of synucleinopathy [8].

In neurons, extracellular α-synuclein inhibited autophagy

in a TLR2 dependent manner via mTOR and AKT signal-

ing cascades [8]. Thus, activation and gene overexpression

of TLR2 induced abnormal accumulation of α-synuclein

aggregates in neuron followed by accumulation autophagy

markers, such as p62SQS/TM1 [8]. We have also shown

the pathogenic interaction of TLR2 and α-synuclein in

microglia [7]. The oligomeric forms of extracellular

α-synuclein interacts with TLR2 on the surface of microglia,

thereby induced neurotoxic microglia activation through

NFκB and p38 MAPK signaling cascades [7]. Once acti-

vated, microglia produced neurotoxic by-products, such as

inflammatory cytokines, reactive oxygen species, and nitric

oxides [7].

Another new finding of this study, is that in addition of

the microglia, extracellular α-synuclein induced astroglial

responses which are neurotoxic. Once exposed to α-

synuclein, astrocytes expressed pro-inflammatory cytokine

expressions through NFκB and p38 MAPK signaling cas-

cades (Fig. 8). Therefore, we targeted TLR2 in in vivo and

in in vitro models of synucleinopathy using a functional

inhibitory antibody (T2.5). Remarkably, the administra-

tion of TLR2 functional blocking antibody significantly

reduced α-synuclein depositions in neurons and astro-

glial cells as well ameliorating neurodegeneration, neuro-

inflammation, and NFκB activation. The in vivo results

Fig. 8 Model for TLR2 immunotherapy ameliorates neurodegeneration in synucleinopathy. In disease condition, TLR2 mediates neurotoxicity. In

neuron, i) TLR2 induces pathological internalization of extracellular α-synuclein into neuron and ii) extracellular α-synuclein activates neuronal

TLR2 which results in mTOR-mediated autophagy inhibition. Thus, neuronal TLR2 induces neurotoxic α-synuclein accumulation. In astrocyte, iii)

TLR2 increased abnormal α-synuclein accumulation which leads astroglial activation and iv) extracellular α-synuclein activates astroglial TLR2

signaling cascade through NFκB/p38 MAPK which results in neurotoxic astroglial responses such as pro-inflammatory cytokine expression and

induction of reactive microglia recruiting chemokines. Therefore, TLR2 immunotherapy ameliorates α-synuclein-mediated neurotoxicity via

inhibition of 1) TLR2-mediated neuronal α-synuclein internalization, 2) activation of neuronal autophagy via TLR2-mTOR signaling cascade, 3)

inhibition of TLR2-mediated astroglial responses, and 4) reduction of astroglial α-synuclein accumulation. Thereby, TLR2 immunotherapy might be

a novel therapeutic strategy for synucleinopathy
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were confirmed in vitro where treatment with the

anti-TLR2 decreased internalization of α-synuclein into

neuron and astrocytes and this was accompanied by de-

creased expression of pro-inflammatory cytokines and

signaling via the p38/MAPK and NFκB pathway. There-

fore, these results support that TLR2 plays key roles in

the pathogenesis of synucleinopathy and functional inhib-

ition of TLR2 ameliorates neuropathology in synucleino-

pathy through inhibition of pathogenic neuron-to-neuron

and neuron-to-astrocyte α-synuclein transmission, clear-

ance of accumulated neurotoxic α-synuclein via autoph-

agy, and inhibition of astroglial inflammatory responses

(Fig. 8).

The steady state levels of α-synuclein could be affected

by various different factors including gene expression

and proteostasis. In particular, it has been suggested that

the clearance of α-synuclein could be determined by as-

sembly state of the protein [4, 40]. Autophagy/lysosomal

pathway is involved in the clearance of oligomeric and

fibrilar species of α-synuclein [41–43], while monomeric

and dimeric α-synuclein species are degraded by ubiquitin-

proteasome system and chaperone-mediated autophagy

[44, 45]. We previously have shown that functional in-

hibition of TLR2 activated autophagy process in neuron

[8]. Consistent with these findings, in current study, we

observed a significant reduction of triton-insoluble

α-synuclein oligomers in T2.5 administrated α-Syn-tg

while the level of α-synuclein monomer was not af-

fected by antibody administrations (Fig. 3d). Together,

these results suggest that administration of TLR2 func-

tional inhibitory antibody reduced accumulation of neuro-

toxic α-synuclein oligomers through autophagy-mediated

clearance in an animal model of PD.

There is growing evidence that receptor-mediated trans-

mission of α-synuclein is responsible for the spreading of

synucleinopathy lesions in PD/DLB. Recent studies have

suggested LAG3 that might be such a receptor that oper-

ates by mediating seeding and transmission of α-synuclein

fibrils [9], but the details are still largely unknown. Our

study is different in that we focused on the effects of block-

ing TLR2 which is a mediator of the neurotoxic and

pro-inflammatory of extracellular α-synuclein oligomers.

We have previously shown that TLR2 is not activated by

recombinant fibrils as is the case for LAG3 but rather by

neuron-released extracellular α-synuclein oligomers [7].

