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ABSTRACT

Machine learning, graph analytics and sparse linear alge-
bra-based applications are dominated by irregular mem-
ory accesses resulting from following edges in a graph
or non-zero elements in a sparse matrix. These accesses
have little temporal or spatial locality, and thus incur
long memory stalls and large bandwidth requirements.
A traditional streaming or striding prefetcher cannot
capture these irregular access patterns.

A majority of these irregular accesses come from in-
direct patterns of the form A[B[i]]. We propose an
efficient hardware indirect memory prefetcher (IMP)
to capture this access pattern and hide latency. We
also propose a partial cacheline accessing mechanism
for these prefetches to reduce the network and DRAM
bandwidth pressure from the lack of spatial locality.

Evaluated on 7 applications, IMP shows 56% speedup
on average (up to 2.3x) compared to a baseline 64 core
system with streaming prefetchers. This is within 23%
of an idealized system. With partial cacheline accessing,
we see another 9.4% speedup on average (up to 46.6%).

1. INTRODUCTION

Operations on sparse data structures, such as sparse
matrices, are important in a variety of emerging work-
loads in the areas of machine learning, graph operations
and statistical analysis as well as sparse solvers used in
High-Performance Computing [10, 42]. Many impor-
tant classes of algorithms, including machine learning
problems (e.g., regression, classification using Support
Vector Machines, and recommender systems), graph al-
gorithms (e.g., the Graph500 benchmark and pagerank
for computing ranks of webpages), as well as HPC ap-
plications (e.g., the HPCG benchmark) share similar
computational and memory access patterns to that of
Sparse Matrix Vector Multiplication, where the vector
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could be sparse or dense [5].

A key bottleneck in sparse matrix operations is ir-
regular memory access patterns and working sets that
do not fit into a conventional first-level cache. This
leads to accesses with high latency, which degrades per-
formance. Furthermore, the high memory intensity in
these workloads exerts bandwidth pressure in both the
network on-chip (NoC) and DRAM.

The trend of multicore systems exacerbates this prob-
lem. Most multicore processors include shared struc-
tures in the memory hierarchy that are physically dis-
tributed, such as a last-level cache or directory. As the
number of cores scales up, the average latency to such a
structure increases. Meanwhile, multicore systems tend
to use simpler cores that are less capable of hiding la-
tency beyond the first-level data cache.

Existing latency tolerance mechanisms are insufficient
to handle latency incurred by irregular memory accesses.
Out-of-Order (0O00) execution [39] and simultaneous
multithreading [40] help alleviate the problem but can-
not hide all of the latency. Conventional hardware pre-
fetchers [6] can capture streaming or strided access pat-
terns but not irregular ones. Other techniques either re-
quire expensive hardware (e.g., runahead execution [30])
or require programming model changes (e.g., helper thr-
eads |14, [22]) and have not yet had impact in the mul-
ticore environment.

Several works, e.g., |25, [27], have proposed hiding
memory latency through the programmer or compiler
inserting software prefetching instructions. Mowry [26]
proposed a compiler solution to prefetch indirect pat-
terns. However, software prefetching has inherent lim-
itations: it may not be portable across microarchitec-
tures (e.g., with different cache hierarchies) and can in-
cur large instruction overhead, consuming power and
offsetting the gains from improved cache hit rates. Fur-
thermore, software prefetching is not able to capture
patterns that are only exposed at runtime.

In this paper, we take a different approach to ad-
dress this problem. We propose hardware targeting a
specific, common memory access pattern in these work-
loads. In particular, we observe that an overwhelming
fraction of codes operating on sparse datasets rely on
indirect memory accesses in the form of A[B[i]], and
that the B[i] values are pre-computed and stored con-
secutively in memory [9]. For example, for graph codes,
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Figure 1: Cache miss breakdown.

the A may be the vertices, and B the set of edges out
of a given vertex. For sparse matrix codes, A may be
a dense vector (e.g., for matrix-vector multiplication),
and B the set of column indices with non-zero values in
a row of the matrix. If we iterate over a set of these val-
ues, a conventional hardware streaming prefetcher can
capture the accesses to B[i]. Our approach is to detect
the indirect accesses on top of the streaming pattern,
and link prefetching of B[i] to prefetching of A[B][i]].

We propose the Indirect Memory Prefetcher (IMP),
a cheaply realizable hardware mechanism to capture in-
direct memory accesses. For a set of codes operating on
sparse data structures, it is able to capture the major-
ity of the performance benefits that accrue from hid-
ing memory access latency. Specifically, IMP is able to
cover 85% of first level cache misses and achieve 56%
average (up to 2.3x) speedup over the applications we
evaluated. This is within 23% of the performance of an
idealized prefetcher.

We also observe that indirect accesses usually ex-
hibit little spatial locality. That is, for an indirectly
accessed cacheline, most of the data on the line remains
untouched at the time the line is evicted. Thus, we
propose to have IMP fetch partial cachelines. When
applied to a core’s private cache and the shared last-
level cache, this can significantly reduce both NoC and
DRAM traffic. With this optimization, performance is
further improved by 9.4% on average (up to 46.6%) and
NoC/DRAM traffic is reduced by 16.7%/7.5% on aver-
age (up to 39.3%/28.0%).

2. MOTIVATION

Irregular memory accesses are common in many ap-
plications, especially in machine learning, graph ana-
lytics, and sparse linear algebra. Accessing neighbor
vertices in a graph or data elements corresponding to
non-zeroes in a sparse matrix or vector is typically done
through indirection, such as A[B[i]].

Many programs pre-compute the indices, Bli], and
store them in an index array. Indices commonly repre-
sent the structure of a graph, sparse matrix, or other ir-
regular data structure. Such structures are often static
or change infrequently; thus, computations re-use the
B, amortizing the overhead of creating the array.

Accesses to Bli| are typically sequential and may be
captured by streaming prefetchers. The A[BJi]] ac-
cesses, however, tend to touch non-consecutive memory
locations. In these applications, the size of A is large
and usually does not fit in the first level cache; thus,
the indirect accesses to A generate many cache misses.

In Fig. [[j we show the fraction of L1 cache misses
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Figure 2: Runtime of realistic configuration and perfect
hardware prefetcher. Indirect indicates the portion of
execution time from stalls on indirect accesses.

caused by different access types on a 64 core system
with a 32KB L1 data cache per core. On average, in-
direct accesses comprise 60% of the total cache misses.
Thus, if memory behavior impacts performance, indi-
rect accesses are responsible for much of it. Also, in all
cases, indirect and streaming accesses together make up
the majority of cache misses.

