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Impact of a vegan diet on the 
human salivary microbiota
Tue H. Hansen  1, Timo Kern  1, Emilie G. Bak1, Alireza Kashani1, Kristine H. Allin1,  

Trine Nielsen  1, Torben Hansen  1,2 & Oluf Pedersen1

Little is known about the effect of long-term diet patterns on the composition and functional potential 
of the human salivary microbiota. In the present study, we sought to contribute to the ongoing 

elucidation of dietary effects on the oral microbial community by examining the diversity, composition 
and functional potential of the salivary microbiota in 160 healthy vegans and omnivores using 16S rRNA 
gene amplicon sequencing. We further sought to identify bacterial taxa in saliva associated with host 
inflammatory markers. We show that compositional differences in the salivary microbiota of vegans and 
omnivores is present at all taxonomic levels below phylum level and includes upper respiratory tract 
commensals (e.g. Neisseria subflava, Haemophilus parainfluenzae, and Rothia mucilaginosa) and species 

associated with periodontal disease (e.g. Campylobacter rectus and Porphyromonas endodontalis). 

Dietary intake of medium chain fatty acids, piscine mono- and polyunsaturated fatty acids, and dietary 
fibre was associated with bacterial diversity, community structure, as well as relative abundance of 
several species-level operational taxonomic units. Analysis of imputed genomic potential revealed 
several metabolic pathways differentially abundant in vegans and omnivores indicating possible effects 
of macro- and micro-nutrient intake. We also show that certain oral bacteria are associated with the 
systemic inflammatory state of the host.

Dietary e�ects on the human gut microbiota have been extensively studied, and long-term dietary habits have 
been shown to a�ect the diversity and composition of the human gut microbiota1,2. By comparison, studies 
exploring the microbiota of saliva are few and have, thus far, not revealed any substantial contribution of diet in 
shaping the oral microbial community. One study showed the salivary microbiota of traditional hunter-gatherers 
of the Batwa pygmy tribe in Uganda to have higher bacterial richness and profound di�erences in the abundance 
of 15 common bacterial genera compared to that of farmers from Sierra Leone and the Democratic Republic of 
Congo3. Noticeably, the pygmy diet is distinguished by high protein content, consisting mainly of animal meat. 
Similarly, a trans-ethnic study comparing the salivary microbiota of 52 South Koreans to that of 88 Japanese4 
showed that the salivary microbiota of Koreans was less diverse than that of Japanese individuals. In the same 
study, beta diversity analyses revealed di�erences in community structure (weighted UniFrac) and commu-
nity membership (unweighted UniFrac), in spite of close cultural, geographic and genetic relatedness. Higher 
abundance of 4 genera (including Neisseria and Haemophilus), and lower abundance of 17 genera (including 
Prevotella, Veillonella, Fusobacterium, Gemella, and Granulicatella) was observed in Koreans. Di�erences in the 
Korean and Japanese diet (e.g. spicy, salty, and fermented foods more prevalent in Korea) were suggested as a 
likely factor contributing to the observed disparities. �e only study directly investigating the long-term e�ect of 
diet on the salivary microbiota compared 51 Italian vegans, 55 lacto-ovo vegetarians and 55 omnivores5. In spite 
of major di�erences in the macro- and micronutrient content of these diets, no di�erence in diversity, community 
structure, or taxonomic composition was observed and the authors concluded that long-term dietary habits have 
no e�ect in shaping the salivary microbiota.

Epidemiological studies have linked periodontal disease (PD) to obesity6, insulin resistance7, type 2 diabe-
tes8, and cardiovascular disease9. A common hallmark of these disorders is systemic low-grade in�ammation10. 
Periodontal disease elicits a systemic in�ammatory and endotoxaemic response11 which suggests a direct role of 
the oral microbiota in cardio-metabolic pathophysiology. In a recent study of pathogen-free mice, oral adminis-
tration of Porphyromonas gingivalis, a periodontal pathogen, induced systemic in�ammation and endotoxaemia 
accompanied by insulin resistance, liver steatosis, and macrophage in�ltration in adipose tissue, without eliciting 
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a local in�ammatory response in the periodontium12. Pro�ling of the illeal bacterial community by 16S rRNA 
gene sequencing showed an increased relative abundance of species-level OTUs of the order Bacteroidales, sug-
gesting that the systemic e�ects of P. gingivalis were mediated by perturbation of the gut microbiota induced 
by inoculation of bacteria from the oral cavity. In a study of oral microbiota obtained by mouth swab from 62 
patients with atherosclerosis and 30 healthy controls, Fåk and colleagues reported a weak positive correlation 
between genus Parvimonas and high sensitive C-reactive protein (CRP), thereby directly linking the oral micro-
biota to low-grade in�ammation in cardiovascular disease.

In the present study, we sought to contribute to the ongoing elucidation of dietary e�ects on the oral microbial 
community by examining the diversity, composition and functional potential of the salivary microbiota in 78 
healthy vegans and 82 healthy omnivores. We further sought to identify oral bacterial taxa associated with mark-
ers of systemic low-grade in�ammation.

