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Abstract: The increasing applications of low-cost air sensors promises more convenient

and cost-effective systems for air monitoring in many places and under many conditions.

However, the data quality from such systems has not been fully characterized and may not meet user

expectations in research and regulatory uses, or for use in citizen science. In our study, electrochemical

sensors (Alphasense B4 series) for carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO2),

and oxidants (Ox) were evaluated under controlled laboratory conditions to identify the influencing

factors and quantify their relation with sensor outputs. Based on the laboratory tests, we developed

different correction methods to compensate for the impact of ambient conditions. Further, the sensors

were assembled into a monitoring system and tested in ambient conditions in Hong Kong side-by-side

with regulatory reference monitors, and data from these tests were used to evaluate the performance

of the models, to refine them, and validate their applicability in variable ambient conditions in

the field. The more comprehensive correction models demonstrated enhanced performance when

compared with uncorrected data. One over-arching observation of this study is that the low-cost

sensors may promise excellent sensitivity and performance, but it is essential for users to understand

and account for several key factors that may strongly affect the nature of sensor data. In this paper,

we also evaluated factors of multi-month stability, temperature, and humidity, and considered the

interaction of oxidant gases NO2 and ozone on a newly introduced oxidant sensor.
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1. Introduction

Air pollution is widely recognized as one of the main causes of adverse health effects,

with documented association to acute and chronic diseases. Important components of polluted

atmospheres include particle and gas phase pollutants, such as nitrogen dioxide (NO2), ozone (O3),

and carbon monoxide (CO) [1,2]. They are either directly emitted from primary pollutant sources such

as vehicular traffic, ships, power production etc., or formed in the atmosphere during photochemical

processes [3–5].

Effective air monitoring is essential in better understanding the sources and nature of air pollution

for exposure assessment, environmental policy formulation, and evaluation of the effectiveness

of such policies [6,7]. While regulatory monitoring stations provide detailed and accurate air

pollution measurements, the instruments are expensive and bulky, and require conditioned housing,
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considerable maintenance, and on-site calibration [8]. The existing air monitoring systems sited in

urban locations are often limited in number and have a primary objective of establishing compliance

with air standards and guidelines [9]. Further, traditional monitoring stations are generally located

away from source emissions and may not allow consideration of the impacts of local sources on

ambient air quality.

With the increasing needs of air quality data for scientific purposes, alternative air monitoring

approaches have become trendy with promises of lower cost and power consumption, high temporal

resolution, flexibility, and convenience in operation [10,11]. There is a growing body of literature

documenting the performance and application of compact, low-cost, and portable gas sensors [12–16].

These sensors operate by different working principles [17]. For example, photo-ionization based

sensors are often used for detecting volatile organic compounds (VOC) [18]; optical sensors are

commonly used for measuring gas absorption at a specific infrared wavelength window that is sensitive

to carbon dioxide (CO2) and methane (CH4) gas [19]; and sensors using semi conductive metal oxides

which exhibit changes in conductivity when exposed to gas molecules [20]. Electrochemical sensors

are widely employed to detect several of the common gas pollutants that can be reduced or oxidized

on electrodes resulting in linear response in current [21,22].

Electrochemical cell based sensor technology offers a variety of advantages including linear

response to concentration, low cost in fabrication, relative fast response, light-weight, and low

power consumption, all of which are desirable for the so-called “next generation” air monitoring.

A few large scale ambient air monitoring programs have employed electrochemical sensor based

technologies, such as the EuNetAir project which have been deployed for air quality measurement

and modeling at an international level [23,24], and the Cambridge University network that provided

continuous measurement of CO, NO, NO2, and environment parameters with high temporal resolution

for quantification of human exposure [21,25]. Mobile sensor platforms have shown the ability of

monitoring city scale variation, such as Citi-Sense-MOB [26]. A multi-gas sensor system was used

for a study of emissions from volcanos, taking advantage of the fast response of electrochemical

sensors [27,28]. Sensor networks of high spatial density can also be used for quantifying source

attribution, which distinguish pollutant contributions from local background emissions to local

and non-local receptors [25]. Sensor based monitoring can also measure personal exposures when

assembled into small battery powered systems that are carried by people as they go about their

normal activities.

