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Abstract 

Road safety barriers are used to minimise the severity of road accidents and protect 

lives and property. There are several types of barrier in use today. This paper reports 

the initial phase of research carried out to study the impact response of portable water-

filled barrier (PWFB) which has the potential to absorb impact energy and hence 

provide crash mitigation under low to moderate speeds. Current research on the impact 

and energy absorption capacity of water-filled road safety barriers is limited due to the 

complexity of fluid-structure interaction under dynamic impact. In this paper, a novel 

fluid-structure interaction method is developed based on the combination of Smooth 

Particle Hydrodynamics (SPH) and Finite Element Method (FEM). The sloshing 

phenomenon of water inside a PWFB is investigated to explore the energy absorption 

capacity of water under dynamic impact. It was found that water plays an important 

role in energy absorption. The coupling analysis developed in this paper will provide a 

platform to further the research in optimising the behaviour of the PWFB. The effect 

of the amount of water on its energy absorption capacity is investigated and the results 

have practical applications in the design of PWFBs. 

1. INTRODUCTION 

From 2000-2008, there has been 1500 accidents per year on Australian roads. Traffic accidents in 

Australia cost approximately $17.85 billion per year or 1.7% of the nation’s GDP[1, 2]. These 

numbers includes the costs of road maintenance, emergency response units, road reconstruction 

crews and insurance claims [3].  Serious injuries sustained from accidents have long-term impacts 

with high medical costs, rehabilitation and permanent disabilities affecting the society.  

Road safety barriers are roadside appurtenances that function to keep vehicles within their 

roadway and prevent errant vehicles from colliding with dangerous roadside obstacles or cause 

injuries to roadside workers. There are many types of road safety barriers being used in Australian 

roads today. Portable water filled barriers (PWFB) are in the semi-rigid group of roadside barriers. 

When filled with water, a road safety barrier has the potential to display good crash attenuation 

characteristics at low and moderate impact speeds[4]. The usage of water in a portable water-filled 

road barrier is mainly as anchorage for the barrier to remain stationary. However, the crash 

attenuation characteristic of water inside the barrier has not been extensively studied due to the 

complexities of the fluid-structure interaction. At the moment, there are no standards or 

recommended value to set how much water should be added inside PWFB. Existing water-filled 

road barriers relatively weigh at 70 kg when empty and can be filled up to 600 kg of water. Water 

has the potential to absorb some of the impact energy by transferring the kinetic energy from the 

impact to sloshing motion inside the barrier.  

Several numerical studies and experiments [5-9] have been conducted to test their performance 

of these road barriers in the event of a roadside collision. However, as mentioned above, there is 

relatively little literature on studies of PWFBs. Ralph Grzebieta [5] conducted extensive full-scale 

impact tests of a variety road barriers [5, 8] and provided some recommendations to make 

Australian roads safer. Ulker [7] conducted experiments on concrete barriers along with Finite 
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Element Analysis (FEA) in his research. Ren [9] conducted numerical simulations of steel barriers 

impacted by a small-sedan car. Subsequently, Borovins [6] simulated the impact of large vehicle 

onto steel barriers. Though steel barriers may perform well under impact with a normal car, 

Borovins research investigated whether they could perform well under impacts with larger 

vehicles such as trucks and buses. Although Ren [9] and Borovins [6] did not suggest a definitive 

argument in containment by redirecting the vehicle and the deflection of the steel barrier; they 

suggested that Finite Element Method (FEM) to be the best method for initial evaluation before 

proceeding to full scale field experiments 

A large amount of studies on fluid sloshing have been carried out using the Eulerian and 

Augmented Lagrange & Eulerian (ALE) methods [10-16] due to their ability to replicate sloshing 

accurately. The application of ALE has been widely used in sloshing problems involving free 

surfaces and high velocity impact problems [17, 18]. In both methods, the air inside the barrier 

will also need to be modeled, requiring higher computation time without increased accuracy in 

results [17]. Housner’s [19] pioneering work in fluid dynamics was extended to other areas such as 

dam-water interaction under earthquakes, collisions between ships, and anything else that involved 

sloshing of fluids.[18, 20-27].  

