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Abstract

Background: The aim of this study was to evaluate and compare PET image

reconstruction algorithms on novel digital silicon photomultiplier PET/CT in patients

with newly diagnosed and histopathologically confirmed lung cancer. A total of 45

patients undergoing 18F-FDG PET/CT for initial lung cancer staging were included.

PET images were reconstructed using ordered subset expectation maximization

(OSEM) with time-of-flight and point spread function modelling as well as Bayesian

penalized likelihood reconstruction algorithm (BSREM) with different β-values

yielding a total of 7 datasets per patient. Subjective and objective image assessment

with all image datasets was carried out, including subgroup analyses for patients

with high dose (> 2.0 MBq/kg) and low dose (≤ 2.0 MBq/kg) of 18F-FDG injection

regimen.

Results: Subjective image quality ratings were significantly different among all

different reconstruction algorithms as well as among BSREM using different β-

values only (both p < 0.001). BSREM with a β-value of 600 was assigned the

highest score for general image quality, image sharpness, and lesion conspicuity.

BSREM reconstructions resulted in higher SUVmax of lung tumors compared to

OSEM of up to + 28.0% (p < 0.001). BSREM reconstruction resulted in higher

signal-/ and contrast-to-background ratios of lung tumor and higher signal-/ and

contrast-to-noise ratio compared to OSEM up to a β-value of 800. Lower β-

values (BSREM450) resulted in the best image quality for high dose 18F-FDG

injections, whereas higher β-values (BSREM600) lead to the best image quality in

low dose 18F-FDG PET/CT (p < 0.05).

Conclusions: BSREM reconstruction algorithm used in digital detector PET leads

to significant increases of lung tumor SUVmax, signal-to-background ratio, and

signal-to-noise ratio, which translates into a higher image quality, tumor

conspicuity, and image sharpness.
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Background

Lung cancer is today the most common cause for cancer mortality, with an estimated

234,030 new cases occurring in the USA alone in 2018 [1]. Positron-emission tomog-

raphy (PET) allows for imaging and quantitation of radiotracer uptake in vivo and may

thereby visualize physiologic and pathophysiologic processes in patients [2]. For in-

stance, 18F-fluorodeoxyglucose (18F-FDG) PET may be used to detect and quantify in-

creased glucose metabolism in neoplastic lesions, such as primary tumors, lymph node

metastases, or distant metastases [3]. Computed tomography (CT) enables a detailed

assessment of local lung tumor extent, owing to its comparably higher spatial reso-

lution [4, 5]. Therefore, hybrid imaging with 18F-FDG PET/CT has evolved as an im-

portant tool for comprehensive staging of lung cancer patients and is reimbursed by

health insurances in many countries worldwide [6].

However, there are two main limitations of PET: first, the relatively low spatial reso-

lution which may affect images both visually and quantitatively [7] and second, the gener-

ally relatively low signal-to-noise ratio [8]. There have been several technical advances

within the last decade, including new hardware features, such as time-of-flight (TOF) ac-

quisition [9] and silicon-based photodetectors (SIPM) as well as advanced image recon-

struction methods, leading to an overall improvement of PET images. Iterative

reconstruction methods have been widely adopted, replacing the initially used filtered

back projection technique due to decreased artifacts and image noise [10]. Additionally,

new reconstruction techniques, such as ordered subset expectation maximization

(OSEM) and block sequential regularized expectation maximization (BSREM), came into

clinical use and lead to a further improvement of image quality [11].

Solid-state digital PET detectors use a novel combination of lutetium-based scintillator

crystal arrays with a silicon photomultiplier, which improves intrinsic sensitivity and tem-

poral resolution [12]. These novel detector elements were made available clinically with

the introduction of integrated digital PET/MR in 2013 [13]. Several technical and clinical

studies showed a superior performance of digital compared to analog detector systems

[14]. While PET/MR today is mainly limited to academic environments, silicon-based

digital detector technology became available to PET/CT in the beginning of 2017, paving

the way for a dissemination of this technique into the clinical field worldwide. A first

study carried out in a mixed population of cancer patients showed an improved perform-

ance of digital PET/CT with regard to pathologic and physiologic structures [12].

