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The impact and spreading of a compound viscous droplet on a flat surface are studied
computationally using a front-tracking method as a model for the single cell epitaxy. This is a
technology developed to create two-dimensional and three-dimensional tissue constructs cell by cell
by printing cell-encapsulating droplets precisely on a substrate using an existing ink-jet printing
method. The success of cell printing mainly depends on the cell viability during the printing process,
which requires a deeper understanding of the impact dynamics of encapsulated cells onto a solid
surface. The present study is a first step in developing a model for deposition of cell-encapsulating
droplets. The inner droplet representing the cell, the encapsulating droplet, and the ambient fluid are
all assumed to be Newtonian. Simulations are performed for a range of dimensionless parameters to
probe the deformation and rate of deformation of the encapsulated cell, which are both hypothesized
to be related to cell damage. The deformation of the inner droplet consistently increases: as the
Reynolds number increases; as the diameter ratio of the encapsulating droplet to the cell decreases;
as the ratio of surface tensions of the air-solution interface to the solution-cell interface increases;
as the viscosity ratio of the cell to encapsulating droplet decreases; or as the equilibrium contact
angle decreases. It is observed that maximum deformation for a range of Weber numbers has (at
least) one local minimum at We=2. Thereafter, the effects of cell deformation on viability are
estimated by employing a correlation based on the experimental data of compression of cells
between parallel plates. These results provide insight into achieving optimal parameter ranges for

maximal cell viability during cell printing. © 2010 American Institute of Physics.

[doi:10.1063/1.3475527]

I. INTRODUCTION

Impingement of a microdroplet on a flat surface has im-
portant applications in engineering such as surface coating,
spray cooling, DNA microarrays, and ink-jet plrinting.l The
impact and spreading of a homogenous one-component
(simple) liquid droplet on a flat surface have been studied
extensively in the literature  from theoretical,%5
computationalf’10 and experimental‘"“’13 points of view. In
spite of a growing interest in generation and manipulation of
multicomponent (compound) droplets mainly driven by mi-
crofluidic z:1pp1ica¢ti0nsl4_16 in recent years, to the best of our
knowledge, no work has been done on the impingement of a
compound droplet on a solid surface except for the experi-
mental study of Chen et al.”® They formed compound drop-
lets consisting of water as the inner droplet and diesel oil as
the encapsulating fluid, and studied the residence time of a
compound droplet impinging on a hot surface to understand
the heat transfer process in spray combustion.”” The im-
pingement of a compound droplet is of fundamental impor-
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tance in fluid mechanics. Here, we draw inspiration from
the recent experimental cell printing studies where live
cell-encapsulating droplets are patterned onto biomaterial
coated substrates to engineer three-dimensional tissue
constructs' ' or to cryopreserve cells.'"®**% The current
droplet generation technologies make it possible to generate
monodispersed droplets on demand with specified size, such
that the droplets can encapsulate only single to few cells
and deposit them with spatial control on a substrate.'® This
suggests that it would be useful to model the process com-
putationally to predict optimal conditions enhancing cell
viability.

Fundamental studies of the dynamics of compound drop-
lets have been done relatively recently compared to the
simple droplets24 and there are still fundamental questions
that need to be addressed.'** Compound droplets have
found important applications in targeted drug delivery,%’27
food industry, waste water management, and
microfluidics.'* Fluid mechanics of compound droplets have
been studied in various geometries and flow conditions.
Johnson and Sadhal®* reviewed the translation of compound
droplets in quiescent flow. Stone and Leal® studied the
breakup of double emulsion droplets in extensional flows.
Bazhlekov ef al.*' examined the unsteady motion and defor-
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mation of compound droplets rising in an otherwise quies-
cent fluid due to buoyancy using a finite element method.
Smith ef al.” investigated the deformation and breakup of an
encapsulated droplet in shear flow using a level-set method
and produced a range of morphologies caused by the inter-
action between the core and outer interfaces. They presented
a phase diagram showing the morphologies obtained for a
range of capillary numbers and core interfacial tensions.
Kawano et al.* studied deformations of thin liquid spherical
shells in a liquid-liquid-gas system both experimentally and
computationally. In recent years, the field has been mainly
driven by a growing range of applications in microfluidics.
Utada er al.'* developed a microcapillary device that gener-
ates double emulsions at specified sizes and numbers. This
capillary device forms monodisperse double emulsions in
one step. Zhou et al computationally studied the formation
of compound drops in flow-focusing devices and found that
compound drops are formed only in a narrow window of
flow and rheological parameters.

Modeling cells as simple Newtonian droplets is not new
and has been widely used to study blood cells.**>7 In these
models, the cell is represented by a Newtonian droplet whose
viscosity is much higher than that of the ambient fluid. The
Newtonian models involve oversimplification as they ignore
the complicated internal structure of the cells and lump the
effects of the internal structure into the apparent viscosity
usually measured by the micropipet aspiration technique.3 839
A compound droplet has been proposed by Kan et al.® as a
model for leukocyte deformation in an imposed extensional
flow and by Marella and Udaykumar“ as a model for leuko-
cyte deformability in micropipet aspiration and recovery
phases. In these models, the inner droplet represents the
nucleus of the cell while the encapsulating droplet represents
the cytoplasm. Kan et al.*® treated both the nucleus and cy-
toplasm as Newtonian fluids with different material proper-
ties. Marella and Udatykumar41 improved this model using a
power-law shear thinning fluid for the cytoplasm and an elas-
tic membrane with nonlinear stress-strain curve for the cor-
tical layer.

To the best of our knowledge, only computational mod-
eling of the cell-encapsulating droplet printing has been per-
formed by Wang et al* using a smoothed particle hydrody-
namics method. They assumed that the receiving substrate is
coated by the same liquid as that encapsulating the cell.
Therefore, the fluid mechanical problem they considered is
fundamentally different from that which we study here.