        The Smoothed Particle Hydrodynamics (SPH) method has been developed to model fluid 

regions in several applications [17, 28]. SPH is able to do this well, but it requires high 

computational resources[17]. Although the accuracy and precision of FEM method is at its peak 

with the advent of supercomputers and improved computational power, the method is limited to 

gridded element mesh and is unable to produce efficient result in problems related to high fluid 

motions such as in high velocity-impacts and explosions [17, 28-31]. These types of motion are 

evident for fluid in PWFBs. 

The numerical modelling of road safety barriers will need to deal with high velocity impact 

problems involving multiple bodies, large deformations and complex fluid-structure interaction. 

The traditional numerical FEM alone fails to handle this problem with precision. On the other 

hand, the use of SPH in all parts of the model will require significant amount of computational 

power. Moreover, the use of finite elements in the solid domain of the barrier increases the 

accuracy of the structural analysis [32]. Therefore, a coupled analysis technique incorporating both 

FEA and SPH can be used to model the PWFB to achieve the required results efficiently without 

exhausting the computational resources. This type of analysis has not been extensively performed 

where there is high rates of deformation of the fluid due to the impact. 

This paper presents the initial research carried out to simulate the impact response and energy 

absorption of a PWFB. It involves the response of a water filled container under the impact of a 

rigid block. A coupled analysis combining SPH with FEM is developed and used in this study. 

The sloshing phenomenon of water inside the shell container under impact is investigated using 

the software package LSTC-DYNA 971. The effects of the amounts of water on the sloshing 

response and hence the ability to absorb impact energy are investigated. The results provide 

interesting and important information that will be directly applicable to the design of a proto-type 

PWFBs.  

 

2. THE SPH METHOD FOR FLUID SIMULATION  

 

2.1 SMOOTHED PARTICLE HYDRODYNAMICS (SPH) 
SPH is a meshless computational Lagrangian hydrodynamic particle method. This method 

originated approximately 30 years ago when it was [33, 34] used to model astrophysical 

phenomena without boundaries. This method of modelling makes use of particles as the frame for 

computational interpolation and as carrier of material properties. It has been used in many fields of 

research including astrophysics, ballistics, vulcanology, solid mechanics and oceanography. The 

resolution of the method can easily be adjusted with respect to variables such as the density [35].  

The SPH system is represented by a finite number of particles that carry individual mass and 

occupy individual space. SPH is based on interpolation theory by utilising kernel approximation 

and particles approximation respectively. The conservation laws of continuum dynamics in the 

form of partial differential equations are transformed into integral equations through the use of an 

interpolation function for kernel estimation. The main features of SPH were extensively described 

by Liu [29, 30], Monaghan [36] and Benz [37] and will only be referred below by the 
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representation of the constitutive equation in SPH notations. The kernel approximation can be 

illustrated by the following identity on eqn. (1): 

 𝑓 𝑥 =  𝑓 𝑥 ′ 𝑊 𝑥 − 𝑥 ′,ℎ 𝑑𝑥 ′𝛺  (1) 

with 𝑊 𝑥 − 𝑥 ′ , ℎ  as the smoothing function. The function W is usually chosen to be an even 

function that satisfies the normalization condition, delta function property and the compact 

condition which are outlined in eqns. (2-4).  

Normalization 

condition  𝑊 𝑥 − 𝑥 ′,ℎ = 1𝛺  (2) 

Delta function 

property 

condition 

limℎ→0
𝑊 𝑥 − 𝑥 ′,ℎ = 𝑑(𝑥 − 𝑥 ′) (3) 

Compact 

condition 
𝑊 𝑥 − 𝑥 ′,ℎ = 0 𝑤ℎ𝑒𝑛  𝑥 − 𝑥 ′ > 𝜅ℎ; (4) 

𝜅 is a constant to the smoothing function, the kernel approximation consists of integration of the 

multiplication of an arbitrary function and smoothing kernel function. The integral represent an 

approximation by summing up values of all the neighbouring particles. Particle approximation 

provides the necessary stability to the SPH method. The approximation leads to eqn. (5): 

