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Impact of a deep learning assistant on the histopathologic

classification of liver cancer
Amirhossein Kiani 1,6, Bora Uyumazturk1,6, Pranav Rajpurkar1,6, Alex Wang1, Rebecca Gao2, Erik Jones1, Yifan Yu1,

Curtis P. Langlotz 3,4, Robyn L. Ball 3, Thomas J. Montine3,5, Brock A. Martin 5, Gerald J. Berry5, Michael G. Ozawa5,

Florette K. Hazard5, Ryanne A. Brown5, Simon B. Chen 5, Mona Wood5, Libby S. Allard5, Lourdes Ylagan5, Andrew Y. Ng1,7✉ and

Jeanne Shen 3,5,7✉

Artificial intelligence (AI) algorithms continue to rival human performance on a variety of clinical tasks, while their actual impact on

human diagnosticians, when incorporated into clinical workflows, remains relatively unexplored. In this study, we developed a deep

learning-based assistant to help pathologists differentiate between two subtypes of primary liver cancer, hepatocellular carcinoma

and cholangiocarcinoma, on hematoxylin and eosin-stained whole-slide images (WSI), and evaluated its effect on the diagnostic

performance of 11 pathologists with varying levels of expertise. Our model achieved accuracies of 0.885 on a validation set of 26

WSI, and 0.842 on an independent test set of 80 WSI. Although use of the assistant did not change the mean accuracy of the 11

pathologists (p= 0.184, OR= 1.281), it significantly improved the accuracy (p= 0.045, OR= 1.499) of a subset of nine pathologists

who fell within well-defined experience levels (GI subspecialists, non-GI subspecialists, and trainees). In the assisted state, model

accuracy significantly impacted the diagnostic decisions of all 11 pathologists. As expected, when the model’s prediction was

correct, assistance significantly improved accuracy (p= 0.000, OR= 4.289), whereas when the model’s prediction was incorrect,

assistance significantly decreased accuracy (p= 0.000, OR= 0.253), with both effects holding across all pathologist experience

levels and case difficulty levels. Our results highlight the challenges of translating AI models into the clinical setting, and emphasize

the importance of taking into account potential unintended negative consequences of model assistance when designing and

testing medical AI-assistance tools.
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INTRODUCTION

The rapid rate of scientific discovery in pathology has prompted a
trend toward subspecialization,1–3 which has made it more
difficult for general surgical pathologists to maintain expertise
across the entire range of diverse specimen subtypes.4–6 This
trend has resulted in misalignment of expertise for subspecialists,
when reviewing specimens outside of their area of focus.7,8 Such
situations are commonly encountered, for example, during after-
hours intraoperative consultations, when pathologists are con-
fronted with a diverse set of cases across a range of specimen
subtypes. A lack of access to subspecialty expertise in this context
can slow diagnostic turnaround times, resulting in delays in
patient care and potential adverse impacts on clinical outcomes.
In recent years, advances in the field of artificial intelligence (AI)

have led to the development of high-performance algorithms for
a wide range of diagnostic tasks in medicine.9–12 One commonly
encountered task is histopathologic tumor classification, which is
critical for prognosis and treatment, and may be challenging, even
for subspecialty-trained pathologists.13–16 To date, AI algorithms
have achieved high accuracy on some tumor classification
tasks.17,18 However, much of the work in this area has focused
on the retrospective evaluation of model performance on ground-
truth-labeled validation datasets. Few studies have taken the next
step of evaluating the impact of model assistance on pathologist
diagnostic performance.19 Furthermore, most recent applications

of AI assistance to pathology have focused on models which run
on whole-slide images (WSI) in a completely automated fashion,
independent of human input, prior to the post-analytical stage.
This creates a barrier to access for the majority of pathology
practices, particularly in global health settings, which lack the
expensive digital slide scanners necessary for generating the WSI
on which these models run. Even when slide scanning services are
readily available, the additional turnaround time necessary to
digitize cases for input into an AI model makes these tools
impractical for use in clinical diagnostic workflows, unless the
practice has already adopted a completely digital workflow. For
time-sensitive tasks, such as tumor classification, a preliminary
diagnostic impression must be reached quickly on examination of
routine hematoxylin and eosin (H&E)-stained slides, as many
downstream ancillary tests (immunohistochemistry, fluorescence
in situ hybridization, and molecular testing, for example) depend
on this preliminary impression. Therefore, an AI diagnostic
assistant for use in the average pathology lab should be easily
accessible, quick, and able to accept as input any type of digital
pathologic image, not just WSI. This might necessitate a degree of
pre-analytical input by pathologist end users—for instance, in
selecting the specific regions of interest on a slide that should be
captured for analysis. While machine learning models for non-WSI
digital analysis have been used for many years in research
settings, they have seen less application in clinical settings, and
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little is known about the dependence of model performance and
clinical utility on user background and diagnostic experience level.
In an effort to address these gaps, we built and tested a