The purpose of our study was to evaluate different reconstruction algorithms on the

latest-generation digital PET/CT scanner and to identify the optimal reconstruction

method for the quantitation of histopathologically confirmed lung cancer.

Methods

Patients

The inclusion criteria for this retrospective study were patients (a) with a histopatho-

logically confirmed lung cancer regardless of tumor size who were (b) referred to our

department for initial staging with clinically indicated 18F-FDG PET/CT between

March and November 2017 (c) with written informed consent for the scientific use of

medical data. This study was approved by the local ethics committee. The study was

conducted in compliance with ICH-GCP-rules and the Declaration of Helsinki.
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18F-FDG PET/CT imaging protocol

All patients underwent a PET/CT on a certified novel digital detector scanner (GE

Discovery Molecular Insights - DMI PET/CT, GE Healthcare, Waukesha, WI). A body

mass index (BMI)-adapted 18F-FDG dosage regimen was used, based on recommenda-

tions made by a previous study utilizing the same digital PET detector system [14]: A

dose of 1.5 MBq/kg body weight was injected for patients with a BMI of < 20 kg/m2,

2 MBq/kg body weight for patients with a BMI of 20–24.5 kg/m2, and 3.1 MBq/kg

body weight for patients with a BMI > 24.5 kg/m2, however, without exceeding a max-

imum injected 18F-FDG dose of 320 MBq. Participants fasted for at least 4 h prior to

the scan, and blood glucose levels were below 160 mg/dl at the time of 18F-FDG injec-

tion. A CT scan was obtained from the vertex of the skull to the mid-thighs and used

for attenuation correction purposes as well as for anatomic localization of 18F-FDG up-

take. The CT scan was acquired using automated dose modulation (range 15–100 mA,

120 kV). Immediately after the CT, a PET scan was acquired covering the identical ana-

tomical region. The FDG uptake time was set to 60 min. The PET acquisition time was

2.5 min per bed position, with 6–8 bed positions per patient (depending on patient

size), with an overlap of 23% (17 slices). The PET was acquired in 3D mode and the

slice thickness was 2.79 mm.

PET reconstructions

After the PET acquisition, raw data were reconstructed with seven different reconstruc-

tion settings per patient; two reconstructions were using OSEM with two iterations, 24

subsets, and 6.4-mm Gaussian filter (1) with TOF (OSEMTOF; VUE Point FX, GE Health-

care) and (2) with TOF and point spread function modelling (OSEMPSF; Vue Point FX

with SharpIR, GE Healthcare). Five reconstructions used BSREM (Q.Clear, GE Health-

care) with incremental β-values of (3) 350, (4) 450, (5) 600, (6) 800, and (7) 1200, respect-

ively. All datasets were reconstructed with a 256 × 256 pixel matrix. The rationale for

choosing the abovementioned reconstructions was twofold: first, to explore the broad

range of reconstruction capabilities of the system and second, to cover different clinical

scenarios: While OSEMPSF represents the latest reconstruction technique used on many

analog PET/CT systems, OSEMTOF is used in clinical multicenter studies for the purpose

of inter-scanner harmonization. BSREM on the other hand represents a full convergence

algorithm, which has the potential to become a clinical standard in the future, at least for

digital scanners [15, 16]. BSREM incorporates a penalty function which specifically sup-

presses noise fraught image solutions during the iteration process. As these are eliminated

as options for the subsequent iterations, the number of iterations can be increased with-

out detriment of increasing noise [17]. This penalization factor (i.e., β-value) represents

the only user-input variable. The relative difference penalties for BSREM used in our

study were chosen based upon preliminary testing.

Subjective imaging analysis

A total of 315 reconstructed PET datasets (45 patient studies, each with 7 different re-

constructions) were evaluated by two readers (M.M. and M.W.H., with 5 and 11 years

of experience in chest radiology, respectively) blinded to the reconstruction method

used. All scans were reviewed independently on a dedicated workstation (Advantage

Messerli et al. EJNMMI Physics  (2018) 5:27 Page 3 of 13



Workstation, Version 4.6; GE Healthcare) and in random order. Readers were blinded

to any clinical information, except the presence of a primary lung tumor. In case of dis-

crepancy of image rating, a final decision was made by consensus including a third

reader.