 

< 𝑓 𝑥𝑖 >=  𝑚𝑗𝜌𝑗 𝑓 𝑥𝑗  ∙ 𝑊𝑖𝑗𝑗=1

 

with 𝑊𝑖𝑗=𝑊 𝑥𝑖 − 𝑥𝑗 , ℎ  
(5) 

Where h is the smoothing length, i and j as particles, 𝑚𝑖  is the mass, 𝜌𝑖  is the density of the fluids, 

and 𝑊𝑖𝑗=𝑊 𝑥𝑖 − 𝑥𝑗 , ℎ  is the weight function. The weight function should be constructed 

following several conditions such as positivity, compact, support, normalization, monotonically 

increasing and delta function behaviour [36-39].  

Thus this can be directly translated to be the particle approximation shown in eqn. (6) for spatial 

derivative: 

 < ∇ ∙ 𝑓 𝑥𝑖 >= − 𝑗𝜌𝑗 𝑓 𝑥𝑗  ∙ ∇ 𝑊𝑖𝑗𝑁
𝑗=1

 (6) 

where  

 ∇𝑊𝑖𝑗 =
𝑥𝑖 − 𝑥𝑗𝑟𝑖𝑗 𝑑𝑊𝑖𝑗𝑑𝑟𝑖𝑗 =

𝑥𝑖𝑗𝑟𝑖𝑗 𝑑𝑊𝑖𝑗𝑑𝑟𝑖𝑗  (7) 

Eqn. (6) indicates that the average values of the function at all particles in the support domain of 

particle i are weighted by the gradient of the smoothing function. Eqn. (7) explains that the 
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gradient ∇ 𝑊𝑖𝑗 is evaluated relative to particle j.  The particle approximation allows the entire 

system to be represented by a finite number of particles that carry individual mass and space. Liu 

[30, 31] pointed out that this can be conveniently applied to hydrodynamics cases. The particle 

approximation introduces mass and density of the particle in the equation and approximation is 

done at every time step allowing the adaptive nature of the particles.  Furthermore, the 

approximations are performed at all functions terms in Partial Differential Equations to produce a 

set of Ordinary Differential Equations thus allowing it to be solved using an explicit integration 

algorithm.  

Another aspect relating to the use of SPH is the implementation of the smoothing function and 

the smoothing length, h. The smoothing function is used for both kernel and particle 

approximation to determine the interpolation pattern and the cut-off distance of the particle’s 
sphere of influence. The smoothing function outlined in eqn. (8) was introduced by Monaghan and 

Lottanzio [40] became the most frequently [30] used smoothing function as it was found that it 

closely mimic a Gaussian function with a compact support even though the instability in the 

system remains. This function is called the cubic B-spline function. With R as the relative distance 

between the two points x and x’;  𝑅 =
 𝑥−𝑥 ′ ℎ .The smoothing function for a three-dimensional space 

can be written as: 

with 𝑊 𝑥 − 𝑥 ′ , ℎ = 𝑊 𝑅, ℎ  
 𝑊 𝑅,ℎ =

3

2𝜋ℎ3
×    
  2

3
− 𝑅2 +

1

2
𝑅3, 0 ≤ 𝑅 < 1,

1

6
 2 − 𝑅 3,                1 ≤ 𝑅 < 2,

0,                                         𝑅 ≥ 2

  (8) 

 2.3 FLUID MECHANICS OF WATER IN ROAD SAFETY BARRIERS 
The Navier-Stokes equation is the foundation to fluid mechanics as it has widely been considered 

to be the governing equation of motion for incompressible Newtonian fluid [41, 42]. Due to the 

Navier-Stokes equation being an unsteady, nonlinear, second-order partial differential equation, 

this makes the equation analytically unsolvable except for very simple flows [41]. Thus 

Computational Fluid Dynamics (CFD) is needed to solve the equation in this case. 