diagnostic support tool to help pathologists distinguish between
hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC), the
two most common types of primary liver cancer. HCC and CC
account for 70 and 15% of cancers arising in the liver, respectively,
and the diagnostic distinction between these entities has unique
implications for prognosis and patient management.20 For
example, orthotopic liver transplantation is a widely accepted
treatment for patients with HCC, but is often contraindicated in
patients with CC. Distinguishing between the two may be
challenging, even for subspecialized gastrointestinal (GI) pathol-
ogists.21–23

The diagnostic assistant presented in this work consists of a
cloud-deployed AI model and a browser-based interface, where
pathologists can receive a virtual second opinion in real time. The
model was developed and trained using a publicly available
dataset of H&E-stained digital WSI of HCC and CC. Using an
independent test dataset, we evaluated the effect of the assistant
on the diagnostic accuracy, sensitivity, and specificity of 11
pathologists with varying levels of relevant expertise, and
explored the impact of pathologist experience level, case difficulty
level, and model accuracy on the pathologists’ diagnostic
performance with the use of the assistant.

RESULTS

Diagnostic assistant development and performance evaluation

To develop the deep learning model for our web-based assistant,
we used a total of 25,000 non-overlapping image patches of size
512 × 512 pixels (128 × 128 µm), extracted from tumor-containing
regions from 70 (35 HCC and 35 CC) digital WSI of H&E-stained
slides from formalin-fixed, paraffin-embedded (FFPE) primary
hepatic tumor resections. These WSI were obtained from the
Cancer Genome Atlas’ (TCGA) hepatocellular carcinoma (LIHC) and
cholangiocarcinoma (CHOL) diagnostic FFPE WSI collections.24 The
WSI were randomly partitioned into training (20,000 patches from
20 WSI), tuning (2400 patches from 24 WSI) and validation (2600
patches from 26 WSI) datasets, maintaining a 50:50 distribution of
HCC and CC examples within each dataset. A convolutional neural
network (CNN)25 with a DenseNet architecture, which has been
shown to outperform traditional CNNs on image classification
tasks,26 was incorporated into a simple prototype diagnostic
support tool (see Methods) consisting of a web interface where
pathologists could upload H&E image patches and receive the

model’s predictions and explanatory class activation maps27

(CAMs) in real time (Fig. 1). The model’s predictions were
displayed as probabilities for each diagnostic category (HCC and
CC), with CAMs displayed as heatmaps highlighting the image
regions most consistent with each respective diagnosis (Supple-
mentary Fig. 4). To assess the model’s generalizability to
previously unencountered data, we tested its performance on
the internal validation dataset of 2600 (TCGA) image patches, by
averaging the individual patch-level probabilities across all 100
patches randomly extracted from segmented tumor regions on
that WSI, and converting this average to a binary slide-level
prediction, using a probability threshold of 0.5. These slide-level
predictions were then compared with the ground-truth labels to
calculate the diagnostic accuracy of the model. Using this method,
the model achieved a diagnostic accuracy of 0.885 (95%
confidence interval (CI) 0.710–0.960).

Performance of pathologists with and without assistance

To assess the impact of our assistant on pathologist accuracy, we
performed a study measuring the diagnostic accuracy of 11
pathologists, with and without assistance, who were classified into
the following four experience level subgroups: GI subspecialty
pathologists (n= 3), non-GI subspecialty pathologists (n= 3),
pathology trainees (n= 3), and pathologists, not otherwise
classified (n= 2) (for detailed subgroup definitions, see Methods).
An independent test dataset of 80 WSI (40 CC and 40 HCC) of FFPE
tumor tissue sections from Stanford University Medical Center was
used for the study. Both the WSI used for model development and
those used for the pathologist study were scanned at ×40
objective magnification (0.25 µm per pixel). Table 1 and Supple-
mentary Fig. 1 summarize the datasets and the model develop-
ment and selection process. To compare the performance metrics
of the pathologists with and without assistance, each pathologist
diagnosed the same test set of 80 WSI (presented in the same
sequence) twice, in two separate sessions, according to the
crossover design detailed in Fig. 2. During each session, they
interpreted half of the study WSI with the assistance of the
diagnostic support tool, and half without. The pathologists were
blinded to the original diagnoses, clinical histories, and follow-up
information. After a washout period of at least 2 weeks, per
consensus recommendations from the College of American
Pathologists for avoiding short-term memory bias in digital
pathologic validation studies,28 the pathologists interpreted the
same set of 80 WSI with the assistance status reversed; the WSI
that were reviewed with assistance during the first reading were
reviewed unassisted during the second reading, and vice versa.