The readers first rated the general image quality; for this purpose, datasets were

viewed using maximum intensity projection (MIP) of PET and axial views with re-

formatted sections. The two readers evaluated the general image quality of each recon-

structed image dataset using a 5-point Likert scale: 1, poor; 2, reasonable; 3, good; 4,

very good; and 5, excellent quality. After that, the readers evaluated the images with re-

gard to image sharpness and lesion conspicuity using another 5-point Likert scale, as

suggested previously [18, 19]. For image sharpness, the readers rated as follows: 1, inad-

equate image with severe blurring; 2, diagnostically relevant image blurring; 3, diagnos-

tically irrelevant image blurring; and 4, good images with minimal blurring; and 5,

clear, excellent images. For lesion conspicuity, the readers rated as follows: 1, very poor

conspicuity of lesion circumference; 2, poor conspicuity, < 25% of the lesion circumfer-

ence clearly definable; 3, fair conspicuity, 25–50% of the lesion circumference definable;

4, good conspicuity, 50–75% of the lesion circumference definable; and 5, excellent

conspicuity, > 75% of the lesion circumference definable, as previously described [14].

Finally, the readers were asked to choose the preferred reconstruction on a per-patient

level, therefore reviewing all seven MIP PET images of a given patient side-by-side.

Quantitative imaging analysis

Quantitative analyses were performed by a third reader (M.M.) in a separate reading

session. The maximum standardized uptake value (SUVmax) of each primary lung

tumor was recorded using a standard volume of interest (VOI) tool. Herewith, the VOI

was automatically propagated to cover exactly the same volume in all seven different

reconstruction datasets. Moreover, background SUVs were assessed in the right lobe of

the liver (parenchymal organ background) and within the descending aorta (bloodpool

background) at the level of the carina, with 4.0-cm- and 1.0-cm-diameter spherical

VOIs, respectively. Only liver parenchyma with normal appearance on both PET and

CT was used as a reference. The mean standardized uptake value (SUVmean) and the

standard deviation of the standardized uptake value (SUVSD) within the VOIs were re-

corded in both backgrounds for all reconstructions. Based on these measurements, a

signal-to-background ratio (SBR) was calculated for each lung tumor, defined as the

lung lesions’ SUVmax divided by the SUVmean in the descending aorta. The liver SUVSD

was used as a measure of noise. Tumor signal-to-noise ratio (SNR) was defined as the

lesions’ SUVmax divided by the liver SUVSD. Further, a contrast-to-background ratio

(CBR) was calculated, defined as the (lung lesions’ SUVmean − the SUVmean in the de-

scending aorta) divided by the SUVmean in the descending aorta. And finally,

contrast-to-noise ratio (CNR) was measured, defined as the (lung lesions’ SUVmean −

the SUVmean in the descending aorta) divided by the liver SUVSD.

Statistical analyses

Categorical variables are expressed as proportions, and continuous variables are pre-

sented as mean ± standard deviation or median (range), depending on the distribution
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of values. Qualitative image ratings (i.e., general image quality, image sharpness, and le-

sion conspicuity) were analyzed with the Friedman test separately, comprising all re-

construction algorithms and BSREM only. Further, qualitative image ratings (i.e.,

general image quality, image sharpness, lesion conspicuity, and preferred reconstruc-

tion per patient) were compared between patients with a low (i.e., ≤ 2.0 MBq/kg body

weight; n = 25) and a high (i.e., > 2.0 MBq/kg body weight; n = 20) 18F-FDG dosage

exam using Mann-Whitney U test. Since all quantitative SUVmax values were distrib-

uted normally, statistical differences were assessed using repeated measures analysis of

variances (ANOVA) with post hoc Bonferroni corrections to adjust for multiple com-

parisons. Analyses were carried out using SPSS release 23.0 (IBM Corporation,

Armonk, NY, USA) and MedCalc version 15.8 (MedCalc Software, Ostend, Belgium). A

two-tailed p value of < 0.05 was considered to indicate statistical significance.