To implement the Navier-Stokes in SPH, Liu [29, 30] substituted the SPH approximation for 

the function and its derivative in eqn. (5) and eqn. (6) to the Navier-Stokes equation, which leads 

to the set of commonly used SPH equations outlined in eqn. (9): 

 

   
  
   
 

 
𝐷𝜌𝑖𝐷𝑡 =  𝑚𝑗𝑣𝑖𝑗𝛽 𝑑𝑊𝑖𝑗𝑑𝑥𝑖𝛽𝑁

𝑗=1

                                                   

𝐷𝑣𝑖𝛼𝐷𝑡 = − 𝑚𝑗  𝜍𝑖𝛼𝛽𝜌𝑖2 +
𝜍𝑗𝛼𝛽𝜌𝑗2  𝑑𝑊𝑖𝑗𝑑𝑥𝑖𝛽 + 𝐹𝑖𝑁

𝑗=1

                

𝐷𝑒𝑖𝐷𝑡 =
1

2
 𝑚𝑗  𝑝𝑖𝜌𝑖2 +

𝑝𝑗𝜌𝑗2 𝑣𝑖𝑗𝛽 𝛿𝑊𝑖𝑗𝛿𝑥𝑖𝛽 +
𝜇𝑖

2𝜌𝑖 𝜀𝑖𝛼𝛽 𝜀𝑖𝛼𝛽𝑁
𝑗=1

  (9) 

Where vij = vi-vj and α and β superscripts represent the coordinate directions which the summation 

is taken (over repeated indices), ρ is the density, v
α
 is the velocity component, e is the internal 

energy, 𝜍𝛼𝛽 is the total stress tensor and F is the external force i.e gravity. 𝜀 is the shear strain rate 

of the viscous shear stress in Newtonian fluid with 𝜇 as the dynamic viscosity.   

Thus the SPH method excels at modelling fluid boundaries over its grid based counterpart as it 

does not suffer from high distortions failure[17] that plagued FEA elements when modelling 

problems with large fluid motion. Additional problem that is solved with the use of SPH is the free 

surface interface between water and air elements in the model. The use of SPH eliminates the need 

to create a different set of elements to represent the air section of the barrier.  
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2.4 COUPLING OF SPH WITH FEA ELEMENTS 
SPH suffers from the implementation of finite boundary conditions. The contact definition at the 

interface between the particles and finite element section must be defined accordingly [14, 43].  

There are several methods that have been proposed for seamless interaction between the 

elements. Various contact algorithms can be found in literature for solid-fluid interfaces in 

numerical simulations. The contact relation of the surface between FEA elements and SPH 

particles elements have been modelled by either “master-slave”[44-46] relation or by the relative 

position of the boundary and the surface contact relation e.g “particle-to-particle” or “particle-to-

surface” approach [47].   

Alternative contact algorithm has also been explored by De Vuyst et al [48]. This alternative 

coupling method uses node-to-node contact rather than the previously mentioned algorithm. De 

Vuyst presented an algorithm that does not require the calculation of normal force to relate the 

frictionless sliding between discretised FEM bodies with particle bodies. 

In coupling the analysis, special algorithm is available to be employed [47, 49-53]. These 

algorithm is needed to avoid un-natural penetration within the model[31].  Furthermore, the use of 

repulsive force [54, 55] or the Lennard-Jones penalty force can be applied [56] as viable options to 

treat the material interface in the model. Using SPH, Anghileri[17] was able to emulate the 

characteristics motion of water with higher precision than any other simulation method.  The only 

drawback with SPH is the significant requirement of computer resources for the computation.  

This research aims to attain the numerical coupling of SPH and FEM at high impact velocities.  

The LS-DYNA theoretical [57] manual suggests using the function nodes-to-surface contact type 

to couple the finite elements and SPH elements as the contact algorithm. This method was chosen 

in the research and achieved accurate coupling between meshless and meshed elements.  

Although FEM is efficient at solving typical high speed problems, the high fluid motion created 

by materials with fluid properties such as water pose difficulties in elemental discretisation and 

contact modelling due to complexities as the problem size increases. 

In PWFB, the distortion from the particles is high. This inadvertently leads to an increase of 

computational time.  The setup for coupled analysis using FEA elements and SPH particles 

elements for numerical model at high speed impacts has not been deeply studied in road barriers, 

thus it is vital for the research to investigate the seamless transition between FEA elements and 

SPH particles at different sections of the barrier.   