2.1 Latency Bottleneck

The high miss rate of indirect accesses can hurt per-
formance a lot. Fig. [2]shows the execution time broken
down into cycles attributed to cache misses from indi-
rect accesses and everything else. The runtime is nor-
malized to that of an idealized system where all memory
accesses hit in the L1 cache. We describe the other re-
sult, PerfPref, in Section [2.2]

Indirect memory accesses are the main performance
bottleneck in most of these applications. This is ex-
pected since they generate most of the misses, and these
misses are not captured by streaming prefetchers.

2.2 Bandwidth Bottleneck

The PerfPref bars in Fig. [2]show runtime for a system
with an idealized hardware prefetcher which prefetches
all memory requests a certain amount of time before
the data is accessed. Given infinite NoC and DRAM
bandwidth, this will hide all memory access latency.
However, this system is on average 1.8 times slower
than Ideal, indicating performance is limited by the re-
alistic bandwidth modeled for the system. Bandwidth
usage is high due to poor temporal and spatial local-
ity for the irregular memory accesses, as well as the
large number of cores. Unless we reduce the amount of
data that the cores request, PerfPref is a performance
upper bound for hardware prefetching. Even with real-
istic bandwidth limits, the difference between the pairs
of bars shows we have lots of room for performance im-
provement by hiding latency.

3. INDIRECT MEMORY PREFETCHER

In this section, we present the Indirect Memory Pre-
fetcher (IMP) that captures indirect memory accesses.

3.1 Key Idea

Indirect memory accesses in the applications we study
involve two data structures: an index array B and a
data array A. These codes share a pattern when gen-
erating indirect accesses: they scan a portion of their
index array, reading each index and the corresponding



element in the data array. That is, for some contiguous
values of i, they access B[i] then A[B[i]]. The address
of A[BJi]] depends on the value of Bli] (Eq. (T])).

ADDR( A[BJi]] ) = Coeff x Bli] + BaseAddr (1)

Coeff is the size of each element in A and BaseAddr
is the address of A[0]. They are both constant for a
specific indirect pattern. Since the values stored in B
may not (and typically don’t) follow a recognizable pat-
tern, the accesses to A[B[i]] are not predictable and a
traditional hardware prefetcher cannot capture it.

Our key insight comprises two parts. (1) The unpre-
dictable factor is the contents of B. If hardware has
access to Bli] early, it may predict Coeff and BaseAddr
and use those to compute the address of A[B]i]] before
software accesses it. (2) In practice, B[i] is often pre-
computed and stored in memory and can be read in
advance.

IMP leverages this insight; it predicts which accesses
are reads to an index array, and uses the contents of
those memory locations to predict addresses of future
indirect accesses. In particular, when software accesses
Bli], IMP will prefetch and read the value of B[i+ Al.
It then uses predicted values of Coeff and BaseAddr to
calculate the memory address of A[B[i + A]] following
Eq. and prefetches that line.

An indirect pattern is characterized by the index ar-

ray and the corresponding values of Coeff and BaseAddr.

To capture a pattern, IMP must learn all of these.

3.2 IMP Architecture

IMP is hardware attached to an L1 cache and snoops
the access and miss stream of the cache. Fig. [3| shows
the components of IMP, which work together to perform
three steps.

First, it captures the stream pattern of the index
array using a stream prefetcher. The Stream Table,
part of the Prefetch Table (PT), is a traditional stream
prefetcher working at word granularity.

Second, given an index stream, IMP detects the asso-

ciated indirect pattern by computing Coeff and BaseAddr.

Our approach to computing Coeff and BaseAddr is to

find two index-address pairs, i.e., (B[i], ADDR( A[B[i]] )),

and then according to Eq. , solve for our two un-
knowns. Obtaining index-address pairs is non-trivial
for hardware sitting at the cache; it has no visibility
into the dataflow of the program, and so cannot know
whether some later memory access uses the value of a
previous access. IMP uses the Indirect Pattern Detector
(IPD) to store candidate index-address pairs and com-
pute Coeff and BaseAddr. Once IMP finds an indirect
pattern, it stores it in the Indirect Table, in the PT.

Finally, IMP begins indirect prefetching, triggered by
each index access. IMP’s address generator uses infor-
mation in the PT to create prefetches.

3.2.1 Address Generation

IMP’s address generator and IPD both perform com-
putations based on Eq. . For address generation, this
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Figure 3:
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requires a multiplication and an addition. For pattern
detection, i.e., computing Coeff and BaseAddr, this re-
quires a subtraction and a division. Multipliers and
dividers are expensive hardware structures.

We restrict the possible values of Coeff to reduce
hardware cost. In real workloads, Coeff is the size in
bytes of an element of array A; thus, Coeff is often a
small power of two. By only considering such values for
Coeff, we can simplify Eq. to Eq. , replacing the
multiplication and division operations by shifts.

ADDR( A[B[i]] ) = (B[i] < shift) + BaseAddr (2)

With this optimization, address generation only needs
a shifter and an adder. For the rest of the paper, we
will use shift instead of Coeff.

3.2.2 Indirect Pattern Detection

As discussed in Section [2.2] a key challenge to com-
pute shift and BaseAddr is to identify at least two (B]i],
ADDR(A[BIi]])) pairs; the IPD solves this problem.
The idea is to try candidate index-address pairs from
the set of accesses that the cache sees, until we find a
shift and BaseAddr that satisfies Eq. for at least two
of them.

We leverage three insights. First, we are concerned
with detecting fairly long-lasting patterns; as long as
we eventually detect a pattern, we can prefetch it effec-
tively. Thus, it is fine to fail to recognize many index-
address pairs. Second, we can narrow down candidate
indices by only considering values captured by a stream
prefetcher. Third, we can narrow down candidate in-
direct addresses for a given index by only considering
cache misses soon after the index access.

Fig. @] shows the IPD; it is organized as a table. Each
entry is responsible for detecting one indirect pattern.
On a candidate index access (i.e., anything detected as
a streaming access), if the index stream has not been
associated with an indirect pattern or a matching IPD
entry, the IPD allocates an entry in the table and writes
the index value, i.e., BJi], to the idz! field.