Results

A total of 45 patients (16 female, 29 male, mean age 68 ± 10 years) referred for the ini-

tial staging of lung cancer with 18F-FDG PET/CT participated in our study. Patients

had non-small cell lung cancer (NSCLC; n = 41), small cell lung cancer (SCLC; n = 3),

and mixed NSCLC/SCLC (n = 1). Further demographic information including lung can-

cer stages according to the 8th Edition Lung Cancer Stage Classification [20] is given in

Table 1.

Subjective image quality

The results of the subjective image assessment including all study subjects are given in

Table 2. General image quality was rated significantly different among all different re-

construction algorithms as well as among BSREM using different β-values only

Table 1 Demographic data of study subjects (n = 45)

Female/male, n (%) 16 (36%)/29 (64%)

Age, years 68 ± 10 (47–83)

Body weight, kg 71 ± 17 (39–114)

Body height, m 1.71 ± 0.1 (1.49–1.87)

BMI, kg/m2 24.3 ± 4.8 (15.0–36.8)

Blood glucose level at time of injection, mg/dl 101 ± 17 (67–157)

Injected tracer activity, MBq 175 ± 73 (85–318)

PET/CT scan post injection time, min 62 ± 9 (51–97)

Lung tumor localization, n (%)

Peripheral 29 (64%)

Peri-hilar 16 (36%)

Lung cancer stage, n (%)a

I 4 (10%)

II 5 (12%)

III 12 (29%)

IV 20 (49%)

Values are given as absolute numbers and percentages in parenthesis or mean ± standard deviation (range)

BMI body mass index, MBq mega-Becquerel, PET positron-emission tomography
aStages for all patients with NSCLC (n = 41); according to the 8th Edition Lung Cancer Stage Classification [20]
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(both p < 0.001). Similar differences were observed for image sharpness and lesion

conspicuity (all p < 0.001). BSREM600 was assigned the highest score for general

image quality, image sharpness, and lesion conspicuity. Accordingly, BSREM600 was

chosen most frequently as the preferred reconstruction algorithm by the readers,

i.e., in 18/45 (40%) cases, followed by BSREM450 in 14/45 (31%), BSREM800 in 9/45 (20%),

and BSREM350 in 4/45 (9%) cases (Fig. 1).

Effect of administered 18F-FDG dose on image quality

Table 3 demonstrates image quality ratings according to the administered dose of

18F-FDG. Significant differences between patients with high-dose regimen (i.e., >

2.0 MBq/kg body weight; n = 20) and low-dose regimen (i.e., ≤ 2.0 MBq/kg body weight;

n = 25) are indicated (see Table 3). A statistically significant shift of the preferred recon-

struction algorithm towards higher β-values was observed in patients with low-dose

regimen compared to patients with high-dose regimen (p < 0.05, Fig. 1). In patients

with high-dose regimen, BSREM450 was chosen most frequently as the preferred recon-

struction algorithm by the readers, i.e., in 10/20 (50%) cases, followed by BSREM600 in

6/20 (30%), BSREM350 in 3/20 (15%), and BSREM800 in 1/20 (5%) cases. On the other

hand, in patients with low-dose regimen, BSREM600 was chosen most frequently as the

preferred reconstruction algorithm by the readers, i.e., in 12/25 (48%) cases, followed

by BSREM800 in 8/25 (32%), BSREM450 in 4/25 (16%), and BSREM350 in 1/25 (4%)

cases.

Quantitative image assessment

The results of the quantitative analysis including SUVmax, SBR, SNR, CBR, and CNR in

the differently reconstructed datasets are given in Table 4. SUVmax and SBR were high-

est in BSREM350 and decreased with incremental β-values, whereas there was a con-

tinuous increase of SNR with increasing β-values. In Table 5, the median relative

differences of SUVmax comparing all reconstruction algorithms are given, including p

values for pairwise comparison.

Representative images of study subjects undergoing 18F-FDG PET/CT for staging of

lung cancer are given in Figs. 2 and 3.

Table 2 Results of subjective PET image quality ratings for different reconstruction algorithms.