In the present work, the impact and spreading of a com-
pound droplet are studied computationally using a front-
tracking/finite-difference method® as a model for the cell-
encapsulating droplet printing on a flat solid substrate. In the
present model, the cell, the encapsulating liquid, and the sur-
rounding air are assumed to be Newtonian fluids with differ-
ent material and interfacial properties. The inner droplet is
composed of a highly viscous Newtonian fluid representing
the cell. This is, of course, an oversimplification, as the cell
is not a Newtonian droplet. However, we use this rather
simple model to facilitate extensive simulations and defer
more complicated non-Newtonian or microstructured models
to a future study. It is assumed that the cell-encapsulating
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droplet partially wets the substrate while the inner droplet is
nonwetting. Note that as far as the computational method is
concerned, there is no difficulty to allow the inner droplet to
wet the substrate but we simply postulate that the cell does
not wet or stick to the substrate. The present front-tracking
method developed by Unverdi and Tryggvason44 has been
recently extended to treat the moving contact lines and suc-
cessfully applied to model the impact and spreading of a
simple droplet by Muradoglu and Tasoglu.45 In this method,
the stress singularity at the contact line is removed by mov-
ing the contact line, such that the contact angle is equivalent
to the dynamic contact angle that is computed at every time
step using the correlation given by Kistler.*®

To enable commercial implementation of the cell print-
ing technology in the health care industry, approaches need
to minimize the cell damage occurring during impact/
collision with the receiving substrate. It is known that cell
viability is strongly correlated with cell deformation.*’
Lower levels of cell deformation is more likely to enhance
survival during the collision. We also hypothesize that the
rate of cell deformation is also important in cell viability.
Therefore, the goal here is to identify the conditions that
yield the smallest cell deformation and deformation rate. For
this purpose, effects of relevant nondimensional numbers
such as the Reynolds number, the Weber number, the viscos-
ity ratio, the surface tension ratio, the diameter ratio, and the
equilibrium contact angle on the cell deformation and defor-
mation rate are investigated. The cell viability is related to
the cell deformation using the experimental data obtained
from the compression of cells by two parallel plates.47

The paper is organized as follows: The mathematical for-
mulation and numerical model are described in Sec. II. We
present results and discussion in Sec. III, where some vali-
dation tests are also presented to show accuracy of the nu-
merical method. Finally, we present conclusions in Sec. IV.

Il. FORMULATION AND NUMERICAL METHOD

The flow equations are described here in the context of
the finite-difference/front-tracking method. The fluid motion
is assumed to be governed by the incompressible Navier—
Stokes equations. We solve for the flow inside and outside
the droplets in all three phases. Following Unverdi and
Tryggvason,44 a single set of governing equations can be
written for the entire computational domain, provided that
the jumps in material properties such as density and viscosity
are correctly accounted for and surface tension is included.
In an axisymmetric coordinate system, the Navier—Stokes
equations in conservative form are given by

dpu 1drpu>  dpuv
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where u and v are the velocity components in the radial and
axial directions, p is the pressure, g is the gravitational ac-
celeration, and p and u are the discontinuous density and
viscosity fields, respectively. The effect of surface tension is
included as a body force shown in the last term on the right
hand side, where o is the surface tension, k is twice the mean
curvature, and n is a unit vector normal to the interface. The
surface tension acts only on the interface as indicated by the
three-dimensional delta function &, whose arguments x and
X, are the points at which the equation is evaluated and a
point at the interface, respectively. The Navier—Stokes equa-
tions are supplemented by the incompressibility condition

1dru v

-——+—=0. (2)

rdr 0z
We also assume that the material properties remain constant
following a fluid particle, i.e., Dp/Dt=0 and Du/Dt=0,
where D/Dt is the material derivative. The density and vis-
cosity vary discontinuously across the interfaces and are
given by

pal(r,z,1) + p[1 = I(r,z,1)] if I(r,z,1) = 1.0,
plI(r,z,t) = 1]+ p[2 = I(r,z,t)] otherwise,

3)
wal(r,z,1) + o[ 1= 1(r,z,1)] if I(r,z,t) = 1.0,

ml1(r,z,0) = 1]+ p 2 = I(r,z,1)] otherwise,

where the subscripts “c,” “d,” and “o0” denote properties of
the inner droplet, encapsulating droplet, and the ambient
fluid, respectively, and I(r,z,?) is the indicator function de-
fined as

2 in inner droplet,
I(r,z,t)=11 in outer droplet, (4)
0 in bulk fluid.

The numerical method is based on the front-tracking/
finite-difference method developed by Unverdi and
Tryggvason.44 In this method, a separate Lagrangian grid is
used to track the droplet-droplet and droplet-ambient fluid
interface. The Lagrangian grid consists of linked marker
points (the front) that move with the local flow velocity that
is interpolated from the stationary Eulerian grid as sketched
in Fig. 1. The piece of the Lagrangian grid between two
marker points is called a front element. The Lagrangian grid
is used to find the surface tension, which is then distributed
onto Eulerian grid points near the interface using Peskin’s™®
cosine distribution function and added to the momentum
equations as body forces as described by Tryggvason et al®
At each time step, the indicator function is computed and is
used to set the fluid properties inside and outside the drop-

Phys. Fluids 22, 082103 (2010)

Threshold

Front

Marker
point

|
|
|
|
|
|
|
I
|
|
Por Ho : L
|
I
|
|
|
|
|
|
|
|

FIG. 1. (Color online) Schematic illustration of the computational setup.

lets. To do this, unit magnitude jumps are distributed in a
conservative manner on the Eulerian grid points near the
interfaces using the Peskin’s*® cosine distribution function
and are then integrated to compute the indicator function
everywhere. The computation of the indicator function re-
quires solution of a separable Poisson equation and yields a
smooth transition of the indicator function across the inter-
face. The fluid properties are then set as a function of the
indicator function according to Eq. (3). The Lagrangian grid
is restructured at every time step. This is done by deleting the
front elements that are smaller than a specified lower limit
and by splitting the front elements that are larger than a
specified upper limit, in the same way as described by
Tryggvason et al.*® This maintains the front element size to
be nearly uniform and comparable to the Eulerian grid size.
Restructuring the Lagrangian grid is crucial because it avoids
unresolved wiggles due to small elements and lack of reso-
lution due to large elements. The details of the front-tracking
method can be found in Unverdi and Tlryggvason44 and
Tryggvason et al®