For each cache miss following an index read, IPD
pairs the miss address with idz! and, for each value of
shift being considered, computes BaseAddr according
to Eq. . IPD writes these BaseAddrs to the baseaddr
array in the IPD entry. IPD only tracks the first few
misses after the idz! access.

When IPD sees an access to the next index in that
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Figure 4: The Indirect Pattern Detector (IPD), and
an example of indirect pattern detection (shift=2,
BaseAddr=0xFC)

Stream Table i Indirect Table
pc |addr | hitcnt | enable | index | base addr| shift | hit cnt
T 16 0xFC 2 0

Figure 5: Prefetch Table (PT). Stream table is the same
as a traditional stream prefetcher.

stream (i.e., B[i + 1]), it writes its value to idz2. IPD
pairs later cache misses with idz2 to compute BaseAd-
drs, as it did with idzI. It then compares these BaseAd-
drs with other BaseAddrs in the baseaddr array with
the same shift. If there is a match, then IPD has found
shift and BaseAddr values that satisfy the following set
of equations:

MissAddrl = (Bli] < shift) + BaseAddr
MissAddr2 = (B[i + 1] < shift) + BaseAddr

With reasonably high confidence, we can say that
MissAddrl and MissAddr2 are part of an indirect ac-
cess pattern with shift and BaseAddr as the indirect pa-
rameters. IPD records these parameters in the PT for
indirect prefetching. The IPD also activates the corre-
sponding entry in the PT and releases the current IPD
entry so that it can be used to detect other patterns.

If the third element is accessed in the index array (i.e.,
Bli 4 2]) but the indirect pattern is still not detected,
then the pattern may not exist. In this case, IPD also
releases the current entry. The index array can keep
allocating IPD entries in the future until it eventually
finds a pattern. After each failed detection, the index
array waits for an exponentially increasing back-off time
before the next detection to avoid thrashing the IPD.

3.2.3 Indirect Prefetching

Fig. [f] shows the contents of PT. A portion of each
entry comprises the Stream Table. This tracks the in-
dex stream by storing the program counter (pc) of the
instruction accessing the stream and the address of the
most recently accessed index from the stream (addr).
It also tracks the number of stream hits (hit c¢nt) which
triggers stream prefetching when a threshold is reached.

The remaining portion of each PT entry comprises

the Indirect Table, which tracks indirect accesses. This
portion of each entry is inactive until the IPD enables
it (i.e., sets enable = True) and stores the shift and
BaseAddr. Before IMP starts prefetching, it needs to
increase confidence that this pattern is worth prefetch-
ing.

When IMP sees an index access that matches the
entry, it writes the index value to the indez field. For
every access thereafter, it checks if the address matches
the expected indirect access address, according to index,
shift and BaseAddr. If there is a match, it increments
the saturating counter hit cnt. If IMP overwrites the
index with a later index access before it finds a match,
it decrements the counter.

Once the saturating counter (hit cnt) reaches a thresh-
old, IMP starts indirect prefetching. On every index
access that matches such a PT entry, IMP issues one or
more prefetches for that pattern. The prefetch distance,
the distance in the access stream between the current
access and the one we prefetch, is initially small and
linearly increased as more hits happen to the same pat-
tern. Given a prefetch distance A, IMP reads the index
element B[i+A] and computes the indirect prefetch ad-
dress using Eq. . IMP places prefetched cachelines
into the cache, but it could instead use a prefetch buffer.

As in a traditional stream prefetcher, IMP can load
data in either Shared state or Fxclusive state. It uses a
simple read/write predictor to make this decision. IMP
can also be used for SIMD instructions (e.g., scatter
and gather) but the architecture needs to be adjusted
accordingly.

Prefetchers can operate on either virtual or physical
addresses. Operating on physical addresses eschews the
need for address translation, but forces prefetching to
stop at page boundaries. Operating on virtual addresses
allows for long streams. In this paper, IMP generates
addresses for both streaming and indirect prefetches in
virtual space since indirect accesses are likely to touch
different pages. As a consequence, IMP should be at-
tached to a cache with address translation support, i.e.,
an L1 cache.

3.3 Optimization

We now present some optimizations for IMP.

3.3.1 Nested Loops

We must capture both the streaming and indirect
patterns for indirect prefetching to work. Detection
usually takes multiple loop iterations and prefetching
does not happen during this learning phase. For short
loops, the length of the learning phase limits IMP’s per-
formance gain (Listing .

Listing 1: Nested Loops

for (int i = 0; i < N; i++4)
for (int j = f(i); j < f(i+1); j ++)
load A[B[j]]

Our solution to this problem, as already shown in
Section [3.2.3] is to associate a stream pattern with the
PC of the stream access. This is common in existing
stream prefetchers [6].
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Figure 6: Fields added to the PT to support secondary
indirections. The ind type can be primary (entry 1),
second-way (entry 2) or second-level (entry 3).

When IMP detects an indirect pattern, it stores the
PC of the index access in the PT. When the applica-
tion completes an outer loop iteration and begins the
next one, the streaming pattern to the index array is
interrupted and possibly restarted at a different point,
since the values of j see a hiccup. However, the index
accesses come from the same instruction (PC) as be-
fore. Thus, rather than re-learning the pattern, IMP
simply changes its position within the index array by
updating the addr field in the stream table (Fig. [5]).

3.3.2  Multi-way and Multi-level indirection

While many indirect accesses strictly follow the A[B][i]]
pattern, we also observe some variants of this pattern.
These include multi-way and multi-level indirections as
shown in the following code snippets. In multi-way indi-
rection (Listing , two indirect patterns use the same
index array. In multi-level indirection (Listing [3)), a
value read via an indirect access is an index for another
data array. We call these additional uses of prefetched
values secondary indirections.

Listing 2: Multi-way

for(i = 0; i < N; i++4)
load A[B[i]]
load C[B[i]]

Listing 3: Multi-level

for(i = 0; i < N; i++4)
load A[B[C[i]]]

We modify the structure of the PT to support these
more complicated patterns. Specifically, we dedicate
some PT entries to secondary indirections. We also
add several fields to each entry, as shown in Fig. [f]
The ind type indicates whether the entry is primary
(default indirect pattern), multi-way or multi-level. The
remaining fields link related PT entries in a tree, with a
primary entry as the root. The next way and next level
fields hold PT entry numbers of children, and the prev
field indicates the parent entry.

