
M ost of the Internet’s infrastructure was de-
signed to withstand physical failures—such
as broken wires or computers—rather than
attacks launched by legal network users.1–3

The Internet’s rapid growth, however, coupled with its
cost-effective ability to move data across geographically
dispersed heterogeneous information systems, has made
it a virtual breeding ground for attackers. Furthermore,
the improvisation and sophistication of hackers’ attack
strategies and methods have overshadowed progress in se-
curity systems development. 

A sustained attack on the Internet could cause a cata-
strophic infrastructure breakdown. According to a study
on the Internet’s structure, its reliance on a few key nodes
makes it especially vulnerable to organized attacks by
hackers and terrorists.4 According to that report, if 1 per-
cent of the key nodes were disabled, the Internet’s average
performance would be reduced by a factor of two; if 4
percent were shut down, the Internet’s infrastructure
would become fragmented and unusable. 

To make networked systems reliable and robust, we
need vulnerability metrics that let us monitor, analyze,
and quantify network and application behavior under a
range of faults and attacks. Here, we present an agent-
based framework for analyzing network vulnerability in
real time. The framework lets us quantify how attacks and
faults impact network performance and services, discover
attack points, and examine how critical network compo-
nents behave during an attack or system fault. 

Attack analysis 
In most network attacks, attackers overwhelm the target

system with a continuous flood of
traffic designed to consume all system
resources (such as CPU cycles, memory, network band-
width, and packet buffers). These attacks degrade service
and can eventually lead to a complete shutdown.5 

There are two common types of attacks: 

• Server attacks. There are many types of server attacks,6

including TCP SYN, Smurf IP, ICMP flood, and
Ping of Death attacks. In some attacks, the attacker
makes overwhelming connection requests to a victim
server with spoofed source IP addresses. Due to
TCP/IP protocol stack vulnerabilities, the victim
server cannot complete the connection requests and
wastes all of its system resources. As a result, the server
cannot service legitimate traffic, which severely im-
pacts network performance.

• Routing attacks. Distributed denial-of-service (DDoS)
attacks increasingly focus on routers. Once a router is
compromised, it will forward traffic according to the
attackers’ intent. Similar to server attacks, the attackers
aim to consume all router resources, forcing the router
to drop all incoming packets, thus negatively affecting
network performance and behavior. 

Analyzing vulnerability in networks and in Internet
infrastructure still is in its infancy, and there’s much room
for improvement. Several existing tools, which are based
on modeling network specifications, fault trees, graph
models, and performance models, analyze vulnerability
by checking logs of system software and monitoring per-
formance metrics.5,7 In what follows, we briefly high-
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light each of these techniques. 

• Survivability analysis of network specifications. In this ap-
proach, a system architecture injects fault and intru-
sion events into a given network specification, and
then visualizes the effects in scenario graphs.8 Using
model checking, Bayesian analysis, and probabilistic

analysis, it provides a multifaceted network view of a
desired service. 

• Attack trees. This approach determines which attacks
are most feasible and therefore most likely in a given
environment, and quantifies vulnerability by map-
ping known attack scenarios into trees.9 Attack trees
assume that all vulnerability paths are known and can
be defined as possible or impossible. This can change
as new attacks are discovered, however, to sudden
render a previously impossible node possible.

• Graph-based network-vulnerability analysis. This ap-
proach analyzes risks to specific network assets and ex-
amines the possible consequences of a successful at-
tack.10 As input, the analysis system requires a database
of common attacks (broken into atomic steps), specific
network configuration and topology information, and
an attacker profile. Nodes identify an attack stage, such
as the machine class the attacker has accessed and the
user privilege level he or she was compromised. Using
graph methods lets you identify the attack paths with
the highest probability of success. 

Each of these methods uses offline analysis after the
attacks have occurred. None quantifies the vulnerability
or the attack’s impact with certainty. From a network
management perspective, it’s critical to analyze faults and
attacks during runtime to detect and protect against
them proactively. Also, all these methods focus on soft-
ware attacks, but, as we saw on 9/11, physical attacks are
also possible. 

Our online monitoring and analysis framework is
general, and can be used to analyze the system opera-
tional state and performance degradation for any given
fault or attack scenario. Our approach does not use
knowledge about specific types of faults or attacks, be-
cause an attack’s ultimate goal is to force a particular
component (server, router, or link) to operate in an un-
acceptable manner. We designed our metrics to detect
these events once they occur.

Impact analysis approach
Our approach’s overall goal is to formulate a theoretical
basis for constructing global metrics. System administra-
tors then can use the framework to analyze and proac-
tively manage the effects of complex network faults and
attacks, and recover accordingly.