 

2.4 VALIDATION OF COUPLING TECHNIQUE 

This study is to validate the numerical results using existing results available in the literature. 

Anghileri[17] tested several methods including the coupling of SPH and FEA elements to simulate 

the impact of a helicopter fuel tank with the ground. The numerical-experimental correlations that 

were obtained by Anghileri are used to validate the seamless interaction between the SPH and 

FEA elements.  

A simplified model, as shown in Figure 1, of the fuel tank used by Anghileri was constructed 

with similar material properties and boundary conditions outlined in his paper. The model which 

has the dimension 750mm x 718mm x 300mm with an overall thickness of 2mm was constructed 

using solid modelling software. For purpose of model validation, similar outputs were obtained by 

tabulating the acceleration of nodes at the end point of the tank where it first hit the ground. The 

simulation results are plotted in Figure 2, which shows good agreement between the numerical 

results and the reference. However, slight discrepancies are evident between the two simulations 

due to differences in the model start point, output resolution, material properties and different 

model parameters. Nevertheless results were within the acceptable range.  

This step of the study presents two significant points in the coupled analysis. Firstly, it can be 

inferred that the coupling is acceptable when impact is at low speeds (less than 12m/s). Secondly, 

since the model is constructed at full scale, it is plausible that full scale road barrier impact can be 

conducted later on in the research.  Hence, this becomes a platform to continue coupled SPH and 

FEA elements for determining the energy absorption capacity of water.  
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Figure 1: Model of tank by Anghileri (left) and model of tank used in this study (right) 

 
Figure 2: Numerical-experimental correlation by Anghileri (left) in contrast to result obtained 

in this study (right) 

3. NUMERICAL MODEL  

 As shown in Figure 3, the preliminary road safety barrier impact model consists of 3 parts which 

are the shell container, impact block and particles that represent water. The rigid block will impact 

the shell container filled with water. Overall, the model uses approximately 300 shell elements, 

1700 solid elements and 8000 particle elements.   

The actual size of road barriers that the research worked on has the dimension 1200mm x 

550mm x 375mm with a thickness of 12mm. In this study, the model is scaled 1:10 of the actual 

size of road safety barriers to ease computation requirement during simulation. The dimension of 

the scaled barrier model was set to be 120mm x 55mm x 37.5mm with 12mm thickness which 

reduced computation time in this preliminary study of coupled SPH and FEA. The impact height 

and location are assigned so that the impact is at the middle section of the rectangular shell 

container. The chosen impact location is intended to be at the weakest area of the barrier, which is 

horizontally located between 150mm to 550mm away from the end of the barrier. The height of 

the impact is placed to be the same height of the front bumper of a 2010 Toyota Yaris[58]. 

Translated to scale, the impact was 20mm from one end and 30mm from the bottom of the barrier. 

The model underwent reiterations with different water levels. The shell elements used to model the 

container are assumed to not break up or tear apart at any time during impact. This assumption is 

required so that the barrier or container remain fully enclosed to allow the water sloshing to 
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develop. Any breakage will lead to failure of the fluid in the barrier to slosh and absorb energy. 

The impact velocity was kept constant at 0.5m/s and the SPH elements were filled to different 

levels of 0%, 30%, 50%, 80% and 100% capacity.  All simulations were carried out by parallel 

computing at the supercomputer facility in the university.  

 

       Figure 3: Impact System: Container with SPH water Particles Impacted by Block  

3.1 FINITE ELEMENT MODEL OF SHELL CONTAINER 

In water-filled barriers, fluid is filled into an enclosed container within the barrier. In this research 

the scaled model of the barrier, replicated by the container is initially filled to its capacity 

0.00025m
3
 (or 100%). The container is made up from High Density Polyethylene (HDPE) with 

piecewise linear plasticity and is modelled using shell elements. Since the study focuses on fluid 

structure interaction, rivets or bolt connections were ignored. The mesh of the container consisted 

of 288 four-node shell elements. As this study is interested in the energy absorption effect of water 

in road barriers, the ground interaction with the container was considered frictionless and the 

dimensions of the barrier are made constant. Further research will be done to examine the effect of 

these parameters to the overall energy absorption. It must also be assumed that the container will 

not break in any instances of the simulation. This assumption is done to allow sloshing by the 

water inside.  