When prefetching for a primary pattern is triggered,
IMP traverses the tree of secondary patterns attached
to it. IMP issues a prefetch for each second-way indirec-
tion immediately after prefetching for its parent, since
all second-way indirections share the same index value
with the parent. For each second-level indirection, IMP
needs the index value accessed by the parent’s prefetch
and thus a second level prefetch can only be issued after
the parent prefetch returns.

IMP detects secondary patterns similarly to primary
patterns. After it detects a primary pattern, it tries to
detect secondary patterns by allocating another entry

in the IPD.

4. PARTIAL CACHELINE ACCESSING

Our target applications exhibit poor spatial locality
in addition to poor temporal locality. Since their work-
ing sets are large and accesses are irregular, we expect
to miss the first level cache with each indirect access.
Further, each indirect access only consumes a portion
of a cacheline, but forces the eviction of a full cacheline
that (most likely) has similarly been only partly con-
sumed. The result is that the hardware retrieves full
cachelines, only to discard most of the data without
using it. Since bandwidth is a serious performance bot-
tleneck, as discussed in Section [2:2] this not only wastes
power, but degrades performance.

Several previous works [45] 46| |18], [34] have proposed
to address this issue using a sector cache and partial
cacheline accessing. In these schemes, when a cache
miss occurs, a predictor decides the granularity of the
data loaded from lower in the memory hierarchy. For
our applications, since the partially consumed lines are
also indirectly accessed, we only consider partial ac-
cesses for indirect memory accesses and build the gran-
ularity prediction logic into IMP.

We consider partial cacheline accesses to both cache
and DRAM.

4.1 Sector Cache

A cache supporting sub-cacheline granularity accesses
is known as a sector cache [21]. Fig. |z| shows one cache-
line in a sector cache. Each cacheline is split into mul-
tiple sectors, and each sector has a valid bit. During
an access, if the cacheline is found, the valid bits need
to be checked for the bytes requested. On a cacheline
miss or a sector miss, the cache may retrieve a partial
cacheline by requesting only some of the sectors. Only
those sectors are sent through the memory hierarchy
and stored into the cache.

Many commodity DRAM modules have a large min-
imum data transfer size, e.g., 32B or 64B. Since our
cacheline size is 64B, this limits the potential of partial
accesses to DRAM. We assume a DRAM access gran-
ularity of 32B, since at least one commercial processor
has this feature [2]. Future DRAM technologies might
allow for finer-grained accesses.

For the rest of this section, we assume all levels of
cache are sectored and that we can access partial cache-
lines in all caches or DRAM. However, our proposal also
applies to systems with just sectored upper level caches.

Besides sector cache, other solutions exist to access
caches at sub-cacheline granularity. Prefetched data can
be stored in a prefetch buffer instead of the cache, or
two caches with different cacheline sizes can coexist. We
only evaluate partial cacheline accessing in the sector
cache context, but our mechanism is compatible with
alternatives.

4.2 Granularity Predictor

To benefit from a sector cache we need to decide,
for each cache miss, how many sectors to retrieve. For
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this paper, we only trigger partial accesses for indirect
accesses, since other memory accesses (e.g., index ac-
cesses) are likely to have better spatial locality and ben-
efit less from partial cacheline accessing.

The best access size depends on both the application
and input, and thus needs to be determined dynami-
cally. For example, if data array A is small and fits in
cache, even though each indirect access to it touches
only one sector in the cacheline, all the sectors may
eventually be touched before the line is evicted. In this
case, we should retrieve all sectors.

We add a Granularity Predictor (GP) to IMP to pre-
dict the best number of sectors to prefetch. Its archi-
tecture is shown in Fig.

When IMP finds an indirect pattern, it allocates an
entry in the GP and initializes the access granularity
to a full cacheline. As IMP issues indirect prefetches,
the GP randomly selects up to IV prefetched cachelines
to track; this sampling approach limits hardware cost
since not all cachelines need to be tracked [46]. For each
of these lines, the G'P records the tag and a touch bit
vector, which indicates which sectors in the cacheline
have been touched by demand accesses. On a demand
access, the GP checks if it is tracking the line, and if
so, sets the appropriate bits in the touch bit vector.

On an eviction of a line the GP is tracking, the GP in-
crements evict and computes the minimum access gran-
ularity of the cacheline by counting the smallest number
of consecutive touched sectors. If this is smaller than
min__granu field of the entry, min__ granu is updated to
this new value. The GP also counts the total num-
ber of sectors touched and adds this to the tot sector
field. After every N sampled cachelines are evicted, the
GP updates the access granularity (granu) using Algo-
rithm m Then, both evict and tot_sector are reset to
0 and min_ granu is set to the number of sectors in a
cacheline.

In the algorithm, costFull is the total number of
sectors retrieved if the N cachelines are accessed in
full. The +1 accounts for the header for each request.
costPartial is the number of sectors retrieved if the
N cachelines are partially accessed. Here, we have a
header for each partial access.

Headers mean that retrieving few sectors at a time
can carry high overhead. Thus, if software will eventu-

Algorithm 1 Granularity Prediction

costFull = N x (num_ sectors_per_ cacheline + 1)
costPartial = tot_sector + tot_sector / min_ granu
if costFull < costPartial then

granu = cacheline__ size

else
granu = min_ granu
end if
Table 1: System Configuration.
System Configuration
Frequency 1 GHz
Number of Cores N = 16, 64, 256
Core Model In-order, single-issue

Memory Subsystem

Cacheline Size 64 bytes

L1 T Cache 16 KB, 4-way

L1 D Cache 32 KB, 4-way

Shared L2 Cache 2/v/N MB per tile, 8-way
Directory Protocol ACKwise [19]

2-D Mesh with XY Routing
Hop Latency 2 cycles (1-router, 1-link)

Flit Width 64 bits
Memory Model
DRAMsim 10-10-10-24 DDR3,

8 banks per rank,
1 rank per MC
100 ns latency,
10 GB/s per MC

Simple DRAM Model

ally touch most sectors, it is more efficient to retrieve
entire cachelines at once.

S. METHODOLOGY

We use the Graphite simulator [24] for our experi-
ments. Table [1| shows the baseline system we model.

5.1 Scalability Assumptions

Table [1] shows how we change certain components of
the processor with the number of cores, N. Specifi-
cally, we assume that the total L2 capacity and the
total DRAM bandwidth are proportional to v/N rather
than N, due to chip area and pin constraints. Our sys-
tem uses the ACKwise coherence protocol [19] which is
not fully-mapped and broadcasts an invalidation if the
number of sharers exceeds 4.