Results
Core microbiome across dietary patterns. A vegan and omnivore core saliva microbiome was de�ned 
as the genera present in >95% of omnivores and vegans, respectively. Twenty-three genera present in both core 
microbiomes constituted a common saliva microbiome across dietary patterns accounting for 97.0 ± 2.2% 
(mean ± standard deviation) of all reads in each individual (Supplementary Fig. S1A). Compositionally, the core 
microbiota was dominated by members of the three major phyla Bacteroidetes, Firmicutes and Proteobacteria 
(Supplementary Fig. S1B), with Prevotella, Veillonella, Neisseria and Streptococcus as the predominant genera, 
each with average relative abundance >5%, albeit with substantial inter-individual variation.

We identi�ed 12 operational taxonomic units (OTU) that were present in all individuals (Supplementary 
Table S2). Among these were OTUs assigned to Neisseria sub�ava, Haemophilus parain�uenzae, Prevotella mel-
aninogenica, Veillonella dispar and Veillonella parvula, as well as unclassi�ed Streptococcus spp., Granulicatella spp. 
and Campylobacter spp. Interestingly, these 12 core OTUs accounted for more than half of all reads (51.5 ± 7.7%).

Analyses of co-occurrence and co-exclusion revealed interesting patterns among the 23 core genera 
(Supplementary Fig. S2). A high degree of pairwise co-occurrence was observed between Porphyromonas spp. 
and Fusobacterium spp. (ρ = 0.74; Q < 10−15) and between Porphyromonas spp. and Neisseria spp. (ρ = 0.71; 
Q < 10−15). Conversely, pronounced co-exclusion was observed between Veillonella spp. and Porphyromonas spp. 
(ρ = −0.73; Q < 10−15), Veillonella spp. and Neisseria spp. (ρ = −0.75; Q < 10−15), and Neisseria spp. and Prevotella 
spp. (ρ = −0.70; Q < 10−15).

Alpha and beta diversity in vegans and omnivores. In the cohort as a whole, mean microbial richness 
in terms of observed and estimated (Chao1) number of OTUs was 201 ± 35.7 and 261 ± 51.0, respectively. We 
did not observe any di�erence in richness nor overall diversity as assessed by Shannon’s index and Simpson’s 
reciprocal index when contrasting vegans and omnivores (Supplementary Fig. S3). However, principal coordinate 
analysis (PCoA) revealed a subtle di�erence in beta-diversity in vegans and omnivores (Supplementary Fig. S4). 
Using permutational multivariate analysis of variance (PERMANOVA) to contrast dietary patterns, we found 
signi�cant di�erences in community structure as assessed by Bray-Curtis (R2 = 2.1%, P = 0.008) and weighted 
UniFrac (R2 = 2.6%, P = 0.019) distances, but no di�erence for unweighted UniFrac (R2 = 0.8%, P = 0.125), indi-
cating that the microbial communities in vegans and omnivores are phylogenetically similar, with di�erence in 
community structure driven by varying abundances of OTUs present in both vegans and omnivores.

Compositional differences in vegans and omnivores. For analysis of compositional differences 
between vegans and omnivores a subset of OTUs with a mean relative abundance >0.01% and prevalence >50% 
across diet groups were considered. Di�erential abundance was observed at all taxonomic levels below phylum 
level (Supplementary Fig. S5). A total of 22 OTUs were di�erentially abundant at an FDR < 10% and 10 OTUs 
were di�erentially abundant at an FDR < 5% (Fig. 1; Supplementary Table S3). Among the di�erentially abundant 
OTUs were oral and upper respiratory tract commensals like Neisseria sub�ava, Haemophilus parain�uenzae, 
Rothia mucilaginosa, and Capnocytophaga spp. which were more abundant in vegans, and Prevotella melanino-
genica and Streptococcus spp. which were more abundant in omnivores. Campylobacter rectus and Porphyromonas 
endodontalis, species associated with periodontal disease, were also more abundant in vegans.

Salivatypes. Clustering of samples based on genus abundance, using a partitioning around medoids (PAM) 
approach as previously described13, identified two semi-separate clusters; cluster I characterized by higher 
abundance of Neisseria and Porphyromonas, and cluster II characterized by higher abundance of Prevotella and 
Veillonella (Fig. 2). Both clusters included vegan and omnivore samples, with 46.2% of vegans and 34.1% of omni-
vores assigned to cluster I, and 53.8% of vegans and 65.9% of omnivores assigned to cluster II (P = 0.15, Fisher’s 
exact test). To address the issue of salivatypes as biological gradients rather than discrete features, we plotted 
the ratio of the predominant genera, Neisseria and Prevotella, against the �rst principal coordinate axis of the 
Jensen-Shannon divergence used to de�ne the salivatype clusters, showing the discrete salivatypes to be extremes 
of a continuum (Fig. 2B). Interestingly, the ratio of Neisseria to Prevotella was signi�cantly higher in vegans 
(P = 0.0008, Wilcoxon rank-sum test), re�ecting an association between dietary patterns and the compositional 
features underlying genus based clusters.