Italicized numbers are the reconstructed datasets yielding the highest score for each assessed

parameter

Reconstruction General image quality Image sharpness Lesion conspicuity

Mean SD Mean SD Mean SD

OSEMTOF 3.0 0.6 2.1 0.6 2.1 0.6

OSEMPSF 3.9 0.5 3.3 0.7 3.2 0.6

BSREM350 3.8 0.9 4.3 0.6 4.1 0.8

BSREM450 4.4 0.6 4.5 0.5 4.4 0.6

BSREM600 4.8 0.4 4.6 0.5 4.5 0.5

BSREM800 4.8 0.4 4.2 0.5 4.3 0.7

BSREM1200 4.1 0.5 3.3 0.6 3.6 0.6

BSREM block sequential regularized expectation maximization, OSEM ordered subset expectation maximization, PSF point

spread function modelling, TOF time of flight
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Discussion

This study sought to evaluate the impact of different PET reconstruction algorithms on

image quality and quantitative parameters in patients with histopathologically con-

firmed lung cancer using a latest-generation silicon-based digital detector PET/CT

scanner. The major findings of our study are as follows: (1) BSREM reconstruction al-

gorithms lead to an increased image quality, image sharpness, and tumor lesion conspi-

cuity compared to OSEM; (2) adjusting β-values to the injected 18F-FDG activity

allows for an individual dose-based optimization of image quality of PET images; and

(3) BSREM reconstruction leads to a significant increase of SUVmax, which is most

prominent with lower β-values (e.g., 350).

PET/CT using 18F-FDG as radiotracer has evolved to be the most important

cross-sectional imaging modality for whole-body staging of patients with lung cancer in

recent years and is recommended by various international guidelines [6, 21]. There is,

however, an inherent relatively low spatial resolution [7] as well as a generally low

signal-to-noise ratio of PET [8]. This is why improving the image quality of PET is an

Fig. 1 Absolute frequency distribution of preferred reconstruction algorithms for lung cancer assessment as rated

by the readers, including the ratings for all study subjects (a): BSREM600 was chosen most frequently as the

preferred reconstruction algorithm by the readers, followed by BSREM450, BSREM800, and BSREM350. When

comparing the relative frequency distribution of preferred reconstruction algorithms (b) for high-18F-FDG-dosage

regimen (> 2.0 MBq/kg body weight; n= 20 patients) and low-dosage regimen (≤ 2.0 MBq/kg body weight; n= 25

patients), a significant shift of the preferred image reconstruction algorithm from BSREM450 to BSREM600 was

observed (p< 0.05)

Table 3 Results of subjective PET image quality ratings for different reconstruction algorithms in a

subanalysis for patients with high-dose (≥ 2.0 MBq/kg (n = 20 patients of study group)) and low-

dose (≤ 2.0 MBq/kg (n = 25 patients of study group)) injection regimen of 18F-FDG. Italicized

numbers are the reconstructed datasets yielding the highest score for each assessed parameter

Reconstruction General image quality Image sharpness Lesion conspicuity

High dose Low dose High dose Low dose High dose Low dose

OSEMTOF 3.1 2.9 2.2 2.0 2.3 1.9*

OSEMPSF 3.8 3.9 3.5 3.0* 3.3 3.0

BSREM350 4.0 3.5* 4.5 4.0** 4.2 4.0

BSREM450 4.6 4.1** 4.7 4.3** 4.6 4.2*

BSREM600 4.8 4.7 4.7 4.6 4.6 4.5

BSREM800 4.8 4.8 4.1 4.4 4.3 4.0

BSREM1200 4.2 4.0 4.2 3.4 3.7 3.6

Data are presented as mean

BSREM block sequential regularized expectation maximization, OSEM ordered subset expectation maximization, PSF point

spread function modelling, TOF time of flight

* p value < 0.05, ** p value < 0.01
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ongoing subject of research and, besides new hardware features such as TOF acquisi-

tion [9], advanced PET data reconstruction methods are being developed. For example,

iterative reconstruction methods such as OSEM have been widely adopted instead of

the initially used filtered back projection, leading to an overall image improvement [10,

22]. Based on raw data sinograms, OSEM repeatedly iterates different possibilities in

order to find the most probable image. Thereby, with each iteration step, an image with

a greater likelihood of describing the measured data is achieved. The main disadvantage

of OSEM, however, is the impossibility to run iterations to full convergence, because

the image noise increases with each iteration, leading to rather unacceptable image

quality before full convergence is reached [23, 24]. Therefore, OSEM is stopped after a

predefined number of iterations, resulting in under-converged images. As a main con-

sequence, this leads to an underestimation of the true SUV.