We place the memory controllers in a diamond topol-
ogy. This has been shown to provide the best per-
formance for multicore architectures with a mesh net-
work and X-Y routing, since the traffic can be uni-
formly distributed [3]. We use DRAMSim [43] in ex-
periments without partial cacheline accessing. For ex-
periments with partial accesses, we use a simpler model
with a fixed latency and bandwidth limit. In our exper-
iments, the simpler model produces results within 5%
of DRAMSim.

5.2 IMP Parameters

We attach an IMP to each L1 cache. Table [2 shows
the default parameters. Each PT has 16 entries and



Table 2: IMP Configuration.

IMP - Prefetch Table (PT)
Table Size 16 entries
Max Number of Indirect Ways | 2
Max Number of Indirect Levels | 2

Max Prefetch Distance 16
IMP - Indirect Pattern Detector (IPD)
Table Size 4 entries

Shift Values

BaseAddr Array Length
Partial Accessing - Granularity Predictor (GP)

L1 Sector Size 8 bytes

L2 Sector Size 32 bytes

Number of Samples 4 cachelines

2,3, 4, -3
4

the maximum prefetch distance is 16. For multi-way
and multi-level indirection, we support only two ways
of indirect patterns and two levels of indirection for each
way. The PT can support more ways and levels with
no extra storage overhead, but this is enough for all our
applications. Each IPD has 4 entries, and in each entry,
the BaseAddr array stores up to 4 misses. We consider
four values of shift: 2, 3, 4 and -3. This corresponds to
Coeff of 4 (e.g., for 32-bit integers), 8 (e.g., for double-
precision floating point values), 16 (for small structures)
and 1/8 (for bit vectors), respectively. Long bit vectors
are sometimes used to indicate, in a dense way, which
elements in a vector are non-zero. Since a byte contains
8 bits, a coefficient of 1/8 translates from bit offset to
byte offset. With additional storage overhead, the IPD
can support more shift values.

We consider systems with and without partial cache-
line accessing. For systems with it, only IMP initi-
ates partial cacheline accesses. The L1 cache has 8
byte sectors, which is the same size as an on-die net-
work flit. The L2 cache has 32 byte sectors, which is
half of a cacheline. Smaller L2 sectors would save even
more bandwidth, but may require expensive changes to
DRAM [4].

In our evaluation, we assume both the cache and TLB
provide an extra port for prefetch requests. However,
prefetches rarely conflict with normal memory accesses
and only 1% performance is lost on average if they share
a port.

5.3 Applications

We evaluate IMP on a set of graph analytics, machine
learning, and sparse linear algebra codes intended to
represent their domains.

For graph analytics and machine learning, we use the
set of workloads from [37], and added LSH [38|. For
BFS, included in that suite, we use Graph500 [29], in-
tended to rate supercomputers on graph analytics tasks.

For sparse linear algebra, we use HPCG [10], a newly
introduced component of the Top500 supercomputer
rankings. This benchmark is intended to represent sparse
high-performance computing workloads.

The only changes we made to the code were in porting
to the simulator and adding software prefetches.

Pagerank: Pagerank is a graph algorithm for

ranking a website based on the rank of the sites that link
to it [32]. Pagerank is iterative; at each iteration, we
update the pagerank of each vertex using the weighted
sum of its neighbors’ pageranks and degrees. Neigh-
bor vertices are stored in a CSR representation [9], and
accesses to neighbors require indirect accesses.

Triangle Counting: Counting the number of
triangles in a graph is key to graph statistics such as
clustering coefficients [7]. Our workload uses acyclic di-
rected graphs, and each vertex has a neighbor list stored
in CSR format. To find triangles, we intersect each ver-
tex’s neighbor list with its neighbor’s neighbor lists. For
efficiency, the local neighborhood list is converted to a
bit vector which is indirectly accessed.

Graph500: Graph500 [29] is the first serious ap-
proach to augment the Topb500 with data-intensive ap-
plications. It runs a breadth first search (BFS) on a

graph following a power law distribution. Accessing
neighbor vertices incurs indirect accesses.
SGD for Collaborative Filtering: Collabora-

tive Filtering is a machine learning approach to predict
how a user would rate an item based on an incomplete
set of (user, item) ratings. Stochastic Gradient Descent
(SGD) is an approach to solve the underlying matrix
factorization problem [16]. The idea is to decompose
the ratings matrix into two smaller matrices, a (user x
features) matrix, and a (features x item) matrix, and
learn these iteratively. For each available (user, item)
entry, the algorithm makes a rating prediction using a
dot-product of the row for the user in the first matrix
and the column for the item in the second matrix, com-
putes the error from the actual rating and updates the
row and column entries using least squares error mini-
mization. SGD uses indirect memory lookups into the
row and column entries of non-zero matrix entries.

LSH: Locality Sensitive Hashing (LSH) |11] is
a probabilistic machine learning algorithm for nearest
neighbor search in high dimensional spaces. LSH uses
multiple hash functions selected to cause similar ob-
jects to have a high probability of colliding. During a
query, LSH finds and concatenates matching hash buck-
ets for each hash table. With the right number of hash
tables, LSH can guarantee with any desired accuracy
that this list will contain all neighbors within a given
query distance. The list may also contain objects far
from the query; these are filtered out by computing dis-
tances from each list object to the query. Filtering is ex-
pensive [38] and involves indirect accesses to the entire
dataset with the list of potential neighbors as indices.

SpMYV: Sparse Matrix-Vector Multiplication
(SpMV) is perhaps the most important sparse linear
algebra primitive. Our code is from the HPCG bench-
mark [10] and has been optimized for multicore pro-
cessors [33]. The sparse matrix is represented in the
CSR format [|9] and the vector is dense. The program
scans the non-zero elements in the matrix row by row
and indirectly accesses the corresponding elements in
the vector.

SymGS: Symmetric Gauss-Seidel smoother
(SymGS) is a key operation in the multigrid sparse



solver from HPCG . SymGS performs a forward
and back triangular solve. The code groups rows to
balance parallelism and data locality [33]. Like SpMV,
SymGS scans non-zero elements in each row of the ma-
trix and indirectly accesses corresponding elements in
the vector.

5.4 Baselines

We use the following configurations in our evaluation.