3.2 FINITE ELEMENT MODEL OF IMPACT BLOCK  

A single block with solid elements was constructed to represent the impact vehicle. The front 

impact head is curved to mimic the front vehicle bumper that is expected to be the first part to 

impact a barrier [59, 60]. The material characteristics are those of rigid structural steel. The block 

approximately impacts the hollow container at 0.5m/sec at a 20 degree angle. The container is 

assumed to be in a stationary position prior to impact with block. The mesh of the impact block is 

made of 1677 solid elements. The block is considered rigid and its deformation after impact with 

the shell container was not investigated. Thus, the strain rate effects properties of the impact block 

are negligible.  

3.3 MODEL OF WATER INSIDE THE CONTAINER  

SPH was implemented to represent water inside the container. Enabling the (SPH) particles to 

represent water was carried out in steps. It was observed that the material for the water particles 

matched well with material NULL in LS DYNA. This was assigned as the material model for the 

water which was then assigned its density. 

The couplings between FEA elements and SPH particles were explored in this research. The 

function “nodes_to_surface” contact type was assigned to couple the FEA and SPH elements. The 
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use of fluid formulation with normalization was utilised to smooth the interface between the 

coupled elements. The particles were distributed evenly across the shell container and at 100% 

filled capacity there are 8640 meshless particles inside the container. The cubic B-spline function 

shown in eqn. (8) is used as the SPH smoothing function.  

The equation of state is another factor required in modelling the fluid. There are several models 

of the equations of state available in LS-DYNA [57]. This research used the Mie-Gruneisen 

Equation of State (EOS) outlined in eqn. (10) which defines pressure for compressed materials as: 

 𝑝 =
𝜌0𝐶2𝜇  1 +  1 − 𝛾0

2
 𝜇 − 𝛼

2
𝜇2  1 −  𝑆1 − 1 𝜇 − 𝑆2

𝜇2𝜇 + 1
− 𝑆3

𝜇3 𝜇 + 1 2 +  𝛾0 + 𝛼𝜇 𝐸 (10) 

In Equation (10), µ is 𝜂 − 1 where 𝜂 is the ratio of the densities before and after the 

disturbance, 𝜌0 is the material density, C is the bulk speed of sound, 𝛾0is the Gruneisen’s gamma 
at the reference state, 𝛼is the first order of correction to 𝛾0, S1, S2, S3 are the coefficient slope in a 

linear Hugoniot line of the shock wave velocity slope and E is the internal energy per unit volume. 

The LS-Prepost platform in LS DYNA was used in this research where C, S1, S2, S3, 𝛾0, 𝛼 are user 

defined input parameters.  In the initial setup of the simulations, the density was added in particle 

generation and C was set as the speed of sound in water which 1,484 m/s and all other parameters 

were left as zero [61].  

Table 1:  Material properties for all parts in impact model 

Material Density (kg/m
3
) Poisson Ratio  Young’s 

Modulus (GPa) 

Yield Stress 

(MPa) 

HDPE 940.0 0.40 1.10 22.0 

Structural Steel  7850.0 0.28 210.0 250.0 

Water 1000.0 - - - 

 

4. RESULTS AND DISCUSSION 

The simulations underwent several iterations with different amounts of water.  As the use of SPH 

method requires significant computational power, preliminary convergence verification was done 

to optimise the SPH particles and computer resources required in the simulation. The numerical 

model was executed using QUT’s supercomputer facility. This study used up to 6 CPUs and each 

simulation took approximately 90 minutes.  

The research aims to attain valuable insights in achieving seamless transition between FEA 

elements and SPH particles. The system stability in handling large motion of fluids at high speeds 

and the resulting sloshing of water are also of interest in this study.  Furthermore, data from water 

in the vicinity of the container provided evidence of interaction between the water particles and the 

structural ements of the container.   