Association of nutrients with microbial composition in saliva. In order to assess the impact of collin-
ear nutrients on the diversity of the oral microbial community, we tested the association between four measures of 
alpha-diversity and the �rst 10 principal components (PC) of the daily macro- and micronutrient intake, captur-
ing >75% of the variation in daily nutrient intake. Using multiple regression including all 10 PCs simultaneously, 
we found that PC3 of the diet data was negatively associated with both Shannon’s index (0.7% decrease per unit 
increase in PC3; 95%CI: 1.2–0.2%; Q = 0.05) and Simpson’s reciprocal index (2.6% decrease per unit increase 
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Figure 1. Di�erential abundance of operational taxonomic units. Volcano plot of estimated log2 fold 
di�erence in operational taxonomic unit (OTU) abundance between vegans and omnivores and corresponding 
Benjamini-Hochberg adjusted P-values (Q) from negative binomial Wald tests as implemented in the DESeq2 R 
package. �e red dotted line indicates the 10% false discovery threshold. Prevalence indicates percentage 
of participants in which a given OTU is present. Abundance indicates mean relative abundance (‰) of a 
given OTU. Name of OTUs di�erentially abundant at an FDR ≤ 5% are given at the lowest classi�ed rank in 
Greengenes [Greengenes ID]. See Supplementary Table S2 for a full list of OTUs di�erentially abundant at an 
FDR < 10%. p, phylum, o, order. f, family. g, genus. s, species.

Figure 2. Salivatypes in vegans and omnivores. (A) Principal coordinates analysis visualizing salivatype clusters 
based on partitioning around medoids of Jensen-Shannon distance (JSD). Ellipses cover 67% samples in each 
cluster. (B) �e ratio of Neisseria to Prevotella along the �rst principal coordinate axis of Jensen-Shannon 
distances used to build the salivatype clusters. (C–F) Relative abundance of the main contributors to each 
salivatype cluster. Di�erential abundance of each genus on which the clusters were build was tested using a 
Wilcoxon rank-sum test and the genera with P values < 10−10 are depicted. Boxes represent interquartile range 
(IQR), with the inside line representing the median. Whiskers represent values within 1.5 × IQR of the �rst and 
third quartiles. Circles represent outliers beyond the whiskers.
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in PC3; 4.4–0.8%; Q = 0.09). �ere was no association between PC3 and neither observed nor estimated OTU 
count, indicating an e�ect of the principal component on the evenness of the community rather than the richness.

Using coinertia analysis to assess the overall congruence between variation in the salivary microbiota com-
position at OTU level and the variation in average daily intake of macro- and micronutrients (Supplementary 
Fig. S6), we found a moderate but signi�cant correlation (RV = 0.08, P = 0.002).

We also tested the impact of collinear nutrients on microbial community structure and community member-
ship using PERMANOVA, showing multivariate associations (the e�ect of a given PC adjusted for the remaining 
9 PCs) between three diet PCs and three measures of beta diversity (Fig. 3). PC3 explained 5.2% (Q = 0.05) 
and 2.1% (Q = 0.06) of the variation in weighted UniFrac distance and Bray-Curtis dissimilarity, respec-
tively. Similarly, PC2 explained 3.0% (Q = 0.05) and 2.2% (Q = 0.05) of the variation in weighted UniFrac and 
Bray-Curtis distances, respectively. PC5 was associated with weighted UniFrac (R2 = 3.6%, Q = 0.06), but not 
with Bray-Curtis dissimilarity. PC2 was negatively associated with dietary �bre (contributing >4% to the PC; 
Supplementary Fig. S7A). PC3 was negatively associated with the medium-chain fatty acids (MCFA) octanoic 
(caprylic, C8:0), decanoic (capric, C10:0), and dodecanoic (lauric, C12:0) acid (each contributing >7.5% to the 
PC; Supplementary Fig. S7B), all three constituents of coconut oil and palm kernel oil. PC5 was negatively asso-
ciated with starch, and positively associated with the omega-3 polyunsaturated fatty acids (PUFA) stearidonic 
acid (SDA, C18:4n3), eicosapentaenoic acid (EPA, C20:5n3), docosapentaenoic acid (DPA, C22:5n3) and doco-
sahexaenoic acid (DHA, C22:6n3) as well as the omega-9 and omega-11 mono-unsaturated fatty acids (MUFA) 
nervonic acid (C24:1n9) and cetoleic acid (C22:1n11), all predominantly re�ecting intake of �sh (Supplementary 
Fig. S7C). Combined, the 10 �rst dietary PCs explained 18.7%, 12.5%, and 8.1% of the variation in weighted 
UniFrac distance, Bray-Curtis dissimilarity, and unweighted UniFrac distances, respectively.

In order to clarify the compositional changes underlying the association between diet and alpha and beta 
diversity we focused on the subset of OTUs with a mean relative abundance >0.01% and prevalence >50% across 
diet groups, divided samples into quartiles according to each of PC2, PC3 and PC5, and contrasted the �rst 
and fourth quartile for each of the principal components. For each of the three PCs we found several associ-
ations signi�cant at an FDR < 5% with substantial e�ect sizes ranging from two-fold to four-fold di�erences 
(Supplementary Table S4). PC2 (low �bre intake) was negatively associated with two OTUs assigned to genus 
Capnocytophaga and two OTUs assigned to genus Neisseria, one of which was annotated at species level as 
Neisseria sub�ava. Another OTU assigned to Neisseria sub�ava was negatively associated with PC5 (high pis-
cine PUFAs and low starch). PC3 (low caprylic, capric, and lauric acid intake) was negatively associated with 