Sensor based monitoring applications bring new opportunities for air monitoring, however,

important issues exist regarding data quality in sensor applications. Studies have demonstrated that

sensor data are subjected to considerable influence from environmental factors such as temperature,

humidity, and even interference of other air pollutants [14,15,21]. Considerable efforts have been

made to understand these factors, with varying degrees of complexity and success, including machine

learning methods for correcting raw data. Since application of sensors into real-world environments

requires the deployment outside the laboratory and direct exposure to complex and dynamic ambient

conditions, it is crucial to document the sensor performance and compensate the ambient factors under

various these real-world conditions. These challenges include: 1. sensor responses to a wide range of

ambient environmental conditions; 2. measurement of target gases over wide ranges of concentration,

3. sensor cross-sensitivity to multiple gases; 4. conversion of the sensor electrical output responses to

the real concentration; and 5. lack of well proven protocols for quality assurance and control for sensor

field application.

Acknowledging these issues, we designed experiments to quantify the impact of two important

environmental factors (i.e., temperature and humidity) on the sensor response for criteria gas pollutants.

An experiment-based method of sensor calibration was used to convert the sensor output to the gas

concentration, and different methods were tested to correct the environmental impact on sensor

response and improve the sensor data quality. Multi-month assessments were made to consider the
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stability of senor response. Finally, we carried out detailed error analysis on the corrective models in

the real-world application.

2. Experimental Methodology

The working principle of an electrochemical sensor is that the target gas reacts with the sensor

cell that contains an electrolyte and either two or three electrodes. The “working” electrode generates

electric current while oxidized or reduced by the target gas; a “counter” electrode is used to balance the

reaction of the working electrode and generate equivalent current which is proportional to the target

gas. Some sensors include a “reference” electrode to anchor the working electrode and helps maintain

constant sensitivity, good linearity, and enhanced sensitivity for the target gas [29]. Laboratory and

field experiments were conducted to evaluate the characteristics of sensor response to a range of gas

concentrations and environmental factors.

2.1. Laboratory Tests

Laboratory tests were conducted to establish the relationship of output from selected

electrochemical sensors with concentration of individual gases (NO2, NO, O3, CO) under

controlled laboratory conditions. Four models of commonly used electrochemical sensors including

NO2-B42F (NO2), NO-B4 (NO), CO-B4 (CO), and OX-B421 (combined oxidant gases NO2 and O3)

(Alphasense, UK) were tested to evaluate the sensor linearity, the impact of temperature and humidity,

cross interference, and for multi-month response stability (drift). Ozone values were derived by

subtracting the observations of the NO2 sensor from that made by the oxidant sensor. Prior to the

laboratory evaluation, multiple sensors from the same batch of manufacturer shipment were tested

to check their internal consistency. There was good agreement of their linearity in response to gas

concentrations, as reported in literature. The detailed laboratory tests and field evaluation reported the

representative data from each type of gas sensors. The test setup is composed of 4 major components,

as shown in Figure 1.

2.1.1. Standard Gas Generation

The target gases were produced by two methods depending on the gas of interest. CO and NO

concentrations were produced by diluting gas of known concentration from standard gas cylinders

(with documented content within certification validity periods) with pollutant-free air produced by

a zero air generator T701H (Teledyne-API, San Diego, CA, USA). The target gas concentration and

zero air flow rate controlled by a Lotun Science S102D dilution system (Lotun, Taiwan). The flow rate

and time of each step were controlled by a PC. Ozone and NO2 were produced by reacting NO from a

cylinder by the T700U (Teledyne-API, San Diego, CA, USA) dynamic dilution calibrator. It includes

three mass flow controllers and is capable of producing NO2 and ozone calibrations down to 3 ppb.

Flows were confirmed by regular comparisons with a Gilibrator 2 (Sensidyne, St Petersburg, FL, USA)

flow meter which was factory calibrated 6 months prior to use.

2.1.2. Sensor Test Apparatus

The 4 gas sensors were fixed to an air tight Teflon manifold and sample air was passed through the

manifold with a flow rate of 1 L per minute (l pm). All the connections were made of Teflon tubing and

stainless steel connectors to minimize gas losses. For linearity tests, the gases of different concentrations

were passed directly through the sensor manifold at a stable temperature of 22 ± 0.5 degrees.

To test the effects of temperature and humidity conditions on the sensor performance, temperature

and relative humidity were controlled, as shown in the middle panel of Figure 1. The upper component

is a temperature controller, in which the gas stream passed through a long coiled tube that was heated or

cooled by a liquid bath using VWR Signature Circulating Bath (Model 1146D). The target temperatures

ranged from 15 to 34 ◦C, conditions typically encountered in the urban atmosphere in Hong Kong.
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In humidity tests, the sensors were installed inside a glass chamber and the target gas humidity

was controlled by mixing the standard gas with zero air that was wetted by passing through glass

water bubbler, as shown in Figure 1. The gas mixture concentration and humidity are determined by

the flow rate ratio of the two streams.