Measuring vulnerability 
Our vulnerability index (VI) metric quantifies network
system states (such as normal, uncertain, and vulnerable),
much like a biological system uses metrics such as tem-
perature and blood pressure to quantify an organism’s
health.11 As Figure 1 shows, online monitoring deter-
mines whether a network’s VI exceeds normal opera-
tional thresholds when it encounters an attack or faults.
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Figure 1. The vulnerability index. A network’s state is monitored in
relation to the VI, which measures the state in relation to normal
operational thresholds and thus provides a mathematical basis for
real-time response to faults and attacks.
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This provides the mathematical basis for proactively re-
sponding to faults and attacks in real time. 

Based on this methodology, we developed an agent-
based vulnerability analysis framework (see Figure 2). Our
framework’s primary goals are to identify critical network
resource points whose failure would severely impact over-
all system behavior, and proactively configure the network
to provide quality of service in case of attacks and faults.

The framework’s client, server, and router agents cal-
culate vulnerability impact factors in real time (that is,
they measure the ratio between the changes a fault or at-
tack causes against the minimum change required to
move the component from a normal to abnormal state).
They also generate events whenever metrics significantly
change, using metric collectors to monitor individual met-
rics. The agents interact via a layer that supports data and
control communications. The vulnerability analysis en-
gine (VAE) statistically correlates the agent-generated
events and computes component or system vulnerability
and impact metrics. 

Component and system impact analysis
We can define the impact of a fault or attack at either the
component or system level. 

Component impact factor. The CIF characterizes and
quantifies impact on individual network components,
such as a client, server, or router. For example, as Equa-
tion 1 shows, we can define the CIF on a client for a given
fault scenario (FSk) as the ratio between the decrease in
data transfer rate due to a fault scenario FSk (TRnorm –
TRfault) and the minimum decrease in data transfer rate
(TRnorm – TRmin). We define the minimum decrease to
be the minimum reduction in the normal data transfer
rate that will make a client operate in an abnormal state.

CIF(Client,FSk) = , (1)

where TRnorm is the transfer rate during normal network
operation, TRfault is the transfer rate due to a fault or at-
tack scenario, and TRmin is the minimal transfer rate
threshold at which users can acceptably operate the sys-
tem. We assume, for example, that given normal network
operation, the client’s data transfer rate is 100 kilobits per
second and that the TRmin is set to 5 Kbps. If a fault or at-
tack decreases the client’s data transfer rate below 5 Kbps,
the operational state is unacceptable (vulnerable). 

Similarly, we can compute a router’s CIF using buffer
utilization as the metric to quantify a fault scenario’s im-
pact on router behavior as

CIF(Router, FSk) = , (2)

where Bnorm is a normal operation’s average buffer utiliza-
tion, Bfault is the buffer utilization during a fault scenario,
and Bmax is a router’s maximum buffer utilization during
normal operation. 

We compute server CIF based on the connection
queue length

CIF(Server, FSk) = , (3)

where CQnorm is a normal operation’s connection queue
length, CQfault is the connection queue length during a
fault scenario, and CQmax is the server’s maximum con-
nection queue length during normal operation.

In Equations 1 through 3, we use data transfer rate,
buffer utilization, and connection queue length to quantify
fault impact, but we can use other metrics as well. To com-
pute a router’s CIF, for example, we could use the number of
flows open or in process, the total number of flows, or the
request-processing rates. We can also dynamically adjust the
normal and abnormal behavior thresholds to accurately
characterize any network component’s operational state.

System impact factor. The SIF identifies how a fault
affects the whole network or a subnetwork. For any
given fault, we obtain the SIF by evaluating the
weighted impact factors of all network components.
That is, we evaluate SIF by determining, in relation to
the total number of components, the percentage of
components operating in vulnerable states (those with
CIFs that exceed normal operational thresholds). We
compute the overall impact of a given fault or attack on
clients and routers as

SIFClient(FSk) = , (4)

and

SIFRouters(FSk) = , (5)

respectively, where d denotes the upper threshold of nor-
mal operating conditions and the binary variable COS
denotes the component’s operation state. COS is equal to
1 when the client operates in an abnormal state (that is,
CIFi > d), and 0 when it operates in a normal state (that is,
CIFi < d). 

Simulation results: 
Validation and analysis
To validate our approach and demonstrate its capabilities
in online monitoring, analysis, fault–attack detection,
and recovery, we developed an instrumented simulation
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environment using the Scalable Simulation Framework
Network tool (SSFNet; see www.ssfnet.org). Here, we
focus on monitoring, analysis, and detection; we discuss
how these metrics facilitate proactive recovery mecha-
nisms elsewhere.12

Our simulation environment lets us
inject faults or attacks into a simulated
network system. Once we start the sim-
ulation, VAEs continuously compute
CIFs based on monitored vulnerability
metrics. Agents exchange these CIFs
through the agent communication
layer. When an agent receives CIF val-
ues, it computes the overall system im-
pact factor (see Equations 4 and 5). 