Figure 3. E�ect of diet principal components on alpha and beta diversity. (A) Forest plot of e�ect sizes and 
corresponding 95% con�dence intervals of the �rst ten diet principal components (PC) on observed richness, 
estimated (Chao1) richness, Shannon’s diversity index, and Simpson’s reciprocal index. Associations were 
tested using multiple regression including all ten PCs simultaneously. (B) Heatmap of variance in beta diversity 
explained by each of the ten �rst diet PCs as estimated by permutational analysis of variance. Q values are given 
for associations signi�cant at an FDR ≤ 10% only.
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two OTUs assigned to genus Prevotella, one OTU assigned to genus Leptotrichia and one OTU assigned to 
genus Selenomonas. One OTU assigned to species Veillonella dispar was positively associated with PC2, whereas 
another OTU also assigned to V. dispar was negatively associated with PC5. Similarly, one OTU assigned to family 
Neisseriaceae was positively associated with PC3, while another OTU assigned to Neisseriaceae was negatively 
associated with PC5. PC5 was also positively associated with one OTU assigned to genus Actinobacillus, one 
assigned to genus Lautropia, and one assigned to genus Porhyromonas.

Association of microbial composition with inflammatory biomarkers. In order to identify salivary 
microbiota associated with low-grade in�ammation we divided samples into quartiles according to serum CRP 
concentration and white blood cell (WBC) count and contrasted the upper and lower quartile for each of the 
principal components, focusing again on the subset of OTUs with a mean relative abundance >0.01% and prev-
alence >50% across diet groups. We identi�ed six OTUs associated with in�ammatory makers (Supplementary 
Table S5); �ve were associated with CRP and one with WBC. One OTU assigned to Haemophilus parain�uenzae 
was associated with both CRP and WBC, but in opposite direction (positively associated with WBC and nega-
tively associated with CRP).

Functional differences in vegans and omnivores. Based on rare�ed OTU counts the functional poten-
tial of the microbial communities in vegans and omnivores was predicted using PICRUSt14. A mean weighted 
Nearest Sequenced Taxon Index (weighted NSTI) score of 0.03 ± 0.02 indicated high reference genome coverage. 
Considering the resulting 6,909 KEGG orthologous groups (KOs), we did not �nd a di�erence in functional rich-
ness between vegans and omnivores. However, at an FDR < 0.10 we did �nd signi�cantly higher alpha diversity 
indices (Shannon’s index and Simpson’s reciprocal index) in vegans compared to omnivores, indicating that the 
di�erence in functional alpha diversity is driven by di�erence in abundance of shared features rather than pres-
ence or absence of speci�c KOs. PCoA ordination of Bray-Curtis dissimilarity indicated a subtle (R2 = 4.0%) but 
signi�cant (P = 0.002) di�erence in functional beta diversity (Supplementary Fig. S8). In fact, diet explained a 
larger proportion of the variation in the genomic potential than it did variation in community structure (4.0% vs. 
2.1% variation in Bray-Curtis dissimilarity explained, respectively).

When collapsing KOs into KEGG pathways we identi�ed 183 pathways within the overall topics of metab-
olism, environmental information processing, genetic information processing and cellular processes that were 
present in more than 10% of all individuals, 85 of which were di�erentially abundant between vegans and omni-
vores at an FDR < 5%; 46 pathways were enriched in vegans and 39 enriched in omnivores (Fig. 4). In general, 
e�ect estimates were small. Of the pathways enriched in vegans, 50% had a log2 fold-di�erence below 0.06, corre-
sponding to less than a 4% increase compared to omnivores. Of the pathways enriched in omnivores, 50% had a 
log2 fold-di�erence above −0.04, corresponding to less than a 2.5% increase compared to vegans. Additionally, a 
substantial proportion of the di�erentially abundant pathways constituted a very low proportion of the genomic 
potential within each sample; 23 pathways (27%) covered less than 1‰ each.

Discussion
In the present study of 78 vegans and 82 omnivores, we observed that the oral microbiota of vegans di�ered sig-
ni�cantly from that of omnivores, both in terms of community structure and taxonomic composition, but also 
in terms of the genomic potential of the community. Albeit, the di�erences between urban dwelling vegans and 
omnivores in our study were small compared to the major di�erences observed between African agriculturalists 
and hunter-gatherers3, which at least in part are considered to re�ect dietary di�erences. Early-life exposure as a 
prerequisite for diet to have a profound e�ect on the microbial community, or adaptation of the microbiota to die-
tary patterns with a loss of potential for recovery over generations, have been proposed as potential explanations 
to similar disparities regarding the gut microbiota15. Similar e�ects could apply to the oral microbiota, explaining 
why we did not observe a di�erence in diversity between vegans and omnivores in spite of a median 5½ year 
(range 1–26 years) adherence to a vegan diet; all the vegan participants in the present study changed dietary habits 
in their second decade of life (age at vegan debut 10–57 y), at the earliest.