BSREM on the other hand, as a fast and globally convergent reconstruction algo-

rithm, may increase the accuracy of lesion quantitation compared to OSEM, with a par-

ticular improvement in cold background regions such as the lungs as indicated in

previous studies using NEMA and anthropomorphic phantom data [16]. Moreover, in a

clinical setting, Teoh et al. showed that BSREM may significantly increase the SUVmax

and increase signal-to-background/noise of lung lesions [25]. These observations are in

Table 4 Results of quantitative PET image assessment for different reconstruction algorithms

including maximum standardized uptake value (SUVmax) of the primary lung tumor, tumor signal-

to-background ratio (SBR), tumor signal-to-noise ratio (SNR), contrast-to-background ratio (CBR),

and contrast-to-noise ratio (CNR). Italicized numbers are the reconstructed datasets yielding the

highest values for given parameters

OSEM BSREM

OSEMTOF TOFPSF BSREM350 BSREM450 BSREM600 BSREM800 BSREM1200

SUVmax

Mean 11.9 12.7 15.0 14.5 14.0 13.4 12.8

Median 11.7 12.8 14.3 14.2 13.8 13.4 12.9

Range 3.6–25.2 3.5–26.7 4.0–30.4 3.8–29.9 3.6–29.2 3.4–28.4 3.2–27.5

SBR

Mean 6.9 7.4 8.8 8.5 8.1 7.6 7.3

Median 6.7 7.3 8.7 8.4 7.9 7.7 7.3

Range 1.9–12.8 1.8–13.6 2.1–16.6 1.9–16.0 1.8–15.3 1.7–14.6 1.6–13.8

SNR

Mean 41.7 48.3 51.1 55.4 62.6 70.2 82.3

Median 38.9 43.5 48.5 51.7 58.0 64.3 75.6

Range 11.6–81.1 11.9–92.1 11.1–101.4 11.9–103.1 13.3–116.7 14.9–135.3 16.7–161.9

CBR

Mean 3.1 3.4 4.1 4.0 3.8 3.6 3.4

Median 3.1 3.4 3.8 3.8 3.5 3.4 3.3

Range 0.2–6.5 0.1–7.0 0.2–8.2 0.1–7.8 0.1–7.6 0.1–7.2 0.04–6.8

CNR

Mean 18.8 22.2 23.8 26.0 29.3 32.8 38.3

Median 18.1 20.3 21.6 23.8 26.7 29.4 34.0

Range 1.0–40.0 0.9–44.9 1.0–49.3 0.9–50.0 0.8–56.7 0.6–65.7 0.4–78.4

BSREM block sequential regularized expectation maximization, OSEM ordered subset expectation maximization, PSF point

spread function modelling, TOF time of flight
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Fig. 3 Representative images of a 53-year-old man with a body mass index of 19.1 kg/m2 and 66 kg body

weight who underwent 18F-FDG PET/CT for staging of lung cancer. The patient was injected with 99.8 MBq

of 18F-FDG (i.e., 1.5 MBq/kg body weight). Coronal and axial co-registered PET/CT images (a, b) show a

highly 18F-FDG-avid tumor invading the right main bronchus, which was confirmed as squamous cell

carcinoma (arrow) after right-sided pneumonectomy (c). Coronal PET images show OSEMTOF (d), OSEMPSF

(e), and BSREM600 (f) reconstruction together with SUVmax of the primary tumor

Fig. 2 Representative images of a 66-year-old man with a body mass index of 20.7 kg/m2 and 59 kg body

weight who underwent 18F-FDG PET/CT for staging of lung cancer. The patient was injected with 117.9 MBq of

18F-FDG (i.e., 2.0 MBq/kg body weight), according to the BMI-adapted dosage protocol developed for digital