The no-slip boundary condition yields a stress singular-
ity near the contact line. Therefore it requires special treat-
ment. The treatment of the contact line is essentially the
same as that of Muradoglu and Tasoglu45 so it is briefly
summarized here for the compound droplet case. In the
framework of the front-tracking method, the drop interface
must be connected to the solid wall explicitly when the drop-
let approaches sufficiently close to the wall because the in-
terface is tracked explicitly by marker points. For this pur-
pose, we assume that the drop interface connects to the wall
when the distance between the drop interface and the solid
wall is less than a prespecified threshold value %y, as shown
in Fig. 2. To achieve this, the interface is continuously moni-
tored during the simulation and the first front element cross-
ing the threshold line is detected. Subsequently, this element
is connected to the solid wall such that the contact angle
between the wall and droplet is equal to the apparent contact
angle 6p. In the present work, the apparent contact angle is
specified dynamically using Kistler’s correlation'**¢ that re-
lates the apparent contact angle to the capillary number de-
fined as Cay=pu,Vy/ o, where V is the speed of the contact
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FIG. 2. (Color online) Schematic illustration of the computational setup for
slip contact line method.

line. Because Kistler’s correlation is valid for small capillary
numbers, following Muradoglu and Tasoglu,45 it is slightly
modified as follows:

HDi =fH0ff(Caclm +f;l£ff( 0@))’ (5)

where fﬁi,ff is the inverse of the Hoffman’s function fys,
defined as

( X )0.706
= 1 -2 tanh| 5.16\ ————& .
frote(x) = arccos an 1 +1.31:°%

(6)

In Eq. (6), 6, is the equilibrium (static) contact angle and
Ca,y, is defined as Ca,;,=min(Ca,y,Cay) where Cay,y is
the cut-off capillary number introduced to avoid too large or
too small values of the apparent contact angle. The apparent
contact angle is then determined in the advancing and reced-
ing phases as

bp, if Vy=0 (advancing),

HD = (7)
20,—0p, if Vy<0 (receding).

Following Muradoglu and Tasoglu,45 the contact line veloc-
ity is specified as the velocity of the point where the droplet
interface crosses the threshold. This definition is found to be
very robust. Once the apparent contact angle is determined,
the front element crossing the threshold line is connected to
the solid wall as follows: First, the distance between the front
element that is to be connected and the wall is predicted,
assuming that the front element connects to the wall linearly.
If this distance is smaller than a prespecified threshold length
hy, then the front element is connected to wall by fitting a
cubic curve and imposing the dynamic contact angle as
sketched in Fig. 2. Otherwise the front element is connected
to the wall using a linear function and again imposing the
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dynamic contact angle on the wall. The threshold length is
typically taken as hy=2Ax, where Ax is the Eulerian grid
size. Note that we need three points for a cubic fit because
one condition is imposed by the apparent contact angle. For
this purpose, the first point is selected as the marker point on
the front element crossing the interface and the other two are
selected such that the distance between the selected marker
points is approximately equal to the distance between the
first marker point and the wall. Typical marker points used in
cubic fit are schematically shown in Fig. 2 as large dots.
After the front element on the threshold line is connected to
the solid wall, the interface is restructured in a similar way as
described by Tryggvason et al.® In addition to specifying the
contact angle dynamically as explained above, the dynamic
contact angle is also used to compute the curvature at the
center of the front element adjacent to the solid wall. Fol-
lowing Tryggvason et al. .7 the curvature is computed at the
center of each front element and is approximated as a differ-
ence between the tangent vectors at the end points of the
element. The tangent vectors are computed by fitting a cubic
polynomial for the internal front elements. In the case of
contact line, one marker point of the front element adjacent
to the solid wall is placed on the wall so it requires a special
treatment. The tangent at this marker point is simply set to
the tangent of the dynamic contact angle given by Eq. (7).
This procedure is found to be very robust and accurate. The
details of the implementation of this slip contact method can
be found in Muradoglu and Tasoglu.45

The governing equations are solved in their dimensional
forms and the results are expressed in terms of relevant
dimensionless quantities. Let £ and U be the appropriately
defined length and velocity scales, respectively, and
T=L/U be the time scale. Then the relevant dimensionless
numbers can be summarized as

L
I :
Mg
8
de2£ do o) M Md ()
We = S T S A

g, d i g Ma Mo

where Re is the Reynolds number, We is the Weber number,
and d; and d, are the diameters of inner and outer droplets,
respectively. The surface tension coefficients of the droplet-
droplet interface and the droplet-ambient fluid interface are
denoted by o; and o, respectively.

Ill. RESULTS AND DISCUSSION
A. Validation

The numerical method is first validated in this section.
To the best of our knowledge, there is no experimental or
computational study about the impact and spreading of a
compound droplet on a substrate that we can use for valida-
tion of the present numerical method. The accuracy and con-
vergence of the present numerical method have been recently
demonstrated by Muradoglu and Tasoglu45 for a simple drop-
let. Therefore, a comprehensive validation is not repeated
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FIG. 3. (Color online) The normalized static droplet height vs E6tvos num-
ber in the range Eo=0.01 and Eo=64. The solid and dashed lines denote the
analytical solutions for the limiting cases of Eo<1 and Eo> 1, respectively.
The inset shows the initial conditions for the droplet relaxation test.

here. Instead, emphasis is placed on the validation of the
numerical method for the compound droplet case.