Applying cluster based methods to group individuals based on the abundance of dominant genera, two par-
tially separated clusters were identi�ed, re�ecting co-occurrence patterns of core genera, as previously described5. 
Interestingly, in terms of the optimal number of clusters and predominant genera, our results are more similar 
to a population-based study of middle-aged Japanese16 than those of a study of Italian omnivores, vegetarians 
and vegans5, perhaps re�ecting that environmental factors other than diet are stronger determinants of the sal-
ivary microbiota, or simply re�ecting di�erences in sample collection, DNA extraction, PCR ampli�cation, and 
sequencing. As previously suggested regarding clustering of samples based on genus abundance in stool, the 
biology underlying abundance-based clustering is more likely to be gradients of co-excluding bacteria rather 
than discrete features17, which we demonstrate also applies to the oral microbiota. �e fact that we observed a 
signi�cant association between a vegan dietary pattern and an increased ratio of Neisseria to Prevotella, but no 
association between dietary patterns and the discrete salivatypes, demonstrate that quantitative analysis is gener-
ally more e�cient than qualitative analysis18 if statistically feasible.

Our results indicate that certain dietary components in�uence the oral microbial community. Speci�cally, 
dietary principal components re�ecting the intake of �bre, MCFAs (caprylic, capric and lauric acid), and pis-
cine MUFAs (nervonic and cetoleic acid) and PUFAs (DHA, DPA, EPA, and SDA) were shown to be associated 
with diversity and community structure, driven by di�erentially abundant, but commonly present microbiota. 
�e antimicrobial e�ects of fatty acids have been recognized for decades19,20. Speci�cally, both MCFAs, omega-3 
PUFAs, and omega-9 MUFAs have been shown to have antimicrobial e�ects against oral microbiota in vitro21–24. 
However, to the best of our knowledge, this is the �rst report linking variation in the human salivary microbial 
community to fatty acids as constituents of a composite diet. In the human gut microbiota, intake of diets rich in 
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plant-based polysaccharides have been associated with overall diversity and compositional changes at the genus 
level25,26 and non-starch polysaccharides have been experimentally demonstrated to a�ect the relative abundance 
of butyrate producing bacteria in the gut27. �e e�ect of non-starch polysaccharides on the oral microbiota has 
not been studied with equal intensity, if at all. Interestingly, an indirect indication of an e�ect of dietary �bre 
on the oral microbial community has been provided by large-scale epidemiological studies showing an inverse 
relationship between dietary �bre intake and both prevalent28 and incident29 periodontal disease; an e�ect that 
appears to be preferential to cereal �bre. Our results indicate that the intake of total dietary �bre is associated with 
increased abundance of the oral commensals Capnocytophaga and Neisseria sub�ava, as well as an increase in the 
potential for short-chain fatty acid (butyrate and propionate) production. Capnocytophaga spp. are facultative 
anaerobic chemotrophs capable of fermenting polysaccharides including dextran, glycogen, inulin, and starch, 
with acetate and succinate as the major acidic end products30. N. sub�ava is counted among the saccharolytic 
Neisseria spp. capable of metabolizing mono- and disaccharides by oxidative processes31. However, further exper-
imental studies are required to verify whether these taxa truly are responsive to the intake of dietary �bre.

Among the OTUs enriched in vegans and positively associated with CRP was one annotated as Campylobacter 
rectus, a species associated with periodontal disease32. �e salivary microbial community mostly resembles the 

Figure 4. Di�erential abundance of KEGG pathways in vegans and omnivores. Orthologous groups were 
collapsed at pathway level. Pathways within the overall topics of metabolism, environmental information 
processing, genetic information processing and cellular processes present in ≥10% of individuals were tested 
for di�erential abundance in vegans and omnivores using the DESeq2 package. Only metabolic pathways 
di�erentially abundant at an FDR ≤ 5% are depicted. Bars indicate mean (standard deviation) proportion of 
di�erentially abundant pathways in omnivores. Forest plot indicates log2 fold di�erence and corresponding 
95% con�dence intervals for the di�erence in pathway abundance between vegans and omnivores. Pathways are 
coloured by functional category and ordered by decreasing log2 fold-di�erence within each category.
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microbial community of the dorsum of the tongue and to what degree C. rectus in stimulated saliva re�ects 
active periodontal disease has not been decisively established. A population based study of 1,198 Finnish adults 
indicated that, the number of di�erent pathogenic species present in saliva is associated with clinical signs of 
periodontitis, rather than the presence of any single periodontal pathogen or speci�c combinations thereof33. In 
a study of 150 systemically healthy adults, of whom 37 were periodontally healthy and 122 had varying degrees 
of periodontal disease, C. rectus was more abundant in saliva from individuals with gingivitis or periodontitis, 
but receiver operator characteristic analysis showed that the presence of periodontal disease could not be reliably 
identi�ed by the salivary abundance of C. rectus34. In a study of subgingival plaque from 109 individuals with 
periodontitis and 65 periodontally healthy controls, C. rectus was associated with increased CRP concentration35, 
suggesting that C. rectus might be a driver of the association between periodontal disease and CVD. In fact, 
among 1,060 individuals participating in a population-based study, the presence of C. rectus in subgingival plaque 
was associated with higher odds of recent non-fatal myocardial infarction; however, adjusting for potential con-
founding factors (i.e. age, sex, educational attainment, cholesterol, blood pressure, diabetes status, and smoking) 
abolished the association. Further suggestion of potential extra-oral e�ects of C. rectus is detection of its DNA in 
carotid and coronary atherosclerotic plaques36,37 and in amniotic �uid of preterm low birth weight pregnancies38. 
Participants in the present study were not subjected to a dental examination. Consequently, we cannot know 
whether the enrichment of C. rectus in vegan saliva re�ects poor periodontal health. However, there was no dif-
ference between the vegan and omnivorous study groups with regard to demographic, anthropometric or lifestyle 
factors previously reported to a�ect the oral microbiota and the risk of periodontal disease.