As Figure 3 shows, our network
topology consists of six client net-
works and five server networks, and
we assume a node-pair bandwidth of
100 Mbps. We configured all network
clients and servers for simple file trans-
fers using TCP/IP. The network has
243 clients and servers running
TCP/IP protocol stack. The core
backbone consists of seven routers,
and we use Open Shortest Path First
(OSPF) as the routing protocol.

To quantify the impact of single and
multiple router failures, we analyzed

several vulnerability metrics including
router buffer size and client data transfer rate. We consider

• core router operation unacceptable when buffer size ex-
ceeds 50,000 bytes, and

• client operation unacceptable when the data transfer rate
drops below 70 Kbps. 

To characterize a network component’s state, we use CIF:
if a router’s CIF is greater than 35 percent, its working
state is unacceptable; a client’s working state is unaccept-
able if its CIF is greater than 30 percent.

Single router failure
In this scenario, we separately failed routers 1 through 5
and 7. Router 4’s failure occurred at 300 seconds. As Fig-
ure 4a shows, the buffer size for interface 2 of router 3 in-
creased drastically after the failure; it reached 250,000
bytes at 400 seconds. We observed the same behavior
using CIF. As Figure 4b shows, router 3’s CIF is about 35
percent. Figure 5a shows how router 4’s failure affected
network 0’s clients: their transfer rate increased to 70
Kbps, and each client’s CIF dropped below 30 percent
after the 300-second failure. 

We can use CIF metrics to obtain global system im-
pact metrics due to faults or attacks. Router 4’s failure, for
example, will significantly impact the core routers. As
Figure 6a shows, according to the SIF for this failure sce-
nario, more than half of the core routers will operate in an
unacceptable buffer utilization state. We can also quantify
how the failure affects the overall client population; the
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Figure 4. Single router failure. (a) Router 3’s average buffer size and
(b) router 3’s component impact factor. 
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failure rate can reach 25 percent (see Figure 6b).

Multiple router failures
Our approach also lets us analyze the impact of multi-
ple failures on overall system behavior and identify
critical resources and vulnerabilities. To illustrate this,
we failed a pair of routers and studied the network im-
pact. We used the same thresholds as in the single
router failure. We failed multiple routers at 300 sec-
onds of simulation time, and set the total simulation
time at 700 seconds.

We failed routers 4 and 5 simultaneously, which af-
fected routers 2, 3, and 7. All traffic for routers 4 and 5
was rerouted through router 3, which created conges-
tion and severely degraded its performance. For this
fault scenario, 70 percent of core routers and 82 percent
of the clients operated in an unacceptable state (see Fig-
ures 7a and 7b).

Single and multiple router failures let us determine
the network’s most critical routers (indicated by the
boldface percentages in Table 1). We evaluate router
importance based on how failures impact routers’ and
clients’ SIF. As Table 1 shows, router 4 was the most
critical router: its failure affected more than 54 percent
of the network’s core routers and 31 percent of its
clients. The impact on clients was less severe because—
as Figure 3’s topology shows—when router 4 failed,
client traffic was rerouted to servers through other
routers (in this case, router 2). 

As Table 1 shows, router 2’s failure affected more
than 47 percent of the clients, because this failure iso-
lated clients from networks 3 and 4. Finally, the simul-
taneous failure of routers 4 and 5 had the most impact:
71 percent of core routers and 82 percent of clients
were affected.

We are currently building a testbed that consists of
10 routers and 40 workstations at the ITL labora-

tory of The University of Arizona to evaluate the on-
line monitoring and vulnerability metrics discussed in
the paper. In addition, we will be evaluating vulnera-
bility metrics with respect to multiple attributes (num-
ber of unsuccessful sessions, packet transfer rate per
destination, for example) in order to improve the accu-
racy of our approach to quantify the impact of faults
and attacks. We are developing a Quality of Protection
(QoP) routing protocol based on our vulnerability
metrics to mitigate and eventually eliminate the impact
of attacks on networks and their services. 
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Figure 6. A single failure’s system impact. (a) The system impact
factor of a router with a single failure. (b) The system impact factor
for clients with a single failure.
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Figure 7. Multiple failure’s system impact. (a) The system impact
factor of core router with multiple failures. (b) The system impact
factor of clients with multiple failures. 