PET [14]. Co-registered PET/CT images (a, b) show a highly 18F-FDG-avid tumor in the right lower lobe, which

was confirmed as adenocarcinoma after wedge resection. Axial PET images are given in c–i, showing OSEMTOF

(c), OSEMPSF (d), BSREM350 (e), BSREM450 (f), BSREM600 (g), BSREM800 (h), and BSREM1200 (i)
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line with the results of our study, e.g., a median increase of lung tumor SUVmax by

9.3% or 17.7% with BSREM600 or BSREM350, respectively, compared with OSEMPSF, or

by 18.5% or 28.0% with BSREM600 or BSREM350, respectively, compared with

OSEMTOF.

It is understood that increased quantitative accuracy in PET does not necessarily

translate into an improvement of clinical readings. We therefore included in our study

performance assessments of readers to complement the quantitative approach and en-

able a meaningful clinical implication. We could show that several aspects of reading

lung cancer PET exams are enhanced with BSREM, such as lesion conspicuity and

image sharpness. Indeed, in all 45 patients, a BSREM reconstruction was selected as

preferred reconstruction for image assessment by the readers. An “intermediate”

β-value (i.e., 450–600) seems to be ideal for lung cancer assessment and was selected in

most cases. This is paralleled by the observation that by applying incrementally higher

β-values, a steady increase of signal-to-noise ratio comes at the expense of reduced

tumor signal-to-background ratio as a quantitative term but also at the expense of

image sharpness as qualitative/subjective term.

As expected based on the objectives of BSREM, we observed a significant shift of the

selected “preferred image reconstruction” towards higher β-values (i.e., from 450 to

600) in patients who received lower 18F-FDG doses (< 2 MBq/kg) compared with pa-

tients who received higher doses (> 2 MBq/kg). This observation reflects the apparent

ability of BSREM to balance image quality and noise levels according to the injected

dose and/or patient BMI by choosing different β-values, with higher β-values appearing

more appropriate for patients with lower 18F-FDG doses. Hence, the appropriate selec-

tion of this relative difference penalty may become a valuable tool for adjusting PET

image quality on a per-patient base, allowing both for a more patient-tailored PET im-

aging and for maintaining adequate image quality while reducing the dose. Notably, it

is yet not known at which threshold particularly small lesions are lost with increasing

β-values using BSREM reconstruction [25].

While limiting the 18F-FDG dose may not seem to be overly important in patients

with lung cancer, dose reduction in PET in general is a worthwhile goal to achieve. This

is particularly true in patients with diseases requiring repeat examinations such as

lymphoma and especially for young patients who have a comparably high life expect-

ancy. In this patient group, the imaging modality with the lowest achievable absorbed

radiation dose per imaging study is desired. Future studies on, e.g., lymphoma patients

may further refine protocols to let BMI-based dose adaption become reality also for

this patient group, who are at particular stochastic risk for potential adverse radiation

effects.

We acknowledge that our study has some limitations. First, a clinical reader assess-

ment as the one we performed might carry an inherent bias since it is virtually impos-

sible to totally blind readers to the image “appearance” of different reconstruction

algorithms. Second, analyses of tumor SUV were restricted to measurement of SUVmax,

which is the single most important PET parameter in clinical care. Further evaluation

of corrected SUV would possibly alter the results. Third, we did not stratify our ana-

lyses by tumor size. Fourth, we used only a small range of possible β-values based on

pretests. Fifth, the FDG dose regimen was based on BMI and body weight and—while

having been specifically developed for digital detector PET—may differ from other
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protocols used on analog detector scanners in conjunction with BSREM. Sixth, the

number of patients in this single-center study is comparably small, and therefore, con-

clusions drawn from the present analysis await further proof in larger (and ideally

multi-centric) observations. Future studies are also warranted to assess the impact of

BSREM on diagnosis, clinical management, and patient outcome.

Conclusions

In conclusion, BSREM reconstruction algorithm used in digital detector PET leads to

significant increases of lung tumor SUVmax, signal-to-background ratio, and

signal-to-noise ratio, which translates into a higher image quality, tumor conspicuity,

and image sharpness.
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