Dietary patterns have been shown to have a substantial impact on the functional potential of the gut micro-
biota. Applying functional metagenomics, Yatsunenko and colleagues25 showed that the gut microbiome of 
high-protein consuming North-Americans was enriched in genomic potential for degradation of several amino 
acids, whereas the gut microbiome of low-protein consuming Malawians and Amerindians was enriched in 
potential for amino acid synthesis. Our results indicate that similar e�ects may apply to the salivary microbiota. 
Of notice, vegans eat signi�cantly less protein compared to omnivores and the proportion of imputed genomic 
content encoding peptidase enzymes was also lower in vegans. Conversely, pathways involved in the metabo-
lism of some of the amino acids least abundant in the vegan diet were enriched in vegans, perhaps re�ecting a 
competitive edge for bacteria better equipped at utilizing amino acids in a habitat where this particular substrate 
is scarce. Similarly, the imputed potential for lipid and fatty acid biosynthesis was increased in the vegan micro-
biome. Increased in vegans were also the pentose phosphate pathway, pyruvate metabolism, and the potential 
for biosynthesis of the short-chain fatty acids butyrate and propionate. �is pattern of enriched carbohydrate 
metabolism might re�ect the higher intake of dietary �bre. �e imputed potential for galactose metabolism was 
decreased compared to omnivores, perhaps re�ecting the absence of dairy product in the vegan diet. Similarly, 
at the micronutrient level, the imputed genomic potential for biotin and pantothenate biosynthesis was enrich in 
vegans, whereas the imputed potential for folate biosynthesis was reduced, mirroring lower levels of biotin and 
pantothenic acid and higher levels of folate in the vegan diet. However, while these results may re�ect di�erences 
in macro- and micronutrients content of the vegan and omnivorous diet, caution should be exercised in light of 
the small e�ect sizes and the relatively broad and unspeci�c categorization that KEGG pathways represent. In 
the present study, we sequenced the relatively short V4 region, which has less taxonomic resolution than longer 
regions like V1-V3, potentially making the functional imputation less precise. Additionally, contrary to shotgun 
metagenomics, bacterial 16S data can only provide indirect information about the genomic potential of a bac-
terial community. Although metagenomics and 16S based functional imputation are correlated across human 
body sites14 and the reference genome coverage for our samples was high, our �ndings require validation in other 
datasets, preferably applying whole metagenomics sequencing.

In summary, our study of the salivary microbiome in vegans and omnivores suggest that long-term dietary 
patterns and speci�c nutrients contribute in shaping the salivary microbiota. Our �nding that certain oral bacte-
ria are associated with circulating in�ammatory markers provide further evidence to the proposed link between 
the oral microbiota and systemic disease.

Methods
Subjects and study design. Seventy-eight vegans and eighty-two omnivores were recruited through adver-
tisements in local newspapers and online resources (Table 1). Volunteers were eligible for inclusion if they were 
between 18–65 years of age and weight-stable (±1 kg, assessed by interview) for a minimum of 2 months. Vegan 
volunteers were eligible for inclusion in the study if they had been adherent to a vegan diet for a minimum of 
1 year. Volunteers who received antibiotic treatment within 3 months, had known gastrointestinal disease or 
reported gastrointestinal symptoms at the time of the study, or followed a medically prescribed diet were ineligi-
ble for inclusion. Pregnant and lactating women were also ineligible. �e study was conducted according to the 
Declaration of Helsinki and was approved by the Regional Committee on Health Research Ethics for the Capital 
Region of Denmark (J.no. H-3-2012-145). All participants gave written informed consent.

Examination. Participants were examined in the morning following a 10-hour overnight fast.

Anthropometrics. Participants were weighed on an electronic scale (TANITA WB-110MA, Tanita Corporation 
of America, USA) without shoes, dressed in light clothing or underwear a�er having emptied their bladder. 
Height was measured to the nearest 0.5 cm without shoes using a wall-mounted stadiometer (ADE MZ10023, 
ADE, Germany). Waist circumference was measured to the nearest cm in erect position midway between the 
iliac crest and the lower costal margin. Body-mass index (BMI) was calculated by dividing the weight (kg) by the 
square of the height (m) and body fat percentage was assessed with bioelectric impedance analysis (Biodynamics 
BIA310e, Biodynamics corp., USA).
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Questionnaires. All participants completed a questionnaire on lifestyle, including information on smoking and 
alcohol consumption. Physical activity was recorded using a validated instrument39, and intensity weighted activ-
ity levels were calculated as metabolic equivalents of task (MET) hours per week40.