Ideal is an idealized configuration where all memory
accesses hit in the L1. It is equivalent to a system with
perfect prefetching and infinite memory and network
bandwidth.

Perfect Prefetching is a weaker idealized configu-
ration with a magic memory prefetcher. The prefetcher
is able to look into the future and for each memory
access, a prefetch request to that address is issued sev-
eral thousand cycles before the request. Unlike Ideal,
this configuration has finite memory and network band-
width.

Baseline is the baseline system without IMP or any
software prefetching. This configuration has a stream
prefetcher attached to each L1 data cache.

Software Prefetching follows the algorithm pro-
posed by Mowry which inserts indirect prefetching
instructions through the compilers. Despite the tech-
nique having been developed many years ago, no popu-
lar compilers (i.e., gce and icc) support it today. There-
fore, we manually insert prefetching instructions into
the source code following the original algorithm. We
tried all possible prefetch distances and use the best
one for each loop in each application. The underlying
hardware is the same as Baseline which has a hardware
stream prefetcher.

We also compared to a correlation prefetcher based
on Global History Buffer (GHB) [31]. However, when
attached to each L1 cache, our experiments show that
GHB provides no benefits on top of the stream prefetcher
because it cannot capture our workloads’ indirect pat-
terns with reasonably sized GHB buffers. GHB also
increases pressure on the network and DRAM because
it prefetches lines that are never accessed.

6. EVALUATION
6.1 Performance of IMP

Fig. [0] shows the performance of the configurations
described in Section [5.4] and also of IMP, as described
in Section [3] and without partial cacheline accessing.
The results are normalized to Perfect Prefetching.

As shown and discussed in Section [2| Baseline per-
forms significantly worse than Perfect Prefetching. The
gap narrows with increasing core count because increased
bandwidth pressure limits the ability of prefetching to
hide latency. Still, even at 256 cores, we see significant
performance potential.

Adding IMP significantly improves performance in
all cases. On average, it provides 74%/56%/33% (up
to 2.7%x/2.3%/1.7x) speedup across all applications for
16/64/256 cores. Further, IMP brings average perfor-
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Figure 9: Performance normalized to Perfect Prefetch-
ing

Table 3: Effectiveness of Streaming Prefetcher and IMP.

.. [[ Streaming Prefetcher || Streaming + IMP ||
” Application |0 x e T Tat I Cov. | Acc. [ Lat. ||
Pagerank || 0.08 | 1.00 | 3.07 ]| 0.96 | 1.00 | 1.13
Tri_Count || 0.07 | 0.50 | 5.78 || 0.01 | 0.72 | 3.57
Graph500 || 0.28 | 0.87 | 3.36 || 0.74 | 0.94 | 1.61

SGD 0.56 | 0.70 2.21 0.67 | 0.72 | 1.68
LSH 0.22 | 0.50 5.90 0.78 | 0.66 | 4.04
SpMV 0.38 | 0.98 1.89 0.99 | 0.98 | 1.00
SymGS 0.37 | 0.97 3.25 0.87 | 0.96 | 2.01
Average 0.28 | 0.79 3.64 0.85 | 0.85 | 2.15

mance within 18%/23%/26% of the idealized Perfect
Prefetching configuration, indicating that it harvests
much of the potential improvement; other latency hid-
ing techiques have limited room for additional improve-
ment on top of IMP.

Although not shown in the figure, we also ran some
SPLASH-2 benchmarks that do not exhibit indirect
access patterns and observed that IMP does not hurt
performance on these benchmarks. This is as expected
since it is very unlikely for IMP to trigger prefetching
if no indirection exists.

6.1.1 Prefetching Effectiveness

Table [3] shows prefetch coverage, accuracy and la-
tency to help us understand the performance. Cowver-
age is the ratio of misses captured by prefetches to the
overall number of misses. Accuracy is the ratio of the
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Figure 10: Instruction overhead of software prefetching
at 64 cores, normalized to Baseline

prefetched cachelines that are later accessed to the to-
tal number of prefetches. Latency is the ratio of average
memory access latency to that of Perfect Prefetching.

Table Bl shows the statistics at 64 cores. Relative to
just a streaming prefetcher, IMP significantly improves
prefetch coverage. Stream prefetching alone has an av-
erage coverage of 28%, while with IMP coverage is im-
proved to 86%. For all but SGD, IMP covers the major-
ity of the misses left by traditional streaming prefetch-
ing.

IMP is also accurate, achieving over 95% accuracy
for half of the applications. The other applications are
dominated by loops with small trip counts; accuracy is
somewhat lower as IMP launches prefetches beyond the
end of the loop.

Small trip counts also contribute to late prefetches,
or prefetches that only partly cover memory latency. At
the beginning of the loop, IMP launches prefetches, but
too late to fully hide latency. We see this, for example,
in Triangle Counting, which has a coverage of 91%, but
still high latency and a large remaining performance gap
between IMP and Perfect Prefetching. For applications
with large trip counts (Pagerank and SpMV), IMP is
very timely, achieving memory latency close to Perfect
Prefetching.

6.1.2  Software Prefetching

Fig. [9] shows that software prefetching also provides
performance gains over Baseline. However, the gain is
generally smaller than that from IMP, for the following
two reasons.

First, not all access pattern information is exposed
at compile time. In Pagerank and SpMV, for example,
most runtime is spent in a nested loop where the start
and end of the inner loop are input-dependent. How-
ever, for real inputs, the start is always the same as the
end of the previous outer loop iteration, i.e., the code
always scans the index array with unit stride. IMP de-
tects this dynamically, but the compiler can not take
advantage of it. As a result, the software prefetching
algorithm only inserts prefetches within the inner loop
and thus cannot hide all the latency.

Second, software indirect prefetching incurs large in-
struction overhead. For each indirect prefetch A[B[i +
Al], we must compute ¢ + A, then load the content
of B[i + A] and compute the address of A[B[i + A]].
Fig.[L0]shows the instruction count of IMP and software
prefetching relative to the Baseline. For all workloads
except SymGS, IMP has the same instruction count as
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Figure 11: Performance with partial cacheline accessing
normalized to Perfect Prefetching.

the Baseline. SymGS has busy waiting so the instruc-
tion count increases as runtime increases. On average,
software prefetching incurs 29% (up to 2x) more in-
structions than IMP.