We first consider the relaxation of a compound viscous
droplet from a spherical initial condition to its final equilib-
rium shape. For this test, a concentric spherical compound
droplet of the inner radius R; and the outer radius R, is
initialized near the solid surface, as shown in the inset of
Fig. 3, and is allowed to spread until its final static shape
is reached for various values of the Eotvds number
[Eo=(p,~p,)gR%/7,] that represents the ratio of gravita-
tional and surface tension forces. The inner and the encapsu-
lating droplet densities are equal and larger than the sur-
rounding fluid. The viscosities of the inner and encapsulating
droplets are also set equal, although viscosity does not have
any effect on the final static shape of the droplet. Note that
this test case becomes equivalent to the simple droplet case
studied by Muradoglu and Tasoglu45 when the ratio of sur-
face tension coefficients is large, i.e., o,/0;> 1. The static
shape of the droplet generally depends on the equilibrium
contact angle 6,, the E6tvés number, and the ratio of surface
tension coefficients. In the limit of vanishing E6tvos num-
bers, i.e., Eo<<1, the equilibrium shape of the droplet is de-
termined by the surface tension force and the encapsulating
droplet takes a shape of spherical cap with the maximum
height of the droplet H,, given by45

13
4 ) . 9)

2 +cos® 6,—3 cos 6,

H,=R,(1 - cos 06)(

On the other hand, when Eo>1 and o,/0;>1, the com-
pound droplet becomes equivalent to the corresponding
simple droplet, the shape of the droplet is controlled mainly
by the competition between the gravitational and surface ten-
sion forces, and the maximum height of the droplet is pro-
portional to the capillary length,45 ie

2H, cos(6,/2)

H,=—"———"", (10)
V’EO

where H, is given by Eq. (9). Computations are performed
for this test case and the results are compared with the
asymptotic solutions given by Egs. (9) and (10). For this
purpose, the equilibrium contact angle is set to ,=93° and
the dynamic angle is used at the contact line. Focus here is
placed on the static shape of the droplet. The computational
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FIG. 4. (Color online) Time evolution of the spread factor of simple glyc-
erin droplet spreading on the wax substrate.

domain extends 6.5 drop radii both in the axial and radial
directions and is resolved by a 256 X 256 uniform Cartesian
grid. Figure 3 shows the normalized static droplet height as a
function of Eo6tvos number for the ratio of surface tension
coefficients together with the steady shapes of droplet in the
range of Eo=0.01 and 64. It is clearly seen that the computed
normalized droplet height agrees well with the asymptotic
solutions given by Egs. (9) and (10) for Eo<1 and Eo>1,
respectively, when o;/o,<< 1. For instance, the difference be-
tween the asymptotic solution and computational result is
less than 0.2% for Eo=0.01 and 10% for Eo=64, respec-
tively. We also note that the difference between the
asymptotic solution and computational results decreases
monotonically as the E6tvos number increases. For the inter-
mediate values of the E6tvds number, the transition between
a spherical cap and a puddle shape occurs. However, the
numerical solution deviates significantly from the asymptotic
solution for large E6tvos numbers as o,/ o, increases since
the inner droplet resists the gravitational forces and causes a
bump as shown in Fig. 3. Dynamics of the contact line is of
fundamental importance for accurate simulation of impact
and spreading of the compound droplet. The treatment of
contact line is essentially the same as that of Muradoglu and
Tasoglu45 and it has been extensively discussed for simple
droplet case. Because there is no experimental or computa-
tional study about compound droplet spreading, the treat-
ment of the contact line is tested here for a simple droplet
case studied experimentally by Sikalo et al. 12 Only one set of
results is shown here for completeness in Fig. 4 and readers
are referred to Muradoglu and Tasoglu45 for a detailed dis-
cussion. In this test case, the impact and spreading of a
simple glycerin droplet on a flat wax substrate is considered.
The surrounding medium is air. The equilibrium contact
angle is set to 6,=93°. Simulations are performed for three
impact velocities as summarized in Table 1. As can be seen in
Fig. 4, there is a good agreement between the computational
and experimental results, i.e., the difference between the
computational results and the experimental data is less than
10%. Considering the uncertainties in the experimental data
and in the correlation used for dynamic contact angle, Fig. 4
indicates the accurate treatment of the contact line. The final
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TABLE 1. List of cases used for validation.

Impact velocity 0,

Cases Liquid Wall (m/s) We Re (deg)
Glycerin Wax 4.1 802 106 93¢
Glycerin Wax 1.41 93 36 93°
3 Glycerin Wax 1.04 51 27 93°

validation test deals with buoyancy-driven motion of the
compound droplet studied experimentally by Mori*’ and
computationally using a finite element method by Bazhlekov
et al®' As shown in Fig. 5(a), an initially concentric gas-
liquid compound droplet (the inner phase is a gas) rises due

FIG. 5. (Color online) (a) The sketch for buoyancy-driven compound drop-
let. (b) Comparison of the compound drop shapes obtained computationally
by the present method (right) and experimentally by Mori (left). The dimen-
sionless parameters are Re=0.016, Eo=2.11, p,/p,=1.29, u,/ u,=0.84,
0,/ 0,=3.64, d;/d,=0.87.
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FIG. 6. (Color online) Shape evolution of compound droplet at Re=1.25,
Eo=180, p,/p,=1.11, py/ ,=0.5, 0,/ 0,=10, d;/d,=0.75. The present re-
sults (solid lines on the right side) are compared with those of Bazhlekov
et al. (dashed lines on the left side).