The interface between the SPH particles with FE mesh indicated satisfactory coupling of the 

SPH and FEA. To check the stability of the system at high impact velocities, the velocity was 

increased to 10 m/s. It was observed that there were large penetrations at the interface of the FEA 

elements and SPH particles and caused some particles to burst out from the shell. In order to 

rectify such un-natural penetration and reinforce system stability, more user-defined constants 

were introduced into the EOS. This succeeded in preventing further penetration from occurring in 

the model. These additional user-defined constants however were obtained from literature [62, 63] 

and actual constants will need to be established from experimental studies for high speed impacts.  

Figure 4 demonstrates the sequence impact responses of the water filled container and clearly 

shows the water particles moving within the enclosed container.   The water is able to move 

arbitralily within the enclosed container in response to the impact by the block. Traditional FEA 

elements are unable to produce similar results due to the fact that gridded meshes do not allow 

elements to cross-over at high distortions. SPH succeeded in replicating the sloshing of water by 
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eliminating the need to create any elements for air within the enclosed container (which replicates 

the cavity of the barrier section). The sloshing interaction of the water after the impact of the 

container descibes the smooth connectivity between the elements   

 

Figure 4: Clockwise sequence of FEA elements with SPH particles impacted by rigid 
block at 50% filled capacity 

4.1 IMPACT RESPONSE AND ENERGY ABSORPTION OF CONTAINER   

Investigations on the impact and energy absorption of the water filled container were carried out at 

different filled levels: 30%, 50%, 80% and 100% capacity. The impact of an empty container was 

also simulated for reference.  Numerical models of all these cases were then impacted with a block 

at 0.5m/s initial velocity. Data from the simulations were obtained and tabulated. Figure 3 shows 

that the initial peak accelerations of the container seem to be independent of the fill level. This 

peak occurs around 0.03 second and shows that the inclusion of water does not alleviate the 

severity of this initial peak. The second peak in the acceleration however indicates that it depends 

on the fill level. This secondary peak at 0.04 seconds increases with fill level and is near zero for 

the empty case. The occurrence of an instantaneous secondary peak can be associated with the 

reaction forces that exist when water is present in the system.   
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Figure 5: Resultant Acceleration of HDPE elements at Different Fill Levels 

As observed in Figure 5, the secondary peaks that occur on all filled cases show that a force is 

exerted on the container (barrier) by the water inside. The height of the secondary peak for each 

fill level is related to the amount of water and indicates the force transfer between the SPH and the 

Finite Elements of the container at the interface. The peak of a 100% fill level is twice that of the 

peak at 50% fill level. These secondary peak accelerations which occur when there is fluid in the 

system are however small and less than or equal to 15% of the initial peak acceleration.  The 

phenomenon of the secondary peaks needs further investigation to clarify how it benefits the 

deflection and energy absorption criteria of road safety barriers.  

Figure 6 shows the kinetic energy absorbed by the container for different filled levels. It can be 

seen that without any water in the system, maximum (entire) kinetic energy is absorbed by the 

HDPE shell container. On the other hand, the minimum kinetic energy is absorbed by the 

container shell wall at 100% filled capacity. This suggests that the amount of kinetic energy 

absorbed by the container shell depends on the fill level. The initial peak in energy absorption (at 

0.03sec) is same for all fill levels. The subsequent energy absorption response described by 

consecutive smooth reductions and peaks, is different for each fill level and indicates the 

absorption of energy by water. Furthermore, a container with less water undergoes higher energy 

spikes than their fuller counterparts. 

Current simulation shows that water does not alleviate localised initial peak when the container 

was hit. However, the subsequent energy dissipation rate from the system correlates with the level 

of water in the container. Furthermore, due to the scale of the model and the low impact speeds, 

the existence of localised shocks that water experience after impact is indiscernible in the model. 

The concept of water shockwave due to the impact at higher speed requires more investigation. 