6.2 Performance of Partial Cacheline Access-
ing

Fig.[[1]shows the performance of IMP with and with-
out partial cacheline accessing normalized to Perfect
Prefetching. The figure also shows Ideal, for reference.
Partial cacheline accessing can reduce both the NoC
traffic between L1 and L2, and off-chip traffic between
L2 and DRAM. The figure includes results with partial
accessing just in the NoC, and with it in the NoC and
DRAM.

The performance of Perfect Prefetching decreases rel-
ative to Ideal as core count increases. The only differ-
ence between Perfect Prefetching and Ideal is the con-
sideration of contention. Due to our scalability assump-
tions in Section [5.1] both the DRAM bandwidth and
NoC bisection bandwidth scale with the square root of
the core count. However, NoC and DRAM traffic scales
linearly with core count. As core count increases, both
subsystems become bottlenecks to scalability.

Partial cacheline accessing improves the performance
of IMP. With partial accessing enabled only in the NoC,
performance is improved by 4.9%/7.2%/8.4% (up to
15%/22%/31%) on 16/64 /256 cores. Using it for DRAM
as well, the performance gain becomes 9.5%/9.4%/6.9%
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Figure 12: NoC and DRAM traffic of partial cache-
line accessing normalized to full cacheline accessing (64
cores).
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Figure 13: Performance of IMP on an in-order and out-
of-order core, normalized to baseline out-of-order core
at 64 cores.

(up to 55%/47%/33%) on 16/64/256 cores.

For applications with heavy off-chip traffic (e.g., Page-
rank), reducing DRAM traffic significantly boosts per-
formance. The performance can even be higher than
Perfect Prefetching which always accesses full cache-
lines. For several other applications (Triangle Count-
ing, Graph500, LSH, SymGS), partial accessing for
DRAM hurts performance. With our inputs, these ap-
plications exhibit poor spatial locality in L1 but better
spatial locality in L2. Thus, it is better to load partial
cachelines from L2 but full cachelines from DRAM. Our
granularity predictor chooses a single granularity for all
prefetches from a given indirect pattern, whereas a more
complex predictor could detect the best granularity at
each level of the cache hierarchy.

Fig.[12shows the NoC and DRAM traffic at 64 cores
with partial cacheline accessing, normalized to full cache-
line accessing. On average, partial accessing reduces
NoC traffic by 16.7% and DRAM traffic by 7.5%. The
reduction is most significant in Pagerank, 39% in NoC
and 28% in DRAM, which sees the largest performance
gain.

6.3 Sensitivity Studies

6.3.1 Core Design

Our default core is relatively simple, as one would
expect for a system with up to 256 cores. Intuitively,
more complex designs, including the use of out-of-order
(000) execution, may hide memory latency better, re-
ducing the need for IMP.

Fig. [I3] shows the performance of IMP and partial
cacheline accessing on both our default core and an out-
of-order core, for 64 cores. Partial cacheline accessing is
enabled in both NoC and DRAM. Our out-of-order core
is still modest, using a 32-entry reorder buffer. This
mimics Intel’s announced Knights Landing many-core
design based on the Silvermont core . We show results

EEN PT=8 @ PT=16 @ PT=32

0.0
pagerank tri_count graph500 sgd Ish spmv symgs avg

Figure 14: Sensitivity to PT size at 64 cores. Perfor-
mance normalized to the default PT size = 16.
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Figure 15: Sensitivity to IPD size at 64 cores. Perfor-
mance normalized to the default IPD size of 4.

for one memory-bound application, Pagerank, and one
compute-bound application, SGD.

For both applications, OoO execution improves per-
formance, but IMP continues to provide significant per-
formance benefits.

For Pagerank, Oo0O execution hides some latency, but
still leaves room for improvement. As the application is
memory-bound, and IMP is so effective, with IMP, we
see very little difference between the core designs.

For SGD, 000 execution improves performance sig-
nificantly by exploiting more instruction level paral-
lelism. IMP actually provides more benefit for the core
with OoO execution because the OoO execution hides
little latency, but accelerates the computation, making
the application less compute-bound.

Over all our applications, on average, IMP and partial
accessing provide 20% and 37% speedup, respectively,
on Oo0 cores compared to the baseline OoO with only
streaming prefetchers.

6.3.2 IMP Design Parameters

We now study sensitivity to three hardware parame-
ters for IMP: PT size, IPD size and prefetch distance.

Fig. [I4] shows the performance of IMP at 64 cores for
various numbers of PT entries. Most applications are
not sensitive to the PT size. These have few concur-
rent indirect patterns, so even eight entries is enough to
capture all the patterns. Triangle Counting and LSH
see some additional benefit from more entries. With 16
entries, the performance is 16.3% and 2.7% higher than
with 8 entries for these two applications, respectively.
However, the improvement of 32 entries over 16 entries
is only 2.7% for Triangle Counting and less than 0.2%
for the other applications.

Fig. [I5 shows the performance of IMP at 64 cores for
various numbers of IPD entries. Most applications are
not sensitive to the IPD size. The IPD is only used for
detecting indirect patterns; an entry is released as soon
as IPD detects an indirect pattern or finds that no indi-
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Figure 16: Sensitivity to max indirect prefetch distance
at 64 cores. Performance normalized to default prefetch
distance of 16.

rect pattern exists for the streaming access. Since most
indirect patterns are very stable, the IPD sees little use.
One exception is SymGS, where indirect patterns are
frequently detected. With 4 IPD entries, performance
is 3.5% higher than with 2 entries. The improvement of
8 entries over 4 entries is less than 0.1%.

Finally, Fig. [[6] shows the performance of IMP at 64
cores for various maximum indirect prefetch distances.
For applications with long streams of indirect accesses
(Graph500, Pagerank and SpMV'), a large prefetch dis-
tance helps improve performance. However, for appli-
cations with many short loops with indirect accesses
(Triangle Counting), increasing the prefetch distance
may hurt performance since more prefetches are for ele-
ments beyond the end of the loop, and thus go unused.
A scheme to detect this situation and dynamically de-
crease prefetch distance would help.

6.4 Hardware Cost

6.4.1 Storage Cost of Basic IMP

IMP’s storage overhead consists of a Prefetch Ta-
ble (PT) and an Indirect Pattern Detector (IPD). For
the following discussion, we assume an address space of
48 bits.