to buoyancy in an infinite domain. In addition to the dimen-
sionless hydrodynamic parameters given by Eq. (8), the
problem also depends on the Eotvds number defined here as
Eo=gL?p,/ o,. Following Bazhlekov et al.,’! the length and
velocity scales are defined here as £L=R, (where R,=d,/2)
and L{=2R(2)pog/ 9u,. Then the time scale is given by
T=L/U. The flow is assumed to be axisymmetric. The com-
putational domain extends 5 and 15 droplet radii in the
radial and axial directions, respectively, and is resolved
by 256 X768 uniform Cartesian grid. The computational
results are first compared with the experimental data of
Mori* in Fig. 5(b). For this case, the dimensionless param-
eters are set to Re=0.016, Eo=2.11, p,/p,=1.29, w,/ m,
=0.84, o0;/0,=3.64, d;/d,=0.87. As can be seen in
Fig. 5(b), there is a good agreement between the experimen-
tal and computational droplet shapes. We next compare
the present computational results with the finite element
simulations of Bazhlekov et al.*' For this purpose, the com-
putations are performed for the nondimensional parameters
of Re=1.25, Eo=180, p,/p,=1.11, ws/ n,=0.5, o/ 0o,
=10, d,/d,=0.75. The droplet shapes are plotted in Fig. 6 at
times =0, 1.4, 2.4, and 3.5 together with the results of
Bazhlekov et al.>' This figure shows that there is a qualita-
tively good agreement between the present results and finite
element simulations. The results are then quantified in Fig. 7
where the normalized velocities of the top and bottom points
of the compound droplet are plotted as a function of dimen-
sionless time. The velocity of the top point is slightly over-
predicted by the present method, but there is overall good
agreement with the finite element simulations. Note that
Kawano et al.” reported small-amplitude oscillations of en-
capsulated liquid interfaces especially just after the com-
pound droplet is generated at the tip of injection nozzle. We
have not observed any such oscillations of encapsulated drop
interfaces for the cases studied in this section probably due
to the fact that the droplet production period is not consid-
ered and focus is placed on the steady motion in the present
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FIG. 7. (Color online) The velocities of the top and bottom points of the
compound drop at Re=1.25, Eo=180, p,/p,=1.11, w,/ u,=0.5, o;/ 0,=10,
d;/d,=0.75. The present results (solid lines) are compared with the results of
Bazhlekov et al. (dashed lines).

study. We also note that neither Mori*’ nor Bazhlekov ef al.’’!
reported any oscillatory behavior of encapsulating drop
interfaces.

B. Impact and spreading of a compound droplet

After validating the numerical method in Sec. III A, we
now present simulations of compound droplet spreading on a
flat substrate. The computational setup is sketched in Fig. 1.
Computational domain extends approximately 6 outer drop
radii in radial direction and 3 drop radii in axial direction and
it is resolved by 512 X256 uniform Cartesian grid in all the
results presented in this section unless specified otherwise.
An extensive grid convergence study of the present numeri-
cal method has been performed by Muradoglu and Tasoglu45
for a simple droplet case. Therefore, such a study is not
repeated here. However, grid convergence is checked for all
the results presented and we ensured that the solutions are
grid independent, i.e., the spatial error is below 5%.

In the experimental study of Demirci and Mostaseno,'®
the diameters of the encapsulating droplet and the cell are
d,=37 pm and d;=13 pm (RAIJI cell), respectively (d,/d;
=2.85). The cells are encapsulated in the 8.5% sucrose and
0.3% dextrose solution with density p,=1030 kg/m? and
viscosity of w,=1.27X1073 Pa-s. In the simulations, the
material properties of the solution encapsulating the cell are
set to its physical values. The density of the inner cell is set
equal to that of the encapsulating droplet due to a large
amount of water content of the cell. There is no known exact
value for the viscosity of RAJI cell, or for any cell in general,
owing to its microstructured composition, but it can be as-
sumed to be a highly viscous fluid. The viscosity of cell is
taken here as an order of magnitude larger than that of the
encapsulating droplet mainly due to numerical purposes in
spite of the fact that actual apparent viscosity of the cell is
much higher. For the same reason, the density of the sur-
rounding air is also set to p,=51.5 kg/m? that is about 40
times larger than its physical value. The material properties
used in the simulations are summarized in Table II for all
three phases. Surface tension at the air-solution interface and
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TABLE II. Density and viscosity values of three phases.

Density Viscosity
Fluids (kg/m?3) (Pa-s)
Surrounding fluid 51.5 3.175% 107%
Solution encapsulating the cell 1030 1.270 X 107%
RAIJT cell 1030 1.270 % 1072

the solution-cell interface are 0.076 22 and 0.000 03 N/m,
respectively (o,/0;=2541). Note that the surface tension at
the air-solution interface is based on the experimental data
provided by Matubayasi and Nishiyama.51 We assume that
the solution remains homogeneous throughout so that the
surface tension at the air-solution interface is constant. Based
on the experimental data and considerations for numerical
stability and convergence, we choose the set of the dimen-
sionless numbers We=0.5, Re=30, d,/d;=2.85, o,/0;
=2541, p./ pug=10, g/ w,=40, p./ps=1, ps/ p,=20, and 6,
=90° as the base case. Then, we study the effects of each
nondimensional number by systematically varying its value
while keeping the other parameters the same as the base
case. Note that the density and viscosity ratios between the
encapsulating liquid and air are an order of magnitude larger
in the experiment. However, it is found that a further in-
crease in the property ratios does not affect the computa-
tional results significantly (not shown here). The compound
droplet is initially located close to the wall and initiated with
a uniform (impact) velocity directed toward the wall. The
equilibrium contact angle is chosen as 90° unless stated oth-
erwise. Note that this static contact angle is much larger than
the value in the experimental study, i.e., the static contact
angle in the experimental work is about 10°. We choose a
larger contact angle because it is computationally expensive
to resolve the thin liquid layer close to the solid surface for
small contact angles. We first present the simulations for the
base case. Figure 8 shows snapshots of the collision taken at
times 7*=0.000 269, 0.0541, 0.135, 0.216, 0.270, 0.514,
1.027, and 3.843. In this figure, pressure contours are plotted
on the left side and the pressure distribution on the cell sur-
face is plotted on the right side of the droplet images. For the
same parameters, velocity vectors (left side) and shear stress
contours (right side) are plotted in Fig. 9. Shear stress
reaches its peak value near the contact line at the beginning
of collision and it consistently decreases while the compound
droplet is spreading. Even at the beginning of droplet impact,
the magnitude of the shear stress is nearly half of the maxi-
mum pressure. It is observed that the maximum shear stress
occurs at the solution-air interface since all fluid particles
within the compound droplet initially have the same velocity
while the air is initially quiescent, and thus the velocity gra-
dient is larger at the solution-air interface rather than at the
cell-solution interface. Negative shear stress occurs in the
vicinity of the contact line where both velocity and pressure
gradients are extremely large and there is a stagnation-
pointlike flow field. It is emphasized here that it is very
likely that the numerical error is also large near the contact
line due to large pressure and velocity gradients. The loca-
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FIG. 8. (Color online) Evolution of compound droplet impacting on a flat surface [(left half) pressure contours and (right half) pressure distribution on the
surface of the cell]. Time evolves from left to right and from top to bottom and the snapshots are taken at times #*=0.000 269, 0.0541, 0.1351, 0.2162, 0.2703,
0.5135, 1.0270, and 3.8432 (We=0.5, Re=30, d,/d,=2.85, 0,/ 0,=2541, and p./ u,=10).