Steps must be taken to guarantee stability in simulation to study this phenomenon.  
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Figure 6: Kinetic Energy of Container at Different Fill Levels 

4.2 ENERGY ABSORPTION OF WATER 
Figure 7 illustrates the kinetic energy of the water for different fill levels, obtained as output from 

the simulations. As expected, the water at 100% fill has the most amount of energy post impact 

while the water at 30% fill level has the minimum amount of energy. The trend in the increase in 

the energy absorbed with increase in fill level confirms that the interface between the shell 

elements and water particles is functioning.  

The results on the impact energy absorbed by the water were further analysed. Figure 8 shows 

the energy absorbed by the water with time for different fill levels. The amount of energy absorbed 

by the water at first increases with time, but soon remains sensibly constant over time.  In order to 

use water effectively in PWFBs, the best compromise between energy absorption and fill level is 

needed. In the analyses carried out, the minimal energy absorption of water was 30% capacity with 

20% energy absorbed from the overall energy of system. The increase of fill level from 30% to 

50% enhanced the absorption capacity of water by 10%. At maximum fill level of 100%, water is 

able to absorb up to 45% of the total energy of the system.  Thus, the energy absorption capacity 

of water in PWFBs can be determined for effective water usage in PWFBs. If more energy is 

absorbed by water, the demand on the container will be less and will reduce the likelihood of its 

failure. This shows that water does play an important role in absorbing impact energy. Although 

PWFBs with 100% fill level absorb the maximum amount of energy, the practicality of real world 

application of water in PWFB must be taken into consideration. The required barrier (wall) length, 

the logistics and transportation of water to the work zone are aspects to consider in the use of 

water filled barriers. Pumping the water in and out of the barriers have proven to be an issue for 

many PWFB applications [64]. Thus, it is imperative that the optimal water levels be determined 

for prudent water management in road safety barriers. Although water does absorb crash energy, 

the huge energy levels involved in roadside accidents may require the use of additional crash 

energy absorption materials in the barrier. The information presented in this paper will enable 

informed decisions to be made on the amount of water that can be practically used in a PWFB. 
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Figure 7: Kinetic Energy of Water at Different Fill Levels 

 

Figure 8: Percent Energy Absorbed at Different Time 

5. CONCLUSION 

Water has been used in PWFB only as deadweight to keep the barrier stationary, although its 

potential for energy absorption was known. The reaction of water inside PWFB in the event of a 

crash is important to better understand the post-impact behaviour and energy absorption of the 

water and the barrier. This paper presents the initial research carried out to simulate the impact 

response of a PWFB.  

The aim of this study was to develop an effective fluid-structure interaction model based on the 

coupled SPH/FEM method which utilises the advantages of SPH and FEM.  It was evident that the 
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motion of SPH particles captured, in the simulation, accurately mimics the fluidity of water when 

it comes into contact with the container. The water sloshing effects caused secondary peak 

accelerations of the container (barrier) as observed from the results of the simulations.  It has been 

found that water plays an important role in absorption of impact energy of a PWFB. From the 

numerical simulations and results, the following conclusions can be drawn: 

 The coupling of SPH and FEA is a powerful numerical modelling tool for impact 

simulations of PWFBs. The numerical results and observations in this research have 

proven the effectiveness of the developed fluid-structure interaction model based on 

the coupled FEA/SPH. Full scaled numerical modelling and impact experiments will 

be conducted for validation of this new model.  

 Besides as deadweight, water in PWFB is also able to absorb some or even a major 

part of the impact energy. It can significantly reduce the failure possibility of barrier 

shell and therefore extend its’ life-span. This finding is important for the future design 

of new generation of PWFBs.     

 This research also highlighted some new findings pertaining to fill levels. The amount 

of water used in road safety barrier needs to be optimised. The results presented herein 

will enable informed decisions to be made regarding the practical use of water and its 

energy absorption capacity in a PWFB.    

 

It should be mentioned here that this paper presented numerical results to determine the response 

and energy absorption of water in PWFB. The water levels were varied while other parameters 

such as the barrier dimensions and impact speed were left constant. These other parameters can be 

investigated in the future.   

In continuation of the research, the next step is the creation of a full scale impact model.  

Furthermore, the fabrication of a new impact test rig is currently underway at QUT. Once 

completed, models from the ongoing research will be validated at the facility with actual 

experimental tests.  
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