LiverCancerAssistant

a

Fig. 1 Graphical user interfaces for the experiment. The pathologists navigated the slide using the ObjectiveView image viewer. After
identifying a tumor region of interest (ROI), they saved a 500 × 500 μm image patch at ×10 objective magnification (a) containing the ROI
using the ‘crop’ tool. (The horizonal scale bar denotes 200 μm). After uploading the image patch to the diagnostic assistant’s user interface (b),
they received a probability of each diagnosis (here, HCC), with an accompanying class activation map to assist with interpretation.
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During the washout period, all pathologists were engaged in
routine daily practice, which involved review of their usual clinical
case mix. The pathologists were randomized into two groups, with
one group beginning the diagnostic session with assistance, and
the other without. The set of 80 WSI was divided randomly into
8 sets of 10 WSI. Within each set, the order of review of the WSI
was identical. On unassisted cases, the pathologists reviewed each
WSI in a digital whole-slide image viewer and recorded their
diagnosis using a web-based survey interface. On assisted cases,
they selected one or more patches from each WSI in the image
viewer, saved as PNG files that they uploaded into the assistant for
real-time analysis (Fig. 1). After viewing the assistant’s outputs,
which were available within a few seconds, they recorded their
final diagnosis using the web-based survey. The pathologist
workflow is detailed in Fig. 3.
The accuracy of the 11 pathologists, as a group, was 0.898 (95%

CI 0.875–0.916) without assistance, and 0.914 (95% CI 0.893–0.930)
with assistance. Among the pathologist subgroups, the accuracy
of GI specialists was 0.946 (95% CI 0.909–0.968) without assistance,
and 0.963 (95% CI 0.930–0.980) with assistance. The accuracy of
non-GI specialists was 0.842 (95% CI 0.790–0.882) without
assistance and 0.871 (95% CI 0.822–0.910) with assistance. The
accuracy of trainees was 0.858 (95% CI 0.809–0.897) without
assistance and 0.896 (95% CI 0.851–0.928) with assistance. The
accuracy of pathologists not otherwise classified (NOC) was 0.969
(95% CI 0.929–0.987) without assistance and 0.931 (95% CI
0.881–0.930) with assistance. The number of correct diagnoses
and mean accuracy for each pathologist subgroup, with and
without assistance, is detailed in Table 2. The accuracies for

individual pathologists, with and without assistance, are repre-
sented in Fig. 4 and Supplementary Table 1, and the correspond-
ing sensitivities and specificities are detailed in Supplementary
Figs 5 and 6.
When all 11 pathologists were included in a mixed-effect

logistic regression model which controlled for the fixed effects of
pathologist experience level and case difficulty level (using tumor
grade as a proxy indicator), as well as the random effects of
pathologist and WSI, there was no statistically significant increase
in mean pathologist accuracy with assistance, for the group as a
whole (p= 0.184, OR= 1.281, 95% CI 0.882–1.862). However, in a
sensitivity analysis exploring the impact of assistance on the
subset of nine pathologists of well-defined experience levels (GI
specialists, non-GI specialists, and trainees) (Table 3 and Supple-
mentary Table 4), we found that assistance resulted in a significant
increase in mean accuracy (p= 0.045, OR= 1.499, 95% CI
1.007–2.230).

Effect of pathologist experience level and tumor grade on
diagnostic accuracy

The results of our mixed-effect model fit to the entire group of 11
pathologists indicated that, all other effects being the same, the
pathologist experience level (p= 0.005) had a significant effect on
diagnostic accuracy (Supplementary Table 3), with the odds ratios
suggesting that non-GI specialists (OR= 0.204, 95% CI
0.082–0.508) and trainees (OR= 0.299, 95% CI 0.119–0.753) were
less likely to make a correct diagnosis, compared with GI
specialists. Similarly, when all other effects were held the same,
the tumor grade (p= 0.010) had a significant effect on diagnostic
accuracy, with the odds of making a correct diagnosis on grade 3
(poorly-differentiated) tumors being lower than the odds of
making a correct diagnosis on grade 1 (well-differentiated) tumors
(OR= 0.157, 95% CI 0.036–0.676). These findings are expected, as
grade 1 tumors exhibit morphologic features characteristic of their
tissue or cell type of origin, whereas grade 3 tumors typically
do not.