tion of maximum pressure changes during the different
phases of the collision process. For example, pressure in-
creases near the contact line during the initial impact and
spreading period; also just prior to recoil, the maximum pres-
sure is located near the triple point. However, the pressure
maximum starts to shift toward the distal point from the wall,
where it remains until the recoil phase. Next, we investigate
the consequences of variation of the governing dimension-
less parameters. In keeping with our emphasis on the inner
droplet, we shall define a gross deformation measure as

W, —H,

D= ; (11)
VVZ +'l{b

where W, and H,, are the maximum droplet dimensions in the
radial and axial directions, respectively. Note that r** (in
Figs. 10, 12, 14, 16, 18, and 20) is obtained by subtracting
the time period between droplet initiation and attachment to
the wall from the total elapsed time 7 and nondimensional-
ized again with 7.

The Reynolds number plays a role in the extent of
spreading and in the dynamic contact angle, as shown in Fig.
10. A relative increase in inertial effects leads to a more
powerful collision and subsequent cycling between spread

and recoil (see Re=45), although all simulations with differ-
ent Reynolds number converge to the same equilibrium ex-
tent of spread. Slowness in spreading for small Re values can
also be observed from the evolution of dynamic contact
angle in Fig. 10(b). The deformation and rate of deformation
of the cell are plotted as a function of dimensionless time for
Re=15, 20, 30, 40, and 45 in Fig. 11. It is observed that peak
cell deformation and rate of deformation increase as Rey-
nolds number increases. Note that cell deformation continues
to decrease, even as the cell-encapsulating droplet reaches a
steady spread, e.g., at *=4.0 for Re=30 in Fig. 8. The simu-
lation is stopped around =4 to limit computational ex-
pense. Of course, we expect cell deformation to have van-
ished at steady state. Next, we examine the effects of the
Weber number by varying the Weber number between 0.25
and 10 while keeping the other parameters fixed as in the
base case. The results are plotted in Fig. 12 for the extent of
spread and the dynamic contact angle. As can be seen from
this figure, there is a change in trend around We=2. Maxi-
mum spread initially decreases as Weber number increases.
Thereafter, it starts to increase with increasing Weber number
in a similar way as also observed by Muradoglu and
Tasoglu45 for the simple droplet spreading in the range We
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FIG. 9. (Color online) Evolution of compound droplet impacting on a flat surface [(left half) velocity vectors and (right half) shear contours]. Time evolves
from left to right and from top to bottom and the snapshots are taken at times #*=0.000 269, 0.0541, 0.1351, 0.2162, 0.2703, 0.5135, 1.0270, and 3.8432

(We=0.5, Re=30, d,/d,=2.85, o,/ o;=2541, and s,/ py=10).

=10 to 1080. Another observation is that the encapsulating
droplet reaches equilibrium conditions faster as Weber num-
ber decreases. Deformation and rate of deformation of the
cell are plotted in Fig. 13 as a function of dimensionless time
for We=0.25, 0.5, 1.0, 2.0, 5.0, and 10.0. A similar trend is
also observed in the deformation: it first decreases with We,
until We=2, and then it increases with increasing Weber
number. On the other hand, the maximum rate of deforma-
tion consistently decreases as We increases. It is desirable
that the droplet size is sufficiently small so that it contains
only a single cell but large enough to provide sufficient pro-
tection during the collision. The current printing technologies
allow us to control the droplet size precisely within terms of
microns. Therefore it is important to examine the effects of
the relative droplet size on the viability of the cell. For this
purpose, simulations are performed for various values of di-
ameter ratio in the range d,/d;=1.5 to 3.5, while keeping the
other parameters the same as those in the base case. Figure
14 shows the extent of spread and the dynamic contact angle
for various values of the diameter ratio as a function of di-
mensionless time. Although the dynamics look similar for
different values of d,/d;, an increase in d,/d; leads to a
slightly stronger spread and recoil. Deformation and rate of

deformation of cell are plotted as a function of dimensionless
time for d,/d;=1.5, 2.0, 2.5, 2.85, 3.0, and 3.5 in Fig. 15. It
is observed that both the deformation and the rate of defor-
mation increase as the ratio of encapsulating droplet diam-
eter to cell diameter decreases.