Saliva. Participants were instructed not to brush their teeth on the morning of the examination. Saliva was 
collected in the fasting state, stimulated by chewing on a piece of para�n wax. A�er 1 minute of mastication the 
participants were asked to swallow the saliva present in the mouth, a�er which 2 mL whole saliva, stimulated by 
the same piece of para�n, was collected and immediately stored at −80 °C until analysis.

Blood. Blood was collected by venepuncture of the antecubital vein, fractionated, and immediately stored at 
−80 °C until analysis. Plasma CRP was measured on a Roche cobas c701 system using a particle-enhanced turbi-
dimetric immunoassay (Roche Diagnostics GmbH, Mannheim, Germany) with an intra-assay CV of 0.7–2.3%. 
WBC was measured on an ADVIA 2120i system (Siemens Healthcare GmbH, Erlangen, Germany) using coupled 
�owcytometri and peroxidase methodology.

Diet records. Diet was assessed by a self-administered 4-day weighed food record, including 2 working days 
and 2 weekend days within one week. Foods were quanti�ed to the nearest 0.1 g using a calibrated precision scale 
(ProScale XC-2000, HBI Europe, Erkelenz, Germany). Diet was recorded validly by 149 participants. Nutrient 
content was calculated using the Dankost Pro so�ware (version 1.5.49.21), which is based on the food database 
at the Danish Food Composition Databank containing 1,049 food items (www.frida.fooddata.dk). Vegan recipes 
not included in the database were constructed by quali�ed personnel and based on foods with complete validity 
in the database. Average daily intake (ADI) of macro- and micronutrients (Supplementary Table S1) was calcu-
lated as:

ADI ((average on working days 4) (average on weekend days 3))/7= × + ×

DNA extraction, 16S rRNA library preparation and sequencing. Genomic DNA was iso-
lated from 300 µL of saliva using the NucleoSpinSoil kit (Macherey-Nagel GmbH & Co. KG, Germany) fol-
lowing the manufacturer’s instruction. For the cell lysis, buffer SL2 + Enhancer buffer SX were used, the 
subsequent vortex step was replaced with repeated bead beating. DNA yield, purity and integrity were 
assessed using a Qubit 2.0 fluorometer, a NanoDrop 2000 spectrometer (Thermo Fisher Scientific Inc., 
MA USA) and agarose gel electrophoresis, respectively. Library preparation with polymerase chain reac-
tion (PCR) amplification was performed using 20 ng bacterial DNA, 0.2 µM of each barcoded forward and 
reverse primer, and HotMasterMix (5Prime) solution in a total volume of 25 µL. To target the variable region 
4 (V4) of the 16S rRNA gene a forward primer 515 F (5′AATGATACGGCGACCACCGAGATCTACAC 
< i 5>  TATG G TA AT TG TG TG C C AG C MG C C G C G G TA A 3 ′ )  and  a  re ve rs e  pr i me r  8 0 6  R 
(5′AAGCAGAAGACGGCATACGAGAT <i7> AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT3′) were 
used; each primer consisted of the appropriate Illumina adapter, an 8-nucleotide index sequence i5 and i7, a 
10-nucleotide pad sequence, a 2-nucleotide linker, and the gene-speci�c primer41,42. �e PCR reaction condi-
tions were 3 minutes at 94 °C, followed by 28 cycles of 20 seconds at 94 °C, 30 seconds at 55 °C and 54 seconds at 
72 °C on an Eppendorf thermocycler (Eppendorf AG, Germany). �e samples were puri�ed individually with a 
magnetic-bead based clean-up and size selection kit (Macherey-Nagel GmbH & Co. KG, Germany). Amplicons 

Vegans Omnivores P

Demographics

Participants 78 (55%) 82 (52%) 0.75†

Age (y) 31.2 ±  8.8 31.6 ± 8.2 0.74‡

Anthropometrics

BMI (kg·m−2) 21.3 ± 2.3 21.8 ± 2.2 0.13‡

Body fat (%) 19.7  ± 6.0 19.5 ± 5.5 0.77‡

Waist circumference (cm) 77 ± 7.3 76.6 ± 7.7 0.73‡

Lifestyle

Current smokers 8 (10%) 12 (15%) 0.48†

Alcohol (units·week−1) 2.0 (0, 6.8) 3.5 (1.0, 7.4) 0.12$

Physical activity 
(ME�ours·week−1)

38.4 ± 5.2 39.1 ± 4.6 0.34‡

Socio economic status

Educational attainment 0.22†

Secondary school or less 28 (36%) 19 (24%) 0.12

Vocational training 5 (6%) 5 (6%) >0.99

Higher education 45 (58%) 56 (70%) 0.14

Table 1. Study Sample Characteristics. Data is number of vegan and omnivorous participants (% women). 
Continuous traits are presented as mean ± standard deviation or median (25th centile, 75th centile). Discrete 
traits are presented as number of individuals (%). †Fisher’s exact test. ‡Student’s T-test. $Wilcoxon rank-sum test.

http://www.frida.fooddata.dk


www.nature.com/scientificreports/

9SCIENTIFIC REPORTS |  (2018) 8:5847  | DOI:10.1038/s41598-018-24207-3

were visualized by gel electrophoresis and quanti�ed by a Qubit 2.0 �uorometer. A master DNA pool was gener-
ated from the puri�ed products in equimolar ratios. �e DNA was sequenced using an Illumina MiSeq platform 
(MiSeq Reagent Kits v2, 500 cycles), generating a total of 24,663,124 (range 21,286–362,746) paired-end reads, 
which were merged using FLASH43, generating contigs comprising 250 ± 6 base pairs. Expected error �ltering 
(Emax = 0.5) in USEARCH44 was used to exclude low quality contigs. Using Quantitative Insights Into Microbial 
Ecology (QIIME) v1.841 the remaining high-quality contigs (median 47,390; inter quartile range 25,596–79,128) 
were de-multiplexed and assigned to operational taxonomic units by a minimum 97% sequence similarity against 
Greengenes v.13.845 using closed reference picking. Sample coverage (Good’s estimator) was above 99% in all 
samples.