Impact of model accuracy on pathologist diagnostic accuracy

To confirm that the deep learning model was having the expected
effect on pathologist accuracy, we explored how the accuracy of
pathologists was affected when the model’s predictions were
correct versus incorrect (see the “Statistical analyses” section of
Methods for details). When the model’s prediction was correct
(Table 3), pathologists reviewing a case with assistance had about
4.3 times the odds of making a correct final diagnosis, compared
with the same pathologists reviewing the case without assistance
(p= 0.000, OR= 4.289, 95% CI 2.360–7.794, fit to 1482 observa-
tions). However, when the model’s prediction was wrong,
pathologists reviewing a case with assistance had less than
one-third the odds of making a correct final diagnosis, compared

Table 1. Dataset and patient characteristics.

Source Dataset Class No.
of slides

Median
patient agea

No. of
female
patientsb

TCGA Total HCC 35 57.0 (17.0) 11 (31.4)

CC 35 64.0 (13.0) 20 (57.1)

Training HCC 10 56.5 (13.5) 1 (10.0)

CC 10 65.0 (10.75) 8 (80.0)

Tuning HCC 12 63.0 (16.0) 5 (41.6)

CC 12 71.0 (8.75) 6 (50.0)

Validation HCC 13 55.0 (21.0) 5 (38.5)

CC 13 59.0 (10.0) 6 (46.1)

Stanford Indep. test HCC 40 64.5 (8.25) 10 (25.0)

CC 40 63.0 (14.75) 14 (35.0)

aThe interquartile range (IQR) is provided in parentheses.
bThe percentage of female patients is provided in parentheses.
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Fig. 2 Experimental design. Each of the 11 pathologists was randomly assigned to either test Order 1 or 2. Each test began with a brief
practice block of 4 (2 HCC and 2 CC) practice whole-slide images (WSI), followed by 8 experiment blocks of 10 WSI each, with Order 1
beginning with assistance and Order 2 beginning without assistance. The same 80 experiment WSI were reviewed in the same sequence
during Tests 1 and 2, across both test Orders.
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with the same pathologists reviewing the case without assistance
(p= 0.000, OR= 0.253, 95% CI 0.126–0.507, fit to 278 observa-
tions). These effects held across all pathologist experience levels
and case difficulty levels.

Performance of the model alone

For each WSI in the independent test set, a slide-level model
prediction specific to each pathologist was generated by taking
the average of the individual patch-level probabilities for the
patches uploaded by the pathologist. These were converted to a
binary prediction, using a probability threshold of 0.5. The
diagnostic accuracy of the model was computed via comparison
to the ground-truth labels, with 95% confidence intervals
calculated using the t-score method. Using this method, the
model alone achieved a mean accuracy of 0.842 (95% CI
0.808–0.876) on the independent test set.

DISCUSSION

In this study, we developed a deep learning algorithm intended to
assist pathologists with the task of distinguishing between HCC
and CC on H&E-stained WSI of primary liver tumors. Using a
crossover experimental design with an independent test dataset,
we evaluated the assistant’s impact on the diagnostic perfor-
mance of 11 pathologists of different expertise levels, and
observed (1) no statistically significant increase in mean accuracy
with assistance, for a group of 11 pathologists, (2) a significant
increase in accuracy with assistance, for the subset of nine
pathologists of well-defined experience levels (GI specialists, non-
GI specialists, and trainees), and (3) a significant differential impact
of the model’s accuracy on the pathologists’ accuracy in the
assisted state, when the model’s predictions were correct versus
incorrect.
To date, few studies have prospectively evaluated the impact of

AI assistance on pathologist diagnostic performance.19 To our
knowledge, this is the only machine learning model to address the
particular task of distinguishing between HCC and CC, and to
explore the impact of model assistance across different experience
and case difficulty levels. Seldom have these two factors been
taken into account in studies of computer-assisted diagnosis. Most
studies do not explicitly describe the distribution of easy versus
difficult cases in the datasets used to validate model performance.
When models are tested on datasets comprised of predominantly
(or all) easy cases, and their performance compared with that of
less experienced diagnosticians, this may lead to an overestima-
tion of model performance and clinical utility, with subsequent