The surface tension is another important parameter in
terms of characterizing dynamics of outer droplet, which
may affect cell deformation during the printing process.
Simulations are performed for the surface tension ratios
g,/ a;=10, 20, 50, 500, 2541, and 5000 while keeping the
other parameters the same as those in the base case to inves-
tigate the effects of the surface tension on the cell viability.
The time evolutions of the spread factor and the dynamic
contact angle are plotted in Fig. 16. It is interesting to ob-
serve that the ratio of surface tension o,/ o0; does not have a
significant influence on the spread rate and the dynamic con-
tact angle. The deformation and rate of deformation of cell
are also plotted Fig. 17 as a function of dimensionless time
for o,/ 0;=10, 20, 50, 500, 2541, and 5000. It is found that
cell deformation and rate of deformation increase as the ratio
of surface tension at the air-solution interface to that of the
solution-cell interface increases. In contrast, the cell relaxes
to its spherical shape faster for smaller values of o,/ g;. Cur-
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FIG. 10. (Color online) (a) Spread factor and (b) dynamic contact angle vs
nondimensional time for Re=15, 20, 30, 40, and 45 (We=0.5, d,/d;=2.85,
o,/ 0;=2541, and w./ p,=10).

rent cell printing techniques used in tissue engineering and
biopreservation encapsulate cells in low viscosity solutions
such as cell media as well as higher viscosity biomaterials
such as collagen and cryoprotectant agents. Therefore, we
also investigated the consequences of variation of the viscos-
ity ratio between the cell and the cell-encapsulating droplet
for the range u./w,;=2, 5, 10, 20, and 40 with other param-
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FIG. 11. (Color online) Deformation and rate of deformation vs nondimen-
sional time for Re=15, 20, 30, 40, and 45 (We=0.5, d,/d;=2.85, o,/ 0;
=2541, and ./ puy=10).
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FIG. 12. (Color online) (a) Spread factor and (b) dynamic contact angle vs
nondimensional time for We=0.25, 0.5, 1.0, 2.0, 5.0, and 10.0 (Re=30,
d,/d;=2.85, o,/0;=2541, and w./ pu,;=10).

eters constant. In Fig. 18, the extent of spread and the dy-
namic contact angle are plotted as a function of dimension-
less time. It is found that the viscosity ratio wu./u,; does not
have any significant influence on the spreading rate and the
dynamic contact angle. Cell deformation and rate of defor-
mation are also plotted in Fig. 19 as a function of dimension-
less time for w./ =2, 5, 10, 20, and 40. It is observed that
cell deformation and rate of deformation increase as viscos-
ity ratio of cell to that of encapsulating droplet decreases. We
finally investigate the effects of the equilibrium contact
angle. For this purpose, simulations are performed for
0,=30°, 45°, 60°, 75°, 90°, 105°, and 120°, while the other
parameters are kept the same as those in the base case. Note
that static contact angle is dependent on the surface tensions
of all involved phases according to Young’s equation. How-
ever, the static contact angle can be changed without chang-
ing the surface tension at air-liquid interface by simply using
different materials (with different surface energy) for the
substrate. The extent of spread and the dynamic contact
angle are plotted as a function of dimensionless time in Fig.
20. As can be seen, droplets correctly relax to their equilib-
rium contact angles as the equilibrium conditions are
reached. Maximum extent of spread increases as 6, de-
creases. In Fig. 21, deformation and rate of deformation of
cell are plotted as a function of dimensionless time for
0,=30°, 45°, 60°, 75°, 90°, 105°, and 120°. It is found that
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FIG. 13. (Color online) (a) Deformation and (b) rate of deformation vs
nondimensional time for We=0.25, 0.5, 1.0, 2.0, 5.0, and 10.0 (Re=30,
d,/d;=2.85, 0,/ 5,=2541, and ./ uy=10).

the cell deformation and the rate of deformation increase as
the equilibrium contact angle decreases. Thus far, the effects
of governing nondimensional numbers on the deformation
and rate of deformation of the cell have been investigated.
Now, we attempt to estimate cell viability during the impact
and spreading processes by using the method suggested by
Takamatsu e al.*’ This method is based on the experimental
data obtained from the compression of cells between parallel
plates. The model assumes that cells deform symmetrically
during the motion of plates. Because the present simulations
consistently indicate that the cells deform quite symmetri-
cally (see, for instance, the evolution of cell interface plotted
in Fig. 22), we use this method to predict the viability of the
cell during the printing process. Takamatsu et alr’ suggest
that the viability of an individual cell () is given by

1 for y<w,—-Ay,

1 Y= Yer
=y -—-— for —Ay=y=1vy. +Ay,
7(y) 27 2y Yor— Ay =7y=17y,+Ay
0 for y> 1y, +Ay,

(12)

where y=A/A,, with A and A, being the surface areas of the
deformed and undeformed cells, respectively. Based on the
curve fit to the experimental data, the other parameters in Eq.
(12) are specified as y,,=1.5 and Ay=0.4. The viability of
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FIG. 14. (Color online) (a) Spread factor and (b) dynamic contact angle vs
nondimensional time for d,/d;=1.5, 2.0, 2.5, 2.85, 3.0, and 3.5 (We=0.5,
Re=30, 0,/ 0;=2541, and p./ pu,;=10).

the cells based on the present simulations are summarized in
Table III. Note that only one parameter is varied in each row
of Table III while all others are set the values in the base
case. As can be seen in this table, the cell viability rapidly
decreases as 6, and w,./ u, decrease. Cell viabilities are near
or exceed 90% for the ranges of Re, We, d,/d;, and o,/ 0;
that we studied here. Note that although the minimum static
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FIG. 15. (Color online) Deformation and rate of deformation vs nondimen-
sional time for d,/d;=1.5, 2.0, 2.5, 2.85, 3.0, and 3.5 (We=0.5, Re=30,
o,/ 0;=2541, and u./ py=10).
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FIG. 16. (Color online) (a) Spread factor and (b) dynamic contact angle vs
nondimensional time for o,/ d;=10, 20, 50, 500, 2541, and 5000 (We=0.5,
Re=30, d,/d,=2.85, and ./ j1z=10).

contact angle that we studied (30°) is still larger than the
value in the experimental study (10°), viability is decreased
to an unacceptable small value, i.e., 26%. However, as we
mentioned before, w./w, is set to 10 in varying 6, case and
in other cases except the case in which w./u,; is varied.
Given the fact that cell viscosity is much higher than that of
ambient fluid* " and higher u./ u, leads to higher viability,

—D 6 /o, increasing

- --0.25"3D/ot oy

0.3f

0.2f

0.1

10

FIG. 17. (Color online) Deformation and rate of deformation vs nondimen-
sional time for o,/0;=10, 20, 50, 500, 2541, and 5000 (We=0.5, Re=30,
d,/d;=2.85, and w./pu;=10).
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FIG. 18. (Color online) (a) Spread factor and (b) dynamic contact angle vs
nondimensional time for w./p,=2, 5, 10, 20, and 40 (We=0.5, Re=30,
d,/d;=2.85, and o,/ 0;=2541).