Using α-synuclein conformation specific antibodies, we

also demonstrated that α-synuclein oligomers mainly con-

tributed to neuron-to-neuron α-synuclein transmission/

propagation instead of fibril forms in a recent study [46].

Neuron-to-neuron α-synuclein transmission was signifi-

cantly decreased in the presence of oligomer conformation

specific antibodies in this BiFC α-synuclein monitoring sys-

tem, while it was not affected by fibril specific antibodies

[46]. In addition, the caspase-3 activities were increased in

proportion to the levels of small size of venus puncta in re-

cipient neuronal cells. Together, these results support that

oligomer is a main contributor of pathogenic cell-to-cell

α-synuclein transmission.

Although most studies have focused at investigating

the accumulation of α-synuclein in neurons, there is grow-

ing evidence that α-synuclein accumulates in astrocytes in

the brains of patients with PD/DLB [47–51]. Consistent

with these observations, in the present study we show that

α-synuclein accumulates in astrocytes of the α-Syn-tg mice

and that is associated with increased TLR2 expression,

pro-inflammatory cytokines, and NFκB activation.

Treatment with anti-TLR2 blocked these effects in in

vivo. We have previously shown that neuron-to-astrocyte

α-synuclein transmission might be an undelaying pathway

for α-synuclein accumulation in astrocytes [33]. In

addition, in the current study, we verified the central role

of TLR2 in astroglial α-synuclein accumulation. Overex-

pression of astroglial TLR2 significantly increased astro-

glial α-synuclein internalization as well as neuron-

to-astrocyte α-synuclein transmission in in vitro synuclei-

nopathy model system, while those were inhibited by

anti-TLR2 treatment and TLR2 gene knockdown. Interest-

ingly, the internalization of α-synuclein was not affected

by TLR2 functional inhibition at the early time point in

α-synuclein-exposed astrocyte. This result suggests

the existence of TLR2-independent astrocyte-specific

α-synuclein internalization mechanisms. However, the

level of internalized α-synuclein was significantly re-

duced by TLR2 functional inhibition at the late time

point exposure. This also suggests that TLR2 activity

might be associated with a clearance mechanism of ac-

cumulated α-synuclein in the astrocyte. In addition,

TLR2-dependent astroglial α-synuclein accumulation

triggered neurotoxic astroglial pro-inflammatory responses

through NFκB and p38 MAPK signaling cascades (Fig. 8).

Interestingly, α-synuclein-exposed astrocytes also induced

chemoattractant chemokine expressions, such as CCL5

and CXCL1 which are recruiting neurotoxic reactive

microglial cells into affected brain regions [52]. Thereby,

these findings suggest that TLR2 mediates astroglial

α-synuclein accumulation through neuron-to-astroglial

α-synuclein transmission and may contribute to local

immune response in patients with DLB/PD, and that treat-

ment with anti-TLR2 antibody might block the neuropath-

ology by blocking NFκB and p38 MAPK signaling in

astrocytes.

While the numbers of TLR2 positive microglia cells

were increased in the brains of PD/DLB patients and

mouse models [7, 34, 53], we were not able to observed

extensive microglial α-synuclein deposition in our current

in vivo study. In addition, we failed to demonstrate the

neuron-to-microglial α-synuclein transmission using the

in vitro transmission assay. Instead, we found that once
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internalized, α-synuclein was rapidly cleared from

microglia regardless of TLR2 activity (data not shown).

Together with our previous findings [54], these results

suggest that microglia are the most efficient cells for

removal of extracellular α-synuclein in the brain and

may have a distinct specific mechanism for degradation

and clearance of internalized α-synuclein aggregates. There-

fore, microglia might be a candidate for cell-based thera-

peutics against synucleinopathies to remove pathogenic

forms of extracellular α-synuclein.

For over two decades, immunotherapy has been pro-

posed as a potential treatment approach for neurodegen-

erative disorders of the aging population such as AD and

PD/DLB. In the field of synucleinopathies, considerable

progress has been made by developing active [22, 55], pas-

sive [32, 46, 56–60], and cellular [19, 61, 62] immunother-

apeutic approaches of which a few of them have moved to

clinical trials [63]. Since α-synuclein is a key pathological

mediator in the disorders with parkinsonism and demen-

tia, most of studies have targeted monomeric, oligomeric,

and fibrilar α-synuclein [64]. However, the characteristics

of the physiological vs pathogenic forms of α-synuclein

is still enigmatic [65]. Thus, in addition of targeting

α-synuclein it might necessary to develop therapeutics

for alternative pathways such as neuro-inflammation, au-

tophagy, transcriptional regulation, and mitochondrial

energetic and biogenesis [4, 65].

Conclusions
In this context we propose immunotherapy targeting

TLR2, given its role as a mediator of the neurotoxic and

pro-inflammatory effects of extracellular α-synuclein olig-

omers. Such therapy might be suitable for combinatorial

approaches with molecules interfering with α-synuclein or

pathways relevant to neuro-inflammation, autophagy and

mitochondrial energetic and biogenesis [27]. In summary,

we propose that TLR2 is a novel target for immunother-

apy and a potentially viable therapeutic strategy for synu-

cleinopathies of the aging population.
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