poor generalizability to datasets containing the more challenging
cases encountered in clinical practice, as well as less observed
benefit in the hands of more experienced diagnosticians. In our
study, all of the pathologists had lower accuracy on more
challenging (grade 3) cases, in both the unassisted and assisted
states, and the accuracy of the GI specialists was higher than that
of the non-GI specialists and trainees, as would be expected. We
found that, for the subset of nine pathologists with well-defined
experience levels, assistance significantly improved diagnostic
accuracy, regardless of particular experience level or case difficulty
level. If these findings are reproduced in larger studies, they would
suggest that the potential exists for AI assistance to significantly
increase accuracy on specific, well-defined subspecialty diagnostic
tasks.
An unexpected finding was the improvement in accuracy with

assistance, despite the observation that the model alone did not
perform as well as the pathologists alone (84 versus 88% overall
accuracy on the independent test set, respectively). There are
several possible explanations for this discrepancy. The accuracy of
the model alone was calculated based on a relatively low
binarization probability threshold of 0.5 on the model’s output,
which may have resulted in a wider margin of error. This
binarization threshold should not have impacted the pathologists’
diagnostic decision in the assisted mode, as the pathologists were
provided with the actual probabilities output by the model (rather
than a binarized diagnosis based on a 0.5 probability cutoff), along
with class activation maps. Another possible explanation is that,
since the pathologists were forced to input at least one image
patch into the model, and to review the model’s output before
making their diagnosis in the assisted mode, they might have
taken less care in selecting patches for cases where they felt the
diagnosis was obvious (e.g., when the model’s assistance was
“unnecessary”). In such cases, this might have resulted in a
selection bias for patches which were less discriminative for the
diagnostic task at hand, resulting in a lower accuracy for the
model alone. A third possible explanation is that the diagnosis
made by the model was based on evaluation of only a few image
patches (rather than the entire WSI), so the model may not have
been exposed to more global, higher-level features that were
appreciated by the pathologists, which helped them arrive at a
correct diagnosis. Overall, the observation that the combination of
the model and pathologist outperformed both the model alone,
and the pathologist alone, suggests that the model and the
pathologist are complementary, rather than parallel, with respect
to the features each uses to arrive at a correct diagnosis, and that
the model should be used to augment, rather than replace, the
pathologist. Given the proliferation of recent studies reporting

Fig. 3 Pathologist diagnostic workflow with assistance. After reviewing the H&E whole-slide image (a), the pathologist extracts a tumor
patch at ×10 objective magnification (b) and uploads it to the cloud-based model, which outputs predicted probabilities for
cholangiocarcinoma (CC) and hepatocellular carcinoma (HCC) into the user interface (c), as well as corresponding class activation maps
(not shown). These outputs are integrated with the pathologist’s diagnostic impression, to result in a final assisted diagnosis.
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that an AI model is capable of outperforming, or even replacing,
human diagnosticians, we feel that this is a finding which should
not be ignored.
Another important observation from our experiment was that,

while correct model predictions had a significant positive impact
on pathologist accuracy in the assisted state, incorrect model
predictions had an equally significant negative impact on
accuracy. A review of the experimental data suggests that the
pathologists might have been more strongly influenced by the
model’s output on more difficult, compared with easier, cases. On
grade 3 cases, the unassisted accuracy of the pathologists was
0.76 (95% CI 0.676–0.833). On the subset of grade 3 cases where
the model’s prediction was correct, the pathologists’ assisted
accuracy was 0.947 (95% CI 0.870–0.979). However, on the subset
of grade 3 cases where the model’s prediction was incorrect, the
pathologists’ assisted accuracy was only 0.310 (95% CI
0.185–0.480)—far lower than their unassisted accuracy. In
contrast, for the diagnostically more straightforward cases (grades
1 and 2) the pathologists’ unassisted accuracy was 0.917 (95% CI
0.895–0.934), while their assisted accuracies were 0.982 (95% CI
0.969–0.990) and 0.654 (95% CI 0.558–0.738) when the model’s
predictions were correct and incorrect, respectively. These results
suggest that the pathologists might have relied more heavily on

the model’s output for difficult cases. Overall, the finding that
inaccurate model predictions can have a strong negative impact,
even on subspecialty pathologists with particular expertise at the
diagnostic task in question, raises concerns about the unintended
effects of decision support tools, such as automation bias.29