a simple question arises: What is the combined effect of
higher u./ u, and lower 6, on viability? In this study, further
computations are not performed because the required com-
putational time is not reasonable with the present method.
However, this study provides initial insight of viability trends
with respect to several governing nondimensional numbers.
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FIG. 19. (Color online) Deformation and rate of deformation vs nondimen-
sional time for u./u;=2, 5, 10, 20, and 40 (We=0.5, Re=30, d,/d;=2.85,
and o,/ 0;=2541).
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FIG. 20. (Color online) (a) Spread factor and (b) dynamic contact angle vs
nondimensional time for 6,=30°, 45°, 60°, 75°, 90°, 105°, and 120° (We
=0.5, Re=30, d,/d;=2.85, o,/ 0;=2541, and 1,/ py=10).

IV. CONCLUSIONS

The impact and spreading of a compound droplet on a
smooth flat surface are studied computationally using a
finite-difference/front-tracking method in an axisymmetric
setting. The compound droplet is proposed as a model for
printing of droplet-encapsulated biological cells."”"® The cell
is modeled as a highly viscous Newtonian droplet that is
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FIG. 21. (Color online) Deformation and rate of deformation vs nondimen-
sional time for 6,=30°, 45°, 60°, 75°, 90°, 105°, and 120° (We=0.5,
Re=30, d,/d;=2.85, o,/ 0;=2541, and pu./ pu;=10).

Phys. Fluids 22, 082103 (2010)

FIG. 22. (Color online) Evolution of compound droplet (We=0.5, Re=30,
d,/d;=2.85, o,/ 0;=2541, and p./pu,=10).

encapsulated by a less viscous Newtonian liquid. It is hy-
pothesized that the cell viability is mainly dependent on the
cell deformation and its rate. Therefore, the model is used to
investigate the optimal conditions that yield minimum defor-
mation and deformation rate. The experimental conditions of
Demirci and Montesano'® are taken as the base case and then
the effects of nondimensional parameters on the cell viability
are investigated by varying each parameter at a time system-
atically, while keeping the others the same as those in the
base case.

Since the numerical method has been already validated
comprehensively for a simple droplet impact and spreading
on a flat surface, validation tests are performed here to assess
the performance of the method for compound droplet. For
this purpose, it is first shown that the compound droplet cor-
rectly relaxes to its equilibrium shape when it impacts and
spreads on a flat surface for a wide range of E6tvos numbers.
Then the treatment of the contact line is validated against the
experimental data for a simple glycerin droplet spreading on
a wax substrate. Finally, the numerical method is applied to
simulate the buoyancy-driven motion and the deformation of
compound droplet, and results are found to be in a good
agreement with the experimental data of Mori® and also
with the finite element simulations of Bazhlekov er al.”!

After validating the numerical method, computations are
performed to examine the effects of the relevant dimension-
less parameters on the dynamics of compound droplet impact
and spreading on a flat surface. It is found that maximum
spreading of the cell-encapsulating droplet increases as the
Reynolds number (Re) increases. As Weber number (We)
increases, maximum spread first decreases until We=2, then
it increases. The diameter ratio, the viscosity of the cell, and
the surface tension at the solution-cell interface are found to
have no significant influence on the spreading of the encap-
sulating droplet in the range we studied here. It is found that
the maximum spreading and the equilibrium extent of spread
increase as the equilibrium contact angle decreases as ex-
pected. The deformation and the rate of deformation of the
cell (inner droplet) increase as the Reynolds number and the
surface tension ratio of the air-solution interface to the
solution-cell interface (o,/0;) increase. For smaller o,/ a;,
the cell relaxes to its equilibrium shape faster. The deforma-
tion and the rate of deformation of the cell increases as the
diameter ratio of encapsulating droplet to cell (d,/d;) and the
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TABLE III. Viabilities of cells.
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Re 15 20 30

n 100.00 100.00 100.00
We 0.25 0.5 1

n 88.62 100.00 100.00
d,/d; 1.5 2.0 2.5
n 88.05 92.97 97.90
o,/ o; 10 20 50

n 100.00 100.00 100.00
e g 2 5 10

n 44.07 88.43 100.00
0, 30° 45° 60°
n 26.15 54.81 80.77

40 45
90.38 86.31
2 5 10
100.00 100.00 98.67
2.85 3.0 3.5
100.00 100.00 100.00
500 2541 5000
100.00 100.00 100.00
20 40
100.00 100.00
75° 90° 105° 120°
91.84 100.00 100.00 100.00

viscosity ratio of cell to encapsulating droplet (w./um,) de-
creases. It is observed that there is a change in the trend of
the peak deformation for different Weber numbers. Maxi-
mum deformation first decreases until We=2, then it in-
creases with increasing Weber number. On the other hand,
the peak rate of deformation consistently decreases as We
increases. Finally, we employ a relation to fit to experimental
data of compression of cells between two parallel plates47 to
estimate the effects of cell deformation on viability. It is
found that the cell viability rapidly decreases as 6, and
M.l g decrease. Cell viability is near or over 90% for the
ranges of Re, We, d,/d;, and o,/0; that we studied in this
paper. The cell viability is found to decrease rapidly as the
equilibrium contact angle decreases below 60°. This can be
partly attributed to low viscosity ratio (u./wz=10) in vary-
ing 6, case.

The goal of this paper was to develop a framework for
investigating relative importance of governing nondimen-
sional numbers: Re, We, d,/d;, o,/ o;, w./ g, and 6, on cell
viability for the problem of deposition of cell-encapsulating
droplets. The analysis pointed out along the way that a num-
ber of parameters such as u./u,; and 6, should be perturbed
simultaneously. We also deferred non-Newtonian or more
complicated microstructured cell models to a future study.
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