2.1.3. Reference Gas Instruments

NO2 analyzer (Teledyne-API T500-U, San Diego, CA, USA) and NO&NO2 analyzer

(Teledyne-API-T200UP, San Diego, CA, USA), CO analyzer (Teledyne-API-T300U, San Diego, CA,

USA) and an Ozone analyzer (Ecotech-Serinus10, Knoxfield, Victoria, Australia) were operated in this

study and served to produce “reference” grade data for laboratory calibration studies. The U series

NOx and CO analyzers are trace gas level monitors, while the Serinus is widely used in ambient air

monitoring. The performance of each of these monitors was determined by on-site comparison with

validated regulatory monitoring data. The manifold and chamber were connected to analyzers with

Teflon tubing.

2.1.4. Data Collection

Sensors output voltages (both reference and active from the electrochemical sensor) and humidity

and temperature data were logged by an Arduino MCU board (Mega ADK, Scarmagno, Italy) and

transmitted to the PC every 5 s.

Figure 1. Laboratory setup for sensor linearity, cross sensitivity, and zero air drift test.

Prior to the tests, each sensor was powered on for at least 48 h stabilize the output [10,30].

For each sensor calibration and performance test, zero air was pumped through the Teflon manifold to

purge tubes and chambers for 15 min. Linearity tests were carried out in a stable indoor environment

with temperature remaining stable at 22 ◦C and relative humidity at 40%. NO, NO2, and oxidant

sensors were tested at ppb levels. NO, NO2, and ozone concentrations steps were set at 5, 50, 100, 150,

and 250 ppb, while CO concentration tested included 0.1, 0.5, 1, 1.5, and 2 ppm. Each step ran for

15 min with the data from the first 2 min removed to ensure of adequate response time and stabilization

of the test system. After linearity test, the sensors cross interference was also tested when pumped into

one specific target gas.

It is well established that variations in ambient conditions of temperature and relative humidity

have significant impacts on sensor response to the pollutant concentrations [31,32]. To address this,
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tests were also performed under combinations of temperature and humidity settings. For each sensor,

a target gas of different concentrations including zero air was pumped into the manifold with humidity

of 17%, 30%, and 48% for each step cycle and temperature of 16, 19, 33, and 36 ◦C.

Electrochemical sensors are known to produce linear response with target gas concentrations in

repeated laboratory tests, however, they may operate for weeks to months in a variety of ambient

conditions with little attention by users to continued data accuracy. A number of studies have shown

a drift of sensor sensitivity and output to the gas pollutants over long term deployment [33]. In this

study, we evaluated the stability of sensor response over a period of two months. The multiple-sensor

manifold was supplied with zero air at a stable temperature (22 ◦C) and relative humidity (40%) each

day with a 1-h duration, while for the remainder of the day, the sensor was powered at all times with

outdoor ambient air passing through the manifold. During the test period, the ambient air temperature

ranged from 17 ◦C to 24 ◦C and relative humidity ranged from 54% to 95%.

2.2. Field Tests

Field evaluation tests were carried out from 14th through 25th of February 2015 at the Hong Kong

Environmental Protection Department (HKEPD) roadside Air Quality Monitoring Station (AQMS).

The station is located at the roadside of the junction of Charter and Des Voeux Roads in Central,

Hong Kong (Latitude: 22.28197, Longitude: 114.15758). Both roads are busy with traffic in the heart of

the business district. The AQMS is equipped with regulatory grade gas analyzers that report data on

CO, O3, SO2, NO, and NO2 on an hourly basis. HKEPD provided raw data from these analyzers at

1-min resolution for our use in assessing sensor platform operation. These data were averaged to and

compared with sensor data at 5-min resolution.

Three identical sensor platforms equipped with the NO, NO2, and CO, and oxidant sensors were

placed on top of the AQMS station rooftop with a distance of 1 to 2 m from the inlets of reference

equipment. An Arduino-based MCU served as an integration module for data communication.

Power for each was provided by a 24 V, 20 Ah Lithium Ion battery. Data were transmitted to the server

in the laboratory via GPRS using an interface card added to the MCU. A detailed description of this

system is presented in the work of 2015 Hong Kong Marathon sensor network monitoring [34].

2.3. Correction Model Development

Electrochemical sensors have two raw outputs, including active (VAct) voltage from working

electrode and reference (VRef) voltage from auxiliary electrode. The Act voltage responds to target

gas concentration directly and is also affected by environmental parameters, while the Ref voltage

serves to anchor the working electrode voltage with response only to the change of environmental

parameters. The difference (VDiff = VAct − VRef) of the Act and Ref voltages is proportional to the

target gas concentration when measured in the stable environment.