As pathology specimen volumes continue to increase world-
wide due to population growth, population aging, and the
increasing prevalence and incidence of cancer and other
diseases,30,31 there will be a greater need for novel tools to
mitigate the adverse effects of a relative pathologist shortage. As
diagnostic, prognostic, and predictive classifications of disease
become ever more complicated, new tools will also be necessary
to improve the accuracy and efficiency of current members of the
pathologist workforce. The advent of digital pathology, the
agreement on standards for image exchange, and improvements
in slide scanning technology, WSI-viewing software, and image
analysis algorithms have already begun to transform pathology, in
much the same way that radiology has been transformed over the
last two decades. However, most pathology practices still do not
have access to digital slide scanners for the creation of WSI, or the
resources to integrate non-vendor-proprietary image analysis
algorithms into existing vendor-proprietary digital slide viewers.
By designing our assistant as a web-based diagnostic tool that
works on user-uploaded image patches, rather than WSI (each of
which can be up to several gigabytes in size), we hoped to provide
an efficient and accessible solution for the majority of patholo-
gists, who might have access to only a microscope with a digital
camera and an internet connection. Diagnostic assistants of the
type tested in this study might provide particular benefit to
pathology trainees during case preview, as well as pathologists
working in low-resource settings with limited access to subspeci-
alty expertise or ancillary diagnostic modalities. The adoption of
such non-WSI-based assistance tools might lower the barrier to
the incorporation of AI into clinical diagnostic workflows, where
the turnaround time associated with using additional technology
is important. However, consideration must be given to optimizing
model performance, as well as thoughtful design of user
interfaces, in order to minimize unintended negative conse-
quences of computer assistance, such as automation bias.
This study has several limitations. The experimental setup was

not entirely reflective of a real world practice setting, in which the
pathologists would also have had access to corresponding clinical
history, radiologic studies, laboratory findings (e.g., an elevated
alpha fetoprotein level to suggest HCC), prior pathology reports,
and additional immunohistochemistry to assist in the distinction
between HCC and CC. The study also did not address cases of
combined CC-HCC, due to the rarity of cases. Ideally, a diagnostic
assistant would be able to identify not only cases of pure HCC or
CC, but also cases where both subtypes are present within the
same tumor. In addition, because the assistant required user input
in the selection of image patches, the assistance was not fully
automated. Given the inherent variability in user patch selection,
future work might explore whether a model that runs on entire
WSI, or one that incorporates automated patch selection, might
produce a more consistent effect on pathologist performance

Table 2. Pathologist unassisted and assisted accuracies, by experience levela.

Assistance GI specialists Non-GI specialists Trainees Pathologists NOC

Assisted 0.963 (0.930, 0.980)
(n= 231)

0.871 (0.822, 0.910)
(n= 209)

0.896 (0.851, 0.928)
(n= 215)

0.931 (0.881, 0.961)
(n= 149)

Unassisted 0.946 (0.909, 0.968)
(n= 227)

0.842 (0.790, 0.882)
(n= 202)

0.858 (0.809, 0.897)
(n= 206)

0.969 (0.929, 0.987)
(n= 155)

aThe average accuracy of each pathologist subgroup, along with the 95% confidence interval (in parentheses) and number of correct diagnoses made (n) is

presented.

Fig. 4 Impact of assistance on individual pathologist diagnostic
performance. The average diagnostic accuracy (across the set of 80
experiment WSI) for each pathologist is plotted as follows: gray
circle (unassisted)= accuracy of the unassisted pathologist, star
(model)= accuracy of the model alone (based on pathologist
selected input patches), purple diamond (assisted)= accuracy of
the pathologist with model assistance.
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across different experience levels. Finally, our study was limited to
70 TCGA WSI for model development and internal validation, and
80 Stanford WSI for external validation; this was largely due to the
relative scarcity of CC cases, which comprise, on average, only 15%
of primary liver cancers (compared with HCC, which comprises
70%), as well as the decision to maintain class balance between
HCC and CC cases across the datasets. Further studies incorporat-
ing larger datasets from multiple hospitals and practice settings,
as well as more pathologists with a broader range of backgrounds,
will be necessary to validate our results.
In summary, we have developed and tested an AI tool to help

pathologists with the subspecialty diagnostic task of distinguish-
ing between the two most common primary liver cancers, HCC
and CC. We found that, for a subset of 9 (out of 11) study
pathologists, use of the tool significantly increased diagnostic
accuracy, and that the accuracy of the assisted pathologists
exceeded that of both the model alone, and the same
pathologists without assistance. These findings suggest an
optimistic future in which AI models might be used to augment,
rather than replace, pathologists for certain subspecialty diag-
nostic tasks. At the same time, we also observed the potential for
incorrect model predictions to mislead even expert subspecialty
pathologists, resulting in significantly decreased diagnostic
performance. Our results highlight the challenges of translating
AI models into the clinical setting, and encourage those working
in the field to consider the potential unintended effects of model
assistance when designing and testing medical AI-assistance tools.