In our default configuration, the PT has 16 entries.
We assume a baseline CPU has a stream prefetcher, so
the only new overheads in the PT are from the indirect
table. The most expensive fields are the BaseAddr (48
bits) and index (48 bits). Overall, each entry requires
less than 120 bits. With 16 entries, the total PT storage
overhead is less than 2 Kbits.

The IPD has 4 entries. In each entry, the most ex-
pensive fields are the two index values (48 bits each)
and the BaseAddr array which stores 4 x 4 BaseAddrs
(48 bits each). In total, the IPD requires 3.5 Kbits.

Overall, IMP requires 5.5 Kbits or only 0.7 KB of
storage. If this is still too large, we can reduce the
number of entries in PT and/or IPD. As shown in Sec-
tion performance of most applications degrades
little when we shrink these tables.

6.4.2 Storage Cost of Partial Cacheline Accessing

We assume sector caches for both L1 and L2 to sup-
port partial cacheline accessing. In this paper, we split
each L1 cacheline into 8 sectors, and each L2 cacheline
into 2 sectors. This requires an 8-bit/2-bit valid mask
for each L1/L2 cacheline, which is 1.6% and 0.4% stor-

age overhead for the L1 and L2, respectively.

The Granularity Predictor ( GP) also incurs overhead.
The GP has the same number of entries (16) as the
PT. We assume 4 samples in each entry. Each sample
includes an address tag (48 - log, 64 = 42 bits) and a
bit mask (8 bits). Including the other fields in Fig.
the total storage for an entry is less than 210 bits. The
overall storage of GP is 3.4 Kbits or 420 bytes.

6.4.3 Energy Cost

We model the energy overhead of IMP using CAC-
TI [28]. IPD is only accessed on L1 misses, which have
a high energy cost; thus, the overhead of accessing IPD
is negligible. The PT, however, is accessed on every L1
access. We model the PT as a fully associative cache
with 16 entries. Each entry has a 96-bit tag (for address
and PC) and 120-bit data. Each PT access takes less
than 3% of the energy of a baseline L1 access. This
is a small overhead compared to the performance gain
we deliver and this overhead can be further reduced by
using a smaller PT, less associativity, or applying some
throttling. The GP is accessed once per indirect access,
and the energy is less than 1% of the energy of an L1
access.

7. RELATED WORK

The body of work on hiding memory latency is quite
large. We discuss hardware prefetching, software pre-
fetching and other latency hiding techniques. We also
discuss related work on bandwidth reduction techniques.

7.1 Hardware Prefetching

Streaming and striding hardware prefetchers are well-
established |6} |41] and implemented on commercial pro-
cessors. These prefetchers capture simple memory ac-
cess patterns, similar to our baseline design.

Correlation prefetching 13| [31] leverages the obser-
vation that in many applications, irregular memory ac-
cesses repeat themselves. We can thus store the address
pattern (e.g., when we access address A, we then ac-
cess address B) in a hardware table and use it to drive
prefetches for repeated address streams. This works
well for short, repeated streams, but requires large stor-
age for capturing long streams, such as in our work-
loads [12].

7.2 Software prefetching

We may add software prefetches to a program either
manually or automatically [25]. Manual insertion is
very flexible, but requires significant programmer effort.
Automatic insertion requires the compiler to recognize
the access pattern.

Previous work studied inserting software prefetching
instructions automatically through the compiler for sim-
ple access patterns like streaming or striding [27]. Sev-
eral works have tried to prefetch more complex pat-
terns |20, [23], but these patterns do not correspond to
the indirect patterns in this paper. Compiler insertion
of indirect prefetches |26] has been proposed, and to
the best of our knowledge has only been implemented



on the Intel Xeon Phi compiler [17] and is not turned on
by default. As shown in Section software indirect
prefetching achieves suboptimal performance partly due
to its high instruction count.

Several works proposed prefetching techniques for po-
inter chasing [23 35]. This is not the same as the
streaming indirect accesses we primarily target, but is
similar to our multi-level indirect accesses. A multi-
level pattern may be thought of as a very short pointer
chain. We believe it is possible to extend IMP to sup-
port pointer chasing prefetching, but leave that for fu-
ture work.

7.3 Other latency hiding techniques

Besides prefetching, many other techniques have been
proposed to hide memory access latency. Out-of-Order
execution (Oo00) [39] hides latency by executing inde-
pendent instructions while waiting for a memory access.
As shown in Section 000 is not enough to hide
all latency and IMP is also effective with O0O.

Simultaneous multithreading (SMT) [15] 40] shares
the pipeline among multiple hardware contexts. Mul-
tithreading hides latency by allowing other threads to
proceed when one thread is stalled on a memory ac-
cess. Compared to IMP, this incurs significant hard-
ware overhead for extra contexts and requires software
to use additional threads.

Run-ahead execution [30] allows a thread to specu-
latively continue program execution rather than stall
on a cache miss. Speculative execution may effectively
prefetch data needed by the application in the near fu-
ture. This technique, however, requires an extra set
of register files for checkpointing before the processor
enters the run-ahead mode, so it can recover the pro-
cessor’s state after coming back to the normal mode.

In helper threads [8, |14] 22, 47], a separate thread
runs a reduced version of the program to reach and ex-
ecute memory accesses earlier than the primary thread.
This prefetches data for the primary thread but requires
another hardware context or core for the extra thread,
as well as hardware or a software tool to create the
helper threads’ version of the code.

7.4 Bandwidth reduction

Sector cache was built into very early commercial
computers [21]. The special design was motivated by
the discrete transistor logic of the time [36] rather than
by bandwidth reduction.

Similar to this paper, several previous works have
proposed to use sector cache and partial cacheline ac-
cessing in CPUs |45, 46 |18] and GPUs [34] to reduce
main memory traffic for general applications. Our idea
and implementation are different since we only focus
on indirect accesses. Also, for a system with IMP, the
incremental cost of adding a granularity predictor is rel-
atively low.

8. CONCLUSION

We observe that indirect memory accesses in the form
A[BJi]] are both common and performance-critical for

applications using sparse data structures. To capture
these patterns, we propose an indirect memory pre-
fetcher (IMP). We also observe that indirect memory
accesses often have little spatial locality, and thus waste
bandwidth. Thus, we consider partial cacheline access-
ing as an additional feature of IMP, to reduce band-
width usage in the NoC and DRAM. Evaluated on seven
benchmarks, IMP achieves significant performance im-
provement while reducing the NoC and DRAM traffic
significantly.
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