The equation to express this proportionality is presented in Equation (1) as Model 0,

Model 0: Conc = S × VDiff + B + D (1)

where VDiff is in mV, the coefficient S represents sensor response sensitivity in ppm/mA or ppb/nA,

and B is the baseline response in concentration, while D is the correction for drift and the cross

interference from other gases [33]. In Equation (1), S and B can be obtained by multiple-point calibration

between sensor output and target gas concentration.

For practical application, variations in temperature and relative humidity have been shown

to impact sensor output. Based on the test results from this study, S and B in Equation (1) can be

generalized by the following simple linear equations, as illustrated in Figure 3:

SRH,T = a1 × RH + a2 × T + a3 (2)

BRH,T = b1 × RH + b2 × T + b3 (3)
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If the impact of temperature and relative humidity is considered, Model 0 may be further

transformed to Model 1:

Model 1: Conc = (a1 × RH + a2×T + a3) × VDiff + b1 × RH + b2 × T + b3 (4)

Further, while comparing the sensor response to the varying conditions, different sensor reference

electrode outputs had different degrees of response to temperature and humidity. We determined

the regression of the VRef with T and RH. Table 1 lists R2 of the regression and slope coefficients

of T and RH on VRef. There is a statistically significant correlation of NO sensor reference voltage

(R2 = 0.94, p < 0.001), which is dominated by temperature with high T-weight of 3.16 versus very

small RH-weight of 0.03 in magnitude, thus the impact of RH can be neglected in this case. The NO2

sensor reference voltage was found to demonstrate a second order relationship with ambient RH,

but such correlation is much lower at R2 = 0.56, while for CO and O3, there is no significant correlation,

with R2 = 0.35 and 0.45, respectively.

Table 1. Regression results of the sensor VRef with temperature and relative humidity (all p < 0.001).

Sensor CO-B4 NO-B4 NO2-B4 OX-B4

R2 0.35 0.94 0.56 0.45
T-weight (m V/◦C) −1.28 3.16 −1.15 −0.38

RH-weight (m V/%) 1.12 0.03 −0.70 −0.67

Based on these results, assuming a linear relation between VAct and VRef to correct working

electrode voltage response to gas concentration may not be optimally considered by direct subtraction;

and separate regression of VAct and VRef seem advantageous. The model can be transformed into the

following possible forms:

Model 2: Conc = (a1 × RH + a2 × T + a3) × VAct + b1 × RH + b2 × T + b3 (5)

Model 3: Conc = (a1 × RH + a2 × T + a3) × VAct + (b1 × RH + b2 × T + b3) × VRef + b4 (6)

In Equation (5), we assumed VAct directly responds to the concentration and VRef is not used for

correction, while T and RH are included as independent coefficients. In Equation (6), VAct and VRef are

both employed independently in which VAct is assumed to directly respond to target gas, while VRef

is included to reflect impact of T and RH. Separate T and RH correction is removed to avoid over

correction. The data analysis was based on Python 2.7 and Origin software.

3. Results and Discussion

3.1. Laboratory Evaluations

3.1.1. Linearity Test under Stable and Variable Conditions

Figure 2 shows the correlation between raw outputs voltage from sensors and standard gas

concentration measured using regulatory grade air monitors that served to produce a reference

value for the pollutants of concern. Each data point represents the average of 10 min values for

each concentration step. As expected, the sensors demonstrated high linearity with specific gas,

and R2 values are higher than 0.99 for all 4 pollutants, consistent with our prior studies and those

reported by others [17,21,34,35]. However, the linearity response of sensors was determined once

stable environmental conditions were established after sensor “stabilization”. This demonstrates that

the electrochemical sensors perform well under ideal conditions.

In order to establish the relation between the ambient parameters (RH and temperature) and the

voltage output of sensors, the slope and intercept produced from the regression of each linear test
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under each temperature or humidity condition were plotted in Figure 3, taking CO as an example.

The other sensors showed a similar linear relation but with different slopes and intercepts. The left

panel shows a positive and linear correlation between the sensor response slope and relative humidity,

while the right panel shows a negative relation of the temperature and baseline voltage while passing

zero air through sensors. The change of slope with increasing RH from 15% to 48% was around 5%,

and baseline voltage shifted from 7 mV to −22 mV when temperature increased from 18 ◦C to 36 ◦C,

equivalent to a drift of CO concentration of about 0.1 ppm, according to Figure 2a. The protocol for

testing the influence of temperature and relative humidity did not include highly humid conditions

because our system was unable to produce these levels. However, the ambient factor dependent sensor

response clearly indicates the need to include the correction of the S (slope) and B (baseline) as shown in

Equation (1), especially for sensor applications in ambient monitoring with strong diurnal and seasonal

cycles of climate conditions. The detailed correction method is shown in Section 3.2. Further testing

under more extreme humidity conditions requires protocols that are under development.