METHODS

Datasets

Digital WSI of H&E-stained slides from formalin-fixed, paraffin-embedded
(FFPE) primary hepatic tumor resections, from adult patients (aged 18 and
older) with a pathologic diagnosis of either HCC or CC, formed the datasets
for the study. Cases of combined CC-HCC and cases with poor slide
preparation quality (presence of extensive artifact, such as tissue folds)
were excluded. One representative tumor WSI per unique patient was
included in the study. All data for the training, tuning, and validation
datasets used for model development were obtained from the Cancer
Genome Atlas’ (TCGA) hepatocellular carcinoma (LIHC) and cholangiocar-
cinoma (CHOL) diagnostic FFPE WSI collections.24 The independent test
dataset was obtained from the slide archive of the Department of
Pathology at Stanford University Medical Center.
For model development, a total of 70 WSI (35 HCC and 35 CC) were

randomly selected from the TCGA-LIHC and TCGA-CHOL FFPE diagnostic
slide collections, and randomly partitioned into training, tuning and
validation datasets. The training dataset (20 WSI) was used to learn model
parameters, the tuning dataset (24 WSI) was used to choose hyperpara-
meters, and the validation dataset (26 WSI) was used to assess the model’s
generalizability to previously unencountered data (Supplementary Fig. 1).
Within each of these datasets, a 50:50 distribution of HCC and CC WSI was
maintained.
The independent test dataset consisted of 80 representative WSI (40 CC

and 40 HCC) of FFPE tumor tissue sections, one each from 80 unique
patients randomly selected from a pool of all patients with HCC (250
patients) or CC (74 patients) who underwent surgical resection (partial or
total hepatectomy) at Stanford University Medical Center in the years
2011–2017, and had glass slides available for retrieval from the pathology

department archive. A 50:50 distribution of HCC and CC WSI was
maintained for this dataset as well.
All WSI used in the study were in the SVS file format, scanned at ×40

magnification (0.25 µm per pixel) on an Aperio AT2 scanner (Leica
Biosystems, Nussloch, Germany). The reference standard diagnosis for all
examinations was confirmed by a U.S. board-certified, GI/liver fellowship-
trained pathologist at Stanford University Medical Center (J.S.). All cases in
the independent test dataset had been reviewed by a GI/liver subspecialty
pathologist at the time of the original diagnosis, with evaluation of
additional immunohistochemical and special stains, as well as intradepart-
mental consensus review, performed for diagnostically challenging cases.
Confirmation of the original diagnoses entailed re-review of all available
H&E and immunostained slides from each case by the reference
pathologist, as well as review of the original pathology report and all
supporting clinical, radiologic, molecular diagnostic, and other ancillary
findings. For the TCGA dataset, confirmation of the diagnoses entailed re-
review of all available H&E whole-slide images from each case. All relevant
accompanying metadata available through the TCGA’s Genomic Data
Commons (GDC), including the original pathology reports (PDF files)
containing the results of any additional immunohistochemical or special
stains performed, as well as available radiologic, molecular diagnostic, and
clinical history, were re-reviewed for each case. No diagnostic discrepan-
cies were identified between the original diagnosis and the reference
pathologist’s diagnosis, for either the TCGA or Stanford datasets.

Model development

We trained a convolutional neural network (CNN), a type of neural network
which is particularly effective on image data, to classify image patches as
containing either HCC or CC. Inspired by the organization of neurons in the
human visual cortex, a CNN takes advantage of a parameter-sharing
receptive field to learn local features of an image.25 The specific
architecture used was a densely-connected CNN (DenseNet), in which
each layer in the network is connected to every other layer in a feed-
forward fashion.26 Due to the large sizes of the WSI files, which precluded
inputting entire WSIs into the model, model training and evaluation were
performed using image patches extracted from the WSI. For each WSI in
the training, tuning, and validation datasets, all tumor-containing regions
were annotated by the reference pathologist. From these tumor regions,
1000 square image patches of size 512 × 512 pixels (128 × 128 µm) were
randomly sampled (see Supplementary Fig. 2), yielding a total of 20,000
image patches for model training. For the tuning and internal validation
datasets, we randomly extracted 100 similarly sized image patches per WSI,
for a total of 2400 tuning patches and 2600 validation patches. Pixel values
were normalized using the mean and standard deviation of the pixel
values from the TCGA training set. These normalized patches then served
as the input to the CNN. For additional details regarding image pre-
processing and model development, please see the Supplementary
materials.