Statistical analyses. All statistical tests were performed using R v3.3.1 (www.r-project.org). P-values were 
adjusted for multiplicity ad modum Benjamini-Hochberg46 and a false discovery rate ≤ 10% was observed for 
signi�cance unless otherwise speci�ed.

Microbiota composition and diversity in vegans and omnivores. Downstream analyses of 16S sequencing data 
were performed in R using the phyloseq package v1.16.247. Samples were rare�ed to an equal sequencing depth 
of 6,755 prior to alpha diversity, beta diversity and cluster analyses. Di�erences in richness and alpha diver-
sity indices (Shannon’s index and Simpson’s reciprocal index) between vegans and omnivores were tested using 
T-tests of logarithmically transformed variables in order to improve normality and homoscedasticity. Di�erence 
in community structure between vegans and omnivores was assessed by principal coordinate ordination using 
Bray-Curtis, unweighted- and weighted UniFrac metrics, and tested using permutational multivariate analysis 
of variance as implemented in the vegan R package v.2.4.0. For analysis of di�erentially abundant taxa a negative 
binomial Wald test as implemented in the DESeq2 package48 was applied.

Prior to cluster analysis, abundance data was de-noised by removing genera with average abundance <0.01% 
across all samples. Samples were clustered using partitioning around medoids (PAM) of Jensen–Shannon dis-
tances (JSD), as described by Arumugam and colleagues13. �e optimal number of clusters was estimated to two 
using the Calinski–Harabasz (CH) index. �e silhouette validation technique was used for assessing the robust-
ness of clusters; mean silhouette width was 0.19 and 0.30 for clusters I and II, respectively.

Diet-Microbiota associations. �e overall relationship between OTU-level microbiota composition and daily 
nutrient intake was determined by performing principal components (PC) analysis of the individual datasets 
followed by co-inertia analysis (as implemented in the ade4 R package) which integrates the datasets and iden-
ti�es common biological trends. �e magnitude of the correlation between the datasets was quanti�ed by the 
RV-coe�cient (ranging from 0 to 1 with higher values indicating a higher degree of concordance) and the signif-
icance was determined by Monte Carlo simulation.

In order to assess multivariate associations between collinear nutrients and microbiome features, PC analysis 
of the dietary data was performed by a singular value decomposition of the centred and scaled nutrient values. 
�e relative contribution of each nutrient to a given PC was calculated as the ratio of the loading of the nutrient to 
the sum of all the loadings for the PC in question. �e �rst ten principal components, all with eigenvalues >1 and 
capturing 78.3% of the variance combined, were selected for analyses of association with microbiome features. In 
the case of alpha diversity measures, association with diet PCs was analysed using multiple linear regression with 
log-transformed alpha diversity measures (observed and Chao1 estimated OTU richness, Shannon’s index and 
Simpson’s reciprocal index) as dependent variables and PC1 through 10 as independent variables. For association 
with beta diversity measures (OTU based Bray-Curtis, unweighted UniFrac and weighted UniFrac distances) 
PERMANOVA was applied and P-values for the multivariate association of each PC was obtained by specifying a 
model with the PC of interest as the last in a sequence of the �rst ten PCs otherwise ordered by decreasing eigen-
value. To test the association of dietary PCs with individual OTUs, a negative binomial Wald test as implemented 
in the DESeq2 package was applied. To circumvent the assumption of constant fold change for each unit change 
of the independent variable, each PC was divided into quartiles and the �rst and fourth quartile were contrasted.

Functional analyses. Metagenomic prediction of 6,909 KEGG (Kyoto Encyclopaedia of Genes and Genomes) 
orthologous groups (KOs) was performed based on rare�ed OTU counts using the default settings of PICRUSt 
v.0.9.114. Analyses of functional alpha and beta diversity were based on the full set of imputed KOs. Di�erence 
in alpha-diversity indices between vegans and omnivores was tested using a Student’s T-test, with logarithmic 
transformation of the variables in order to improve normality and homoscedasticity. For functional beta-diversity 
analysis PCoA ordination of Bray-Curtis distances based on proportional KO abundances was performed and 
vegans and omnivores were contrasted using PERMANOVA. KOs were collapsed at pathway level and 120 path-
ways within the overall topics of metabolism, environmental information processing, genetic information pro-
cessing and cellular processes with a prevalence of at least 10% were tested for di�erential abundance in vegans 
and omnivores using DESeq2.

Availability of data and material. �e datasets generated and/or analysed during the current study are 
available from the corresponding author on reasonable request.
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