−

Figure 2. Laboratory multiple point linearity test with standard gas at 22 ◦C and 40% (a) CO

(carbon monoxide), (b) NO (nitric oxide), (c) NO2 (nitrogen dioxide), (d) O3 (oxidants).

− − − −

Figure 3. CO sensor response to the change of ambient factor (a) RH dependent slope of output and

concentration (b) Temperature dependent baseline voltage.

These laboratory tests provide a basis to determine the limits of detection (LOD) for each sensor.

The standard deviation for each sensor was estimated under zero air conditions after calibration with

reference machines. The LODs can be estimated as 3X of standard deviation [21,35,36].
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3.1.2. Long Term Drift

Figure 4 presents the performance of the sensors during the 2-month drift test. Each data point

represents the calculated pollutant concentration according to Equation (1) from the measured sensor

voltage output (V), with the slope (S) and baseline (B) values acquired from regression for each gas

under stable conditions. The first data point is the observed initial zero concentration, with D initially

set as 0 for reference.

There are two important observations from the test results: 1. during the test period, no consistent

D values were found and they scattered within a relatively narrow concentration band with no

clear pattern. The Minimum-Maximum of the concentration output for NO2, CO, NO, and Ox

sensors from this test were −7.7 to 14.8 ppb, −0.10 to 0.07 ppm, −12.5 to 11 ppb, and −15.8 to

4.6 ppb, respectively, shown in Figure 4. Note the test conditions for the zero air with stable and

consistent temperature and humidity, which eliminated the possibilities of variation in B due to

the change of sensor conditions. The variation in the sensor output may be due to the inherent

electronic noise or the physical change of the sensor itself that affected the sensors’ response after

exposure to variable ambient conditions and 2. In addition, a linear fitting was performed with

measurements shown as the red line in Figure 4. For NO, NO2, and O3 values, the overall average

drift is <2 ppb per month and <0.02 ppm per month for CO sensor. Meanwhile, a loess smoother was

presented which showed non-uniform and non-significant trend for 4 sensors. Although only two

months of continuous measurements were carried out, the accumulated drift may be high for the

longer term and multi-month sensor operations. This strongly suggests the necessity of periodic

calibrations or other procedures to account for sensor drift performance, even for high concentration

range measurement. Further studies are underway to evaluate methods to reduce the impacts of long

term drift in these sensors.

 

Figure 4. Zero air test for sensor drift evaluation for CO (a), NO (b), NO2 (c), O3 (d), a linear fitting

(red line) and loess smoother (gray line) was added.

3.1.3. Cross Interference

The cross interference of sensor response to non-target gases was also evaluated. Table 2 shows

the results of the relationship between the 4 sensors and gases. The data represents the ratio of sensor

response in calculated concentration to non-target input gas concentration calculated in percentage.

CO, NO, and NO2 sensors showed no evidence of cross interference when exposed to other gases,
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consistent with that claimed by the sensor vendor specifications [37]. The Ox sensor (Ox-B421),

however, had a nearly 1:1 linear response to pure NO2 gas, as reported in other studies and the

sensor specification [21]. The NO2 sensors investigated in this study had a filter membrane that

removes ozone before it reacts with cell electrolyte. This allows NO2 sensor to report NO2 only in

ambient air that contains ozone. O3 has been shown to produce positive artefactual readings on

some NO2 electrochemical cells without this filter [38]. The correction method for O3 thus needs to

take into consideration the co-existing NO2 gas, by subtracting the calculated Ox (O3 + NO2) with

measured NO2 concentration, given the 100% response ratio shown in Table 2. All O3 data presented

in the following sections are calculated by subtracting NO2 concentration. This finding of NO2 gas

and Ox sensor interference is not unexpected, but it has not been quantitatively documented [21].

The inclusion of this ozone filter added to the NO2 sensor combined creates new possibilities for

accurate measurement of O3 and NO2 with electrochemical cells. Care should be taken when viewing

the results of prior studies, performed before 2015, due to this sensor design factor for Alphasense

NO2 sensors. For example, research findings presented by Spinelle et al. [14] made use of sensors that

did not include ozone filters on Alphasense NO2 sensors, and did not include subtraction of observed

NO2 values from an oxidant sensor to determine ozone concentrations. Sensor cells for NO2 employed

in other field and laboratory studies may or may not have included this filter. The presence of this

filter feature is uncertain on sensors produced by other sensor vendors or in monitoring systems that

report NO2 from electrochemical sensors.

Table 2. Gas interference of sensors.

Gas
Sensor

CO-B4 NO-B4 NO2-B4 Ox-B4

CO @1 ppm NA <1% <1% <1%

NO @100 ppb <1% NA <1% <1%

NO2 @100 ppb <1% <1% NA 100%

O3 @100 ppb <1% <1% <1% NA

3.2. Evaluation of the Correction Models

Figure 5 shows the time series of ambient conditions during the field test carried out at the urban

site. There was a large variation of the relative humidity (54% to 95%) and mild range of temperature

(17 to 24 ◦C) during the period, which produced a good opportunity for the evaluation of different

models under Hong Kong conditions. It should be noted although the test period is relatively short,

lasting 8 days, it serves to compare the performance of different correction models under varying

conditions. Longer time series of data is preferred if one were to evaluate the long term drift of sensor

response in the field, which should be the scope of future studies.

To evaluate the performance of three models, the field measurement data were separated into

two sets. One model from 17th to 21st February 2015 was used to perform the multiple linear regression,

illustrated in Section 3.2, with the AQMS gas data which was provided with 1-min resolution to obtain

the coefficients of different models. A total of about 1,100 data points were used for the regression from

the valid 5-min average sensor and AQMS data. Further, the other experimental data was collected

from 22nd to 25th February 2015 to evaluate the validity and performance of model in predicting

ambient gas concentration. For CO, NO, and NO2 gases, the concentrations were calculated directly

from the proposed models, while O3 concentration was determined prior to statistical analysis.

Table 3 shows the statistics of the regressions between sensor and reference instrument data using

the first three days of measurement data as calibration. The difference or error between the calculated

sensor concentration and the reference data in the 2nd time period was further analyzed as validation.

R2 is the correlation coefficient of the regression. “1σ” is one standard deviation of errors to represent

the spread of error distribution and “Mean” is the average of errors to represent the accuracy of the
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model performance. Figure 6 further illustrates the box plots of error distribution for all the models,

using data from the validation period. The solid round and rectangular dots represent the 1% and 99%

percentile, and mean value, respectively. The 4 inflection points of the box margin from the bottom to

top represent 10%, 25%, 75%, and 90% percentile of the errors, and the bar in the middle of the box is

the median value.

 

σ

Figure 5. The ambient temperature and relative humidity during field test.

Table 3. Statistics of regression between sensor and reference equipment data by differential.

Sensor CO-B4 NO-B4 NO2-B4 O3-B4

Calibration Validation Calibration Validation Calibration Validation Calibration Validation

1σ
R2

1σ Mean 1σ
R2

1σ Mean 1σ
R2

1σ Mean 1σ
R2

1σ Mean

(ppm) (ppm) (ppm) (ppb) (ppb) (ppb) (ppb) (ppb) (ppb) (ppb) (ppb) (ppb)

Model 0 0.03 0.96 0.050 0.06 6.4 0.82 11.6 −9.2 6.5 0.84 6.6 −2.6 5.8 0.70 4.5 12.7

Model 1 0.02 0.98 0.046 −0.01 5.4 0.87 7.8 −5.5 5.8 0.79 6.5 −1.2 5.4 0.73 6.1 7.9

Model 2 0.03 0.97 0.061 0.01 5.3 0.87 8.7 −3.2 7.5 0.87 15.9 −15.2 5.5 0.73 13.4 7.2

Model 3 0.02 0.98 0.057 0.01 5.4 0.87 8.9 1.4 5.8 0.87 7.0 −2.3 5.6 0.72 7.0 2.7

σ σ σ σ σ σ σ σ

− −
− − −

− −
−

Figure 6. Box plots of error distribution of 4 models: (a) CO, (b) NO, (c) NO2, (d) O3.

In general, the introduction of T and RH correction from the use of the 3 different models showed

clear improvement of the sensor performance, compared with Model 0. For CO and NO2 gases,

Model 1 had a better performance for all 3 criterions in Table 2, and also showed a narrower spread

of errors in the 25 and 75 percentile band in Figure 6. The direct usage of VDiff seems to correct the

impact of variation of ambient condition by subtracting VRef from VAct. Model 3 of NO and O3 gases

performed well in terms of mean error with similar R2 and standard deviations, compared to the other

two models. Model 3 introduced VRef as an independent parameter for T and RH correction and used
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VAct as direct input of sensor response to pollution concentration. The good performance for NO

sensor agrees with the results in Table 2, showing a high degree of correlation between NO VRef with T

and RH independently. For O3, the result may be complicated by the fact that NO2 was subtracted

from the Ox sensor output result. Thus, inaccuracies in the calculated ozone values are contributed by

any inaccuracies in both NO2 and oxidant sensor response. Further studies will consider the nature

and contribution of factors that influence the NO2 values calculated from these sensors.

3.3. Error Analysis

Figure 7 shows the time series of hourly AQMS concentration of pollutants compared with the

sensor data derived from Model 0 (without T and RH correction) and the optimal Model (Model-opt)

chosen from the regression analysis, i.e., Model 1 for CO and NO2, and Model 3 for NO and O3.

The comparison of errors between calculated and measured concentration for the two models is shown

in the lower panel of each subplot. The data used here covered the field test period of 8 days to validate

the effectiveness of the correction models in replicating desired performance. In the rectangular box

that highlights the period with significant difference in Figure 7, the deviation of uncorrected Model 0

data from AQMS data could reach as much as 15 ppb for NO2 and NO, and 20 ppb for O3. Model 0 for

CO performed reasonably well, as both models tracked each other. The T/RH corrected model for

all the sensors demonstrated a greater agreement with the AQMS data than the uncorrected Model 0,

especially for those periods when Model 0 has a large deviation, clearly demonstrating the importance

of ambient condition correction for these sensors.

Figure 7. The comparison of hourly AQMS (Air Quality Monitoring Station) and sensor data

(upper panel) and the errors of uncorrected Model 0 and optimal Model (lower panel) (a) CO, (b) NO,

(c) NO2, (d) O3. The red rectangle represented the largest deviation period of the 2 models compared.
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Figure 8 presents the histogram of the errors from Model 0 without correction and optimal model

chosen from regression analysis. The errors are calculated from the 5-min resolution AQMS and sensor

data, and they closely follow a normal distribution with mean value around 0 and long tails along

both sides. The red and black lines in the figure are the fitted normal distribution curves for Model 0

and optimal model, respectively. As shown in the figure, the errors from the optimal model clearly

had narrower distributions. F-tests were performed for all four sets of sensor data and there was a

significant difference between the variation of errors from Model 0 and the optimal model (p < 0.001)

at a significance level of 0.05, demonstrating the improvement of measurement precision using the

optimal model. Using 1 standard deviation of the error distribution as an indicator, the CO, NO, NO2,

and O3 results showed an improvement of 41% from 8.3 to 5.9 ppb, 35% from 0.05 to 0.03 ppm, 22%

from 7.4 to 6.1 ppb, and 32% from 7.4 to 5.6 ppb, respectively.

 

Figure 8. Histogram of errors from Model 0 and optimal Model fitted with normal distribution curves

(a) CO, (b) NO, (c) NO2, (d) O3.

Figure 9 shows the scatter plots between the AQMS reference data with the sensor data from

uncorrected (Model 0) and corrected (optimal model) models. Each data point in the scatter plot is

also color coded to indicate the corresponding ambient conditions of T and RH. A 1:1 line is shown in

the plots for reference. The cumulative errors of the sensor data from two models are plotted as a bar

chart in the subplot. T and RH were equally separated into 8 bins according to the range of measured

data and the bar for each bin represents the summation of the errors within the bin.

For CO, there exist larger errors in low to middle T range (bins from 17.0 ◦C to 20.4 ◦C) and

medium RH range (bins from 77.1% to 86.0%) in uncorrected Model 0, where there is a major deviation

below 1:1 line, as shown in the scatter plot. This means a remarkable underestimation of pollutant

concentration from sensor data in this T and RH range. The introduction of the corrective Model 3

improves the performance with less scattering sensor data from AQMS data. Taking the ratio of

accumulated errors in the T or RH bin using Model-opt model and Model 0 as an indication of

improvement of sensor accuracy, the corrective Model 3 produced the accumulative error ratio of 0.31

and 0.67 in the abovementioned T and RH bins. This is equivalent to a 69% and 33% of improvement

in sensor measurement accuracy.
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Figure 9. Scatter plot of AQMS and sensor data by Model 0 and corrective Model-opt. (a) CO,

(b) NO, (c) NO2, (d) O3. Insets represent the cumulative errors in each temperature and relative

humidity bin. Subplots 1 and 3 are color categorized plots by temperature for Model 0 and Model-opt,

respectively. Subplots 2 and 4 are color categorized plots by relative humidity for Model 0 and

Model-opt, respectively.

For NO, the error distribution shows a different pattern compared with CO data. The data

differing most from the 1:1 line seem to be predominately driven by the combination of high T and low

RH. After application of corrective Model 1 for T and RH, the scatter plots show a more concentrated

pattern along the 1:1 line with less deviation, which demonstrates the effectiveness of the correction

model in reducing the sensor measurement error. The reduction is also seen in the bar charts, in which

the accumulative error ratio is 0.3 and 0.31 for T bin from 22.1 ◦C to 23.7 ◦C, and RH bin from 54.2% to

59.3%, respectively.

For NO2, the sensor data has an overall good agreement along the 1:1 reference line, except the

tail towards the low concentration range below 20 ppb from sensor Model 0 reading. These seem to

be linked with combined high RH and low T conditions, as was seen for NO sensor performance.

After application of the corrective Model 1, the cluster of deviated data in Model 0 is effectively removed

and a much better agreement between sensor with AQMS data is demonstrated. The accumulated

error ratio is 0.75 and 0.57 for the corresponding bin of T from 19.5 ◦C to 20.4 ◦C, and RH from 89.9%

to 95%, respectively.

For O3, there seems be a wider distribution of data compared with the other three sensors. This is

possibly because both NO2 and Ox sensors participated in the model calculation as described in

Section 3.3, propagating the errors when estimating O3 concentration from sensor data. As shown

in Figure 9d, low T affects the sensor performance and drives deviation of calculated O3 in Model 0.

However, the NO2 sensor data perform well in the same T bins, indicating the Ox sensor itself may be

causing larger errors at low T range. The comparison of Model 0 and Model 3 data shows the T and

RH correction can substantially improve sensor data accuracy, and the deviation of data in the low T is

also improved.
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Overall, the error analysis of sensor performance shows sensors for each pollutant have different

characteristics and responses to the change of ambient conditions. Larger errors seem to be mostly

driven by the lower or higher end of the T or RH. By applying the corrective models derived from

regression including T and RH factors, the sensor performance may be substantially improved.

4. Conclusions

This study evaluated CO, NO, NO2, and Ox electrochemical sensors performance under laboratory

conditions, confirming their excellent linear response to target gas under stable conditions with R2 of

0.99. The sensors also show high precision at low concentration level conditions. However, temperature

and relative humidity had variable impacts on the sensor response in both working electrode (active)

and reference electrode voltages. For the NO sensor, a good linear relationship of temperature and

relative humidity with reference voltage was found, while the three other sensors had less influence

from external factors. We proposed and tested three corrective models to compensate for the impact

of temperature and relatively humidity by: 1. introducing sensor output as a subtraction of active

and reference voltage; 2. singling out active voltage only; and 3. separating the outputs from

active and reference voltages as independent parameter inputs. Field evaluation of the three models

showed Model 1 was more suitable when reference voltage responds linearly to ambient parameters,

while Model 3 had good performance when reference voltage had a poor relationship with ambient

parameters. Finally, a quantitative error analysis was presented between uncorrected and corrected

models to identify the possible causes of the deviation of sensors with AQMS data, and evaluate the

performance of proposed models in correcting the deviations.

We have demonstrated that low-cost electrochemical sensors have high potential for use in the

special purpose of ambient air quality monitoring applications in terms of their accuracy, compared to

the conventional reference instruments. However, direct usage of sensor output data assuming linear

relation with target gas concentrations will yield substantial errors due to the impact of ambient

conditions and cross interference of gases. Careful data analysis and correction protocols are essential

to guarantee good data quality. These corrective protocols seem promising in improving the sensor

data performance under a range of temperature and humidity conditions, as demonstrated in this

study. Further, it is clear that this added environmental data should be collected at the sensor platform

for ease of use and local accuracy. These findings also provide caution to the emerging use of low-cost

sensors. There is a great deal of work needed to generate reliable data from such sensors. The vendors

of the cells or of monitoring systems must inform and assist the users in making these adjustments.

There also remains a compelling need for further investigation on sensors, including their applicability

in extreme ambient conditions and for long term drift over periods of perhaps up to a year, in order

to better establish calibration needs for sensor based systems. Further, it is important for those who

make and use sensor based systems to communicate about the sensors themselves. In this study,

we employed a newly introduced Ox sensor together with a NO2 sensor that included an ozone

filter. The results from this work may be the first to show results from this combination of cells

with high quality NO2 measurement performance. Interest in the expanded use of low-cost sensors

has been growing among researchers and the citizen scientist, but actual experience with multiple

gas monitoring systems is still limited. There is an urgent need to more fully characterize these

systems and the sensors used to sense ambient pollutants. This study is one of the first to include

the evaluation of multiple important pollutant constituents and their data correction in a challenging

Asian ambient environment.
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