Pathologist experiment

Eleven pathologists at Stanford University Medical Center were recruited
for the study, classified into the following four experience level subgroups:
(i) three GI pathologists who had spent the last 3 or more years diagnosing
HCC and CC in daily independent practice (8, 8, or 35 years of individual
practice experience, respectively), (ii) three non-GI subspecialty patholo-
gists with at least 12 years of independent practice experience (16, 25, or
29 years of individual practice experience, respectively) and no diagnostic
exposure to HCC or CC for the last 5 or more years, (iii) three Anatomic
Pathology residents (trainees) without independent diagnostic experience,
but with some limited exposure to HCC and CC cases as part of their

Table 3. Impact of assistance on diagnostic accuracy under different conditionsa.

Assistance
(11 pathologists)

Assistance
(9 pathologists)

Model correct
(11 pathologists)

Model incorrect
(11 pathologists)

OR (95% CI) 1.281 (0.882, 1.862) 1.499 (1.007, 2.230) 4.289 (2.360, 7.794) 0.253 (0.126, 0.507)

p-value 0.184 0.045 0.000 0.000

aThe results of mixed-effect logistic regression analyses evaluating the impact of assistance on diagnostic accuracy are presented as odds ratios (OR) for

pathologist diagnostic accuracy, with 95% confidence intervals (95% CI) and p-values from likelihood ratio testing (a two-tailed p ≤ 0.05 was considered

statistically significant).
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training within the last 2 years (one second-year resident and two third-
year residents), and (iv) two pathologists who otherwise did not fall within
the criteria for the previous three subgroups, and were assigned to the
pathologist, not otherwise-classified (NOC) subgroup. Specifically, the two
pathologists in the last category were non-GI pathologists with 1 year of
independent practice experience (one in Dermatopathology, and the other
in Cytology/Head and Neck Pathology), and recent general surgical
pathology fellowship training, during which time they had exposure to
HCC/CC cases. One of the two pathologists was also practicing part-time in
a general pathology practice.
The ObjectiveView digital pathology image viewer (2018 Objective

Pathology Services, Ontario, Canada) was used by the pathologists to
navigate the WSI during the experiment. Prior to the start of each
diagnostic session, the participants were given time to familiarize
themselves with ObjectiveView and the assistant, using a brief tutorial
document and four practice WSI (separate from the 80 test WSI). They
practiced digital slide navigation, image patch selection, and use of the
assistant. For each practice WSI, the pathologists first were informed of the
ground-truth (HCC or CC), then selected different tumor ROIs at ×10
objective magnification, of ~2000 × 2000 pixels, for upload to the
diagnostic assistant, and finally viewed the model’s generated probability
and CAM for each selected patch. The same desktop workstation setup,
consisting of (1) a 2017 iMac Pro with 27″ Retina 5K display, with
ObjectiveView and the assistant open concurrently for WSI navigation/
image patch selection and uploading of image patches, respectively, and
(2) an adjacent desktop PC running Windows 10, for entering diagnoses
into the web survey, was used to perform all experiments. Each session
was monitored by an administrator, who was present for the duration of
each experiment. The study was approved by the Stanford University
Institutional Review Board, with waived informed consent obtained for
inclusion of the 80 WSI used in the experiment.

Statistical analyses

The diagnostic accuracy of each group of pathologists, with and without
assistance, was assessed on the independent test set. The average
accuracy across all four subgroups was also computed. Confidence
intervals were calculated using the Wilson score method.32

Sensitivity and specificity for each pathologist was generated using the
caret package in R.33

Mixed-effect multivariate logistic regression models were developed to
evaluate whether assistance produced a significant difference in accuracy,
as well as to explore how tumor grade (a proxy indicator of case difficulty
level) and experience level affected diagnostic accuracy. Pathologists and
slides were included in the model as random effects, with the assistance
status (assisted versus unassisted), tumor grade, and pathologist experi-
ence subgroup included as fixed effects. To evaluate the impact of a
particular fixed effect of interest on diagnostic accuracy, the full model was
compared with the same model with the fixed effect of interest left out,
using a likelihood ratio Chi-square test. To further explore the impact of
model accuracy on the pathologists’ diagnostic accuracy, we separately fit
the same mixed-effect model to (1) the subset of cases on which the
model’s predictions were correct, and (2) the subset of cases on which the
model’s predictions were incorrect. For each subset, the likelihood ratio
Chi-square test was again used to compare the full model to the same
model without the assistance status. All mixed-effect models were
developed using the lme4 package in R.34 The Benjamini–Hochberg (BH)
correction was applied to account for multiple hypothesis testing when
appropriate, with a BH-adjusted p-value ≤ 0.05 (two-tailed) indicating
statistical significance.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
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image dataset is not publicly available, in accordance with institutional
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experiment are available, also at https://doi.org/10.5281/zenodo.3